
A Symmetry Detector for Map Generalization

and Urban-Space Analysis

Jan-Henrik Haunert

University of Würzburg, Chair for Computer Science I, Am Hubland, 97074 Würzburg,
Germany, e-mail: jan.haunert@uni-wuerzburg.de

Abstract

This article presents an algorithmic approach to the problem of finding sym-

metries in building footprints, which is motivated by map generalization tasks

such as symmetry-preserving building simplification and symmetry-aware

grouping and aggregation. Moreover, symmetries in building footprints may

be used for landmark selection and building classification. The presented

method builds up on existing methods for symmetry detection in vector data

that use algorithms for string matching. It detects both mirror symmetries

and repetitions of geometric structures. In addition to the existing vector-

based methods, the new method finds partial symmetries in polygons while

allowing for small geometric errors and, based on a least-squares approach,

computes optimally adjusted mirror axes and assesses their quality. Finally,

the problem of grouping symmetry relations is addressed with an algorithm

that finds mirror axes that are almost collinear. The presented approach

was tested on a large building dataset of the metropolitan Boston area and

its results were compared with results that were manually generated in an

empirical test. The symmetry relations that the participants of the test con-

sidered most important were found by the algorithm. Future work will deal

Preprint submitted to Elsevier March 13, 2013

with the integration of information on symmetry relations into algorithms

for map generalization.

Keywords: GIS, Geometry, Algorithms, Generalization, Urban, Building,

Pattern, Detection

1. Introduction

Symmetry is a fundamental element of design. In architecture, it is

widely applied from the micro-level (facade decor) to the macro-level (ur-

ban design, landscape architecture) and for multiple reasons (functionality,

aesthetics, low construction costs). A large number of empirical studies by

psychologists suggests that humans are extremely good in detecting sym-

metries in shapes and generally perceive symmetries as important shape

characteristics—literature surveys are given by Wagemans (1994) and Treder

(2010). Since many geographic analysis tasks require methods for shape char-

acterization, an automatic symmetry detector is needed. This article presents

a new algorithm for the detection of symmetries and repetitive structures in

polygons, which is tailored to deal with building footprints typically found

in cadastral or topographic vector databases. It was tested for a building

dataset of the metropolitan Boston area.

This work contributes to the general aim of enriching spatial data with in-

formation on geometric structures and patterns. Such information is valuable

for multiple applications. The main motivation of this work is map gener-

alization, which aims to decrease a map’s level of detail while preserving

its characteristic structures. With respect to buildings, both symmetry-

preserving simplification and symmetry-aware aggregation are interesting

2

map generalization problems that have not been approached yet.

Several authors have proposed algorithms for building simplification (Mayer,

1998; Sester, 2005; Kada and Luo, 2006; Damen et al., 2008). We (Haunert

and Wolff, 2010) have developed a new, optimization-based algorithm that

allows multiple quality criteria to be integrated, for example, the preser-

vation of a building’s area and its dominating edge directions. Symmetry

preservation, however, is currently not considered as a quality criterion in

this method or in other methods, thus symmetries may become lost by au-

tomatic simplification, see Fig. 1. In an empirical test, which we will discuss

in Sect. 4 in detail, 30 participants were asked to scale Fig. 1(a) by a factor

of 0.5. To keep the building footprints as legible as in the original figure, the

participants were allowed to simplify shapes. Among all non-trivial solutions

(solutions with more than four but less than the original number of vertices)

the overwhelming majority (81%) preserved the dominant symmetries of the

input polygons. This confirms the assumption that symmetries are impor-

tant for map generalization. A good strategy to preserve symmetries seems

to be to first detect symmetries in the input buildings. Then, simplifica-

tions that destroy symmetries can be penalized by defining an appropriate

cost function. This approach will hopefully yield simplification results that

better reflect the characteristic properties of the input buildings.

The problem that a simplification algorithm destroys symmetries in a

building footprint especially arises when generalizing a small-scale map into

a medium-scale map that still allows the buildings to be displayed with a rel-

atively large amount of detail. Another map generalization problem, which is

more relevant when a small-scale map needs to be derived, is building aggre-

3

N

10m

(1)

(2)

(3)

(4)

(a) six buildings with charac-
teristic symmetries (dashed
lines labeled with 1–4)

N

ε = 5m

(3)

(b) simplification result with
ε = 5 m that violates symme-
try 3

N

ε = 8m

(4)

(c) simplification result with
ε = 8 m that violates symme-
try 4

Figure 1: When simplifying building footprints with the method by Haunert and Wolff
(2010), characteristic symmetries may become lost. The parameter ε is the error tolerance
that defines the degree of simplification.

N

50m

(a) six buildings (dark shaded) that, due to
reflectional symmetry and repetitive struc-
tures, can be perceived as a group

N

50m

(b) a building (dark shaded) whose impor-
tance is emphasized by symmetry as an ele-
ment of architectural design

Figure 2: Two patterns of buildings in Boston, MA.

4

gation, which means to find groups of buildings. Each group may be replaced

by a single map object, for example, a building block. In map generaliza-

tion, the grouping of objects is usually done according to Gestalt criteria,

for example, alignment, similarity, and proximity, which model criteria of

human perceptional grouping (Wertheimer, 1938). Obviously, symmetry is

an important criterion for grouping, too. For example, humans better per-

form on the task of deciding on the presence of a shape outline in an array

of Gabor elements (white dots blurred in different directions) if the shape is

symmetric (Machilsen et al., 2009). Similarly, we clearly perceive that six

of the buildings in Fig. 2(a) form an ensemble, which presumably is because

of their symmetric arrangement and repetitive structures. Therefore, replac-

ing the ensemble by a single (larger) shape can be a favorable generalization

action. Alternatively, we may select a subset of the input buildings for the

small-scale map. Also in this case it makes sense to first find groups of build-

ings, since the characteristics of a group need to be preserved by the selection

(Regnauld, 2001).

Map generalization is not the only application this work aims for. Archi-

tects and city planners are also interested in evaluating the design of cities,

for example, to reveal dependencies between an architectural design princi-

ple and the navigation performance of pedestrians (Wiener and Franz, 2004).

In this context, the term space syntax is often used for concepts describing

the structuring of towns by straight lines of sight and viewsheds (Hillier and

Hanson, 1984). Jiang and Claramunt (2002) have dealt with the integration

of space syntax analysis methods into geographic information systems. In

order to characterize the space surrounding a pedestrian, Leduc et al. (2011)

5

(a) mirror axes found by string matching (b) lines supported by multiple axes in (a)

Figure 3: In a first step (a), mirror axes are detected that reflect symmetry relations
between a connected piece of the boundary of a polygon and a connected piece of the
boundary of another (or the same) polygon. In a second step (b), mirror axes are grouped
to find symmetry relations involving multiple buildings or building parts.

have developed a method that classifies isovist polygons (that is, portions

of a constant-height plane that are visible from given points) into classes

like street canyon or public square. A symmetry detector could be used,

for example, to quantify the degree of symmetry of an isovist polygon and,

thereby, to measure the regularity of an architectural design, which certainly

influences how users interact with space. As an example, consider the set of

buildings in Fig. 2(b). Even though the dark shaded building is among the

smallest buildings in the set, it has a high perceptual salience, which is due

to the symmetric arrangement of the buildings. Therefore, it would probably

be a good idea to refer to that building in a driving instruction. Moreover, we

may assume that the building has an important representative function, like

a town hall or a castle. The building is in fact the main building of Harvard

Medical School. Symmetry can thus be used as a cue for both automatic

landmark selection (that is, deciding which building serves best as a land-

mark in a driving instruction) and building classification, which are topical

problems in geographic information science. A comparison of methods for

landmark selection is given by Peters et al. (2010). Steiniger et al. (2008)

and Werder et al. (2010) have proposed shape measures to classify building

footprints and, more generally, polygons according to their functionality.

6

This article is based on a conference paper (Haunert, 2011) that presented

a basic string-matching method for symmetry detection. The original method

finds basic symmetry relations between two polylines, each being a connected

piece of the boundary of an input polygon. The symmetry relations we are

interested in, however, may involve multiple buildings or building parts—

consider, for example, a road where each building on the left side has a

mirror-image counterpart on the right side. To handle such cases, the original

method had to be extended. In particular, an aggregation step was needed, in

which short line segments that represent mirror axes are grouped into longer

line segments, see Fig. 3. With the revised method, multi-part symmetry

relations that involve multiple buildings can be detected.

For every match found with the string-matching algorithm, a global ge-

ometric consistency test needs to be performed. For example, the mirror

axis fitting best for all pairs of corresponding points of a match needs to be

found, which can be done by least-squares adjustment. Based on the quality

of the least-squares fit it is then possible to decide whether a match indeed

corresponds to a reflection at a straight line. Computing the least-squares fit

with the common iterative algorithm (Kraus, 2004, Appendix to Section 4.1),

which was suggested in the paper preceding this article, turned out to be very

time consuming. In contrast, the revised method uses a faster, non-iterative

solution based on a singular value decomposition (SVD).

In summary, this article combines several existing techniques in an in-

novative way, namely, shape simplification, symmetry detection by string

matching, grouping of lines (mirror axes), and least-squares adjustment. To-

gether, these techniques yield a new symmetry detector for vector data that

7

is more widely applicable than the existing methods. More precisely, the new

method allows multiple symmetry relations to be found of which each may

involve multiple disconnected parts of a set of input polygons, even if the

symmetric counterparts slightly differ from each other. Such a method has

not been presented and tested on a large real-world instance before.

Furthermore, this article presents results of an empirical study in which

humans were asked to manually solve three tasks (building simplification,

building grouping, detection of mirror axes) to which the proposed symmetry

detector can be applied. By comparing the automatically and the manually

generated results, the symmetry detector is shown to indeed find the most

salient symmetry relations in the data, but also open problems and ideas for

future research are identified.

The article is structured as follows. We first discuss related work on data

enrichment in map generalization and on algorithms for symmetry detection

(Sect. 2). Then, the algorithm for symmetry detection is presented in detail

(Sect. 3). In Sect. 4, we discuss the empirical study and experimental results

obtained with the new algorithm. Section 5 concludes the article.

2. Related work

The gathering of knowledge on patterns and structures in geographic

data, data enrichment, is often considered as a prerequisite for automatic

map generalization (Mackaness and Edwards, 2002; Steiniger, 2007; Neun

et al., 2008). Thomson and Brooks (2002) show how to find long sequences of

(almost) collinear road segments in road datasets. Such sequences, so-called

strokes, correspond to major road axes that need to be preserved during

generalization, for example, when selecting a subset of all roads for a map.

8

Heinzle and Anders (2007) present algorithms to find star-like structures,

rings, and regular grids in road networks in order to improve the generaliza-

tion of networks. Christophe and Ruas (2002) as well as Ruas and Holzapfel

(2003) present methods to find alignments of buildings. Gaffuri and Trévisan

(2004) show how to deal with such patterns in a multi-agent system for map

generalization. Methods for the grouping of buildings are proposed by Reg-

nauld (2003) and Yang (2008). These methods, however, do not consider

symmetry as a criterion for grouping.

In contrast, symmetry detection has found much attention in the liter-

ature on image analysis and pattern recognition. Symmetry detection in

images is often done based on local image features that are highly distinc-

tive and invariant against certain transformations, for example, rotation and

scale. Loy and Eklundh (2006) as well as Cho and Lee (2009), for exam-

ple, use so-called SIFT (scale-invariant feature transform) descriptors. A

comparative study on symmetry detection in images is given by Park et al.

(2008). Mitra et al. (2006) present a method for finding symmetries in three-

dimensional models. Similar to the symmetry detectors for images, their

method relies on characteristic points. In this case, however, the character-

istic points are defined based on the curvature of the model’s surface. Point

pairs that correspond by shape symmetry are found using RANdom SAmple

Consensus (RANSAC).

In contrast to symmetry detection in images, symmetry detection in two-

dimensional polygons is often done by string matching. The basic string-

matching approach of Wolter et al. (1985) is to encode a polygon P as a

string X, for example, as a sequence of angles and edge lengths, see Fig. 4.

9

We denote the reversal of a string A by A−1 and the concatenation of two

strings A and B by AB. In order to find a mirror symmetry, the method of

Wolter et al. (1985) tests whether the string X−1 is a substring of the string

XX (i.e., the concatenation of X with itself). This test can be done in Θ(n)

time where n is the number of elements in XX by using the algorithm of

Knuth et al. (1977). In the example in Fig. 4, the string X−1 is indeed a sub-

string of XX. Its location within XX yields the mirror symmetry. Similarly,

we can find a rotational symmetry relation by finding X itself within XX.

We need to avoid trivial solutions, however, that match X to the first or sec-

ond half of XX. This can be done by removing the first and the last element

from XX before matching. Based on a similar approach by string matching,

the algorithm of Atallah (1985) finds all axes of symmetry of a polygon with

n vertices in Θ(n log n) time. Lladós et al. (1997) use an approach based

on a string edit distance that, in order to cope with distorted shapes, allows

sequences of symbols in the string representation of a polygon to become

merged and the resulting new symbols to become matched. An alternative

approach by Yang et al. (2008) is based on critical contour points, that is,

vertices of a simplified version of the original contour. The method presented

in this article is similar in the sense that the string matching is performed on

a simplified version of the input polygon. Since symmetry-preserving algo-

rithms for line and building simplification do not exist, however, a building

simplification algorithm is applied with a conservative setting, primarily to

remove redundant vertices.

In order to aggregate mirror symmetries found by string matching (recall

Fig. 3) the corresponding mirror axes are grouped. The presented algorithm

10

5

1

0
0 1 7

α1

α3

α2

x

y

X−1 = 〈5, 73.8◦, 5, 53.1◦, 6, 53.1◦〉

= 〈53.1◦, 6, 53.1◦, 5, 73.8◦, 5, 53.1◦, 6, 53.1◦, 5, 73.8◦, 5〉XX

s1,2

s2,3

v1 v2

v3

s2,3

s3,1 α1

α2

s3,1

= 〈α1, s1,2, α2, s2,3, α3, s3,1〉X

= 〈53.1◦, 6, 53.1◦, 5, 73.8◦, 5〉

Figure 4: Principle of the algorithm for symmetry detection by Wolter et al. (1985). Since
X−1 is a substring of XX, the polygon is mirror symmetric. For example, edge s3,1 is a
mirror image of edge s2,3. The mirror axis is drawn as a dashed line.

builds up on two simple existing methods, namely a transformation of lines

into Hough space (Hough, 1962) and a grouping algorithm for collinear line

segments (Scher et al., 1982).

3. Methodology

3.1. Preliminaries

Generally, we define a symmetry s as a triplet (P,Q, T), where P and Q

are sets of polylines and T is a geometric transformation such that applying

T to the polylines in P yields (with some error tolerance) the polylines in Q.

We require that each of the polylines in P and Q is a connected part of the

boundary of an input polygon. If |P | = |Q| = 1, we say that s is basic. Note

that in a basic symmetry the polyline in P and the polyline in Q may be

the same. For instance, let p be equal to the entire boundary of the polygon

in Fig. 4. Indeed, there is a non-trivial transformation T that maps p onto

itself: the reflection at the vertical line through v3. Therefore, ({p}, {p}, T)

is a basic symmetry.

11

p q

`

(a) ({p}, {q}, T) is basic
and pure

p q

`

s

r

t

(b) ({p, s, t}, {q, r, t}, T) is pure
but not basic

p

`

q

(c) ({p}, {q}, T) is basic but
not pure

Figure 5: Three types of reflections. The transformation T in (a) and (b) is the reflection
at the straight line `; in (c), T additionally has a translation component (gray arrow).

We allow the transformation T of a symmetry s = (P,Q, T) to be of two

different types, that is, it may either be

(a) a reflection at a straight line followed by a translation or

(b) a proper rigid transformation (i.e., a rotation followed by a translation).

If T is of type (a), we term s a reflection. If T is of type (b), we term

s a repetition. We are particularly interested in pure reflections, that is,

reflections that do not have a translation component. Figure 5 visualizes the

definitions of pure and basic reflections on examples.

The symmetry detection comprises a matching stage and a grouping

stage.

In the matching stage, basic symmetries are detected. To this end, a

string-matching algorithm is applied that yields a set of pairs of polylines.

Then, a least-squares adjustment is performed to find a transformation for

each such pair. The square sum of residuals allows us to decide whether the

pair (p, q) of polylines and the transformation T found for this pair indeed

12

constitute a basic symmetry ({p}, {q}, T). If the square sum of residuals is

too large, that triplet becomes rejected.

In the grouping stage, the set of basic symmetries is partitioned into

groups. Basically, two or more basic symmetries become grouped if their

transformations have similar parameters. Two pure reflections, for example,

should only be grouped if their mirror axes are (almost) collinear. A simple

iterative algorithm for grouping is applied that respects this criterion. At the

end of the second stage, the least-squares method is applied to each group in

order to find the transformation T that fits best for all polylines in that group.

Again, we may reject a group of basic symmetries if this transformation is

not good enough, that is, if the square sum of residuals is too large.

In the remainder of this section, we discuss the representation of polylines

as strings (Sect. 3.2), the string-matching algorithm (Sect. 3.3), and the least-

squares approach (Sect. 3.4) used in the matching stage. Then, the grouping

algorithm is presented (Sect. 3.5); the least-squares method from Sect. 3.4 is

also used in the grouping stage.

3.2. Symmetries in the string representation of polygons

We encode a polygon P as a string X(P) of edge lengths and angles as it

was shown in Fig. 4. Thereby, we obtain a shape representation that is in-

variant against rotations and translations. Figure 6 illustrates on an example

how we can find partial symmetries in P based on string matches. Gener-

ally, each string match is a pair of strings, one of them being a substring of

X(P1)X(P1) and the other one being a substring either of X(P2)X(P2) or of

X−1(P2)X
−1(P2), where P1 and P2 are two potentially (but not necessarily)

distinct polygons. String matches comprising a substring of X(P1)X(P1) and

13

5

3

1

0
0 1 4 7

α1 α3

α2

α5

x

y

= 〈α1, s1,2, α2, s2,3, α3, s3,4, α4, s4,5, α5〉X

= 〈73.8◦, 5, 106.2◦, 5, 36.9◦, 3, 270.0◦, 2, 53.1◦, 5〉

= 〈73.8◦, 5, 106.2◦, 5, 36.9◦, 3, 270.0◦, 2, 53.1◦, 5, 73.8◦, 5, 106.2◦, 5, 36.9◦, 3, 270.0◦, 2, 53.1◦, 5〉

= 〈5, 53.1◦, 2, 270.0◦, 3, 36.9◦, 5, 106.2◦, 5, 73.8◦, 5, 53.1◦, 2, 270.0◦, 3, 36.9◦, 5, 106.2◦, 5, 73.8◦〉

XX

X−1X−1

α4

s1,2 s2,3

s3,4

s4,5
s5,1

v1

v2

v3
v4

v5

s5,1

s1,2 s5,1

s1,2 s1,2

s2,3

s2,3

s1,2

Figure 6: Principle of the algorithm for the detection of partial symmetries.

a substring of X(P2)X(P2) define basic repetitions; string matches compris-

ing a substring of X(P1)X(P1) and a substring of X−1(P2)X
−1(P2) define

basic reflections. Suppose that, in the example in Fig. 6, we search for

common substrings of XX and X−1X−1 of at least three symbols, where

X is the string encoding the given polygon. As the result, we find two

matches, namely, 〈s5,1, α1, s1,2〉 = 〈s1,2, α1, s5,1〉 = 〈5, 73.8◦, 5〉, which corre-

sponds to a reflection at the horizontal line through v1, and 〈s1,2, α2, s2,3〉 =

〈s2,3, α2, s1,2〉 = 〈5, 106.2◦, 5〉, which corresponds to a reflection at the vertical

line through v2. Note that we would have found 〈5, 73.8◦, 5〉 neither in X nor

in X−1, thus it was indeed necessary to concatenate X with itself and X−1

with itself before searching for common substrings. On the other hand, we

find 〈5, 106.2◦, 5〉 twice in XX and twice in X−1X−1, thus we have to keep

in mind that we should avoid reporting the same match multiple times.

Since we want to tolerate small geometric differences between the shapes

14

that we match, we do not insist on the identity of the two strings x1 and x2

that form a string match but instead require the following conditions:

C1 The number k of symbols is the same in both strings.

C2 Both strings start with the same type of symbol, that is, either with a

symbol representing an edge length or an angle.

C3 For i = 1, 2, . . . , k, if the i-th symbol in x1 and the i-th symbol in x2

represent angles, both angles differ at most by ∆αmax.

C4 For i = 1, 2, . . . , k, if the i-th symbol x1(i) in x1 and the i-th symbol x2(i)

in x2 represent edge lengths, the ratio max{x1(i), x2(i)}/min{x1(i), x2(i)}
does not exceed 1 + ∆`max.

The parameters ∆αmax and ∆`max allow us to specify our geometric error tol-

erance. In the example in Fig. 6, if we set ∆αmax = 35◦ and ∆`max = 0.5, we

can match the substring s1 = 〈73.8◦, 5, 106.2◦, 5, 36.9◦, 3, 270.0◦, 2, 53.1◦, 5〉
of XX with the substring s2 = 〈106.2◦, 5, 73.8◦, 5, 53.1◦, 2, 270.0◦, 3, 36.9◦, 5〉
of X−1X−1, thus the whole polygon P would be considered symmetric—a

good (perhaps not the best) transformation for this string match would be

the reflection at the bisecting line of α4. Note that, in this example, we can

find matches of strings in XX and X−1X−1 that are even longer than s1

and s2. Such string matches, however, are not interesting, since s1 and s2

already contain all symbols of X and X−1. Likewise, we are not interested in

matches of very short strings, since these would correspond to very unimpor-

tant symmetry relations. Therefore, we define a third parameter kmin ∈ N.

We require that the cardinality of a string match, that is, its total number

of symbols, must not be smaller than kmin.

Next, we exclude string matches that are dominated by other string

15

matches: A match of two strings x1 and x2 is dominated by a match of

two strings y1 and y2 if

1. x1 is a substring of y1 and x2 is a substring of y2 and

2. x1 has the same position in y1 as x2 in y2, that is, the number of symbols

in y1 preceding x1 equals the number of symbols in y2 preceding x2.

According to this definition, in the example in Fig. 6 with ∆αmax = ∆`max =

0, the match of the substring 〈s1,2, α2〉 of XX and the substring 〈s2,3, α2〉 of

X−1X−1 would be dominated by the match of the strings 〈s1,2, α2, s2,3〉 and

〈s2,3, α2, s1,2〉.
If we have found a match of two strings that satisfies the above-mentioned

conditions, we need to decode the two strings into two polylines, which are

required as input for the least-squares method. The polylines p1 and p2 for

the two strings x1 and x2 of a string match are computed as follows; the result

is shown in Fig. 7. For each edge symbol in a string, we add the corresponding

polygon edge to the polyline for that string. If the string begins (or ends)

with a symbol for an angle, we add both polygon edges that form this angle.

With this approach, however, the first (or last) edge of p1 and the first (or

last) edge of p2 get very different lengths. Therefore, we shorten the longer

edge of both unmatched edges such that they get the same lengths.

3.3. String matching by dynamic programming

In this section we discuss a solution to the problem of finding all string

matches for reflections that satisfy the conditions from Sect. 3.2. The string

matches for repetitions can be found in a straightforward way. We first dis-

cuss the special case that ∆αmax = ∆`max = 0. In this case, a string match of

16

α f

e

β

(a) two strings of angles (circular arcs) and
lengths of edges (displayed fat) that match

p1 p2

(b) polylines (displayed fat) encoded by the
strings of angles and edge lengths in (a)

Figure 7: Decoding of a string match (a) into a pair of corresponding polylines p1 and
p2 (b). Note that the edges e and f have very different lengths. Still, e is added to p1 and
a part of f is added to p2 since the angles α and β match.

maximum cardinality can be found by solving the longest (or maximum) com-

mon substring problem for the strings X(P1)X(P1) and X−1(P2)X
−1(P2).

The longest common substring problem can be solved in linear time using

a generalized suffix tree (Gusfield, 1997). We are interested, however, in

finding multiple symmetry relations. Therefore, we search for all maximal

common substrings of X(P1)X(P1) and X−1(P2)X
−1(P2). Note that there

is a difference between a maximum and a maximal common substring of two

strings x1 and x2: a common substring x of x1 and x2 is maximum if no other

common substring of x1 and x2 is longer than x; for x being a maximal com-

mon substring, however, it suffices that there is no other common substring

of x1 and x2 that contains x, that is, a string match defined by a maximal

common substring is not dominated by any other string match. The problem

of finding all maximal common substrings of two strings x1 with m symbols

and x2 with n symbols can be solved in Θ(mn) time by dynamic program-

ming. To specify this approach, we define the m × n matrix D of integers.

We denote the number in row i and column j of D by di,j. Additionally,

we define d0,j = dm+1,j = 0 for j = 0, 1, . . . , n + 1 and di,0 = di,n+1 = 0 for

17

i = 0, 1, . . . ,m+ 1. For i = 1, 2, . . . ,m and j = 1, 2, . . . , n we define

di,j =

1 + di−1,j−1 if x1(i) = x2(j)

0 else,

(1)

where x1(i) denotes the i-th symbol in x1 and x2(j) the j-th symbol in x2.

The values of D can be computed in increasing order of the indexes for rows

and columns. Once we have computed the matrix D, we can easily find the

maximal common substrings. For each pair (i, j) with i ∈ {1, 2, . . . ,m} and

j ∈ {1, 2, . . . , n} with di,j > 0 and di+1,j+1 = 0, the substring of x1 starting

at index position i − di,j + 1 and ending at index position i corresponds to

one maximal common substring of x1 and x2. In x2, this substring starts at

index position j − di,j + 1 and ends at index position j.

In order to deal with geometric differences between the two building parts

of a match and to avoid the selection of substrings that are longer than the

original encoding of the building polygon, we define the values di,j in a slightly

different way:

di,j =

1 + di−1,j−1 if x1(i) ≈ x2(j) and di−1,j−1 < min{m/2, n/2}

1 if x1(i) ≈ x2(j) and di−1,j−1 = min{m/2, n/2}

0 else,

(2)

where both m = |X(P1)X(P1)| = 2|X(P1)| and n = |X−1(P2)X
−1(P2)| =

2|X−1(P2)| are even numbers. We define the relation ≈ in Eq. (2) according

to the conditions C3 and C4 that we introduced in Sect. 3.2. The additional

condition di−1,j−1 < min{m/2, n/2} in the first line of Eq. (2) avoids that we

18

generate strings that are too long, that is, if di−1,j−1 is equal to the length

of the string for one of the involved polygons, we do not further extend the

corresponding match but start with the construction of a new match. This

is done in the second line of Eq. (2) by setting di,j to one.

In order to avoid reporting the same string match twice, we only report a

match of two strings x1 and x2 if x1 ends in the second half of X(P1)X(P1)

and x2 ends in the second half of X−1(P1)X
−1(P1).

When implementing the presented method, we should avoid comparing

edges with angles. Therefore, we can use two matrices Dangles and Dedges,

each of dimension m/2× n/2, instead of one matrix D of dimension m× n.

We use Dangles for the comparisons of angles and Dedges for the comparisons

of edge lengths.

3.4. Least-squares adjustment

As a result of the algorithm in Sect. 3.3 we obtain a set of string matches.

We can use the decoding presented in Sect. 3.2 to find for each string match

the two corresponding polylines p1 and p2, which both have the same num-

ber κ of vertices. It remains to find a transformation T such that s =

({p1}, {p2}, T) is a basic symmetry.

Generally, we are interested in a transformation T (of a certain class of

transformations) that minimizes

κ∑
i=1

‖T (p1(i))− p2(i)‖2 , (3)

where p(i) is the coordinate vector of the i-th vertex of polyline p and T (p(i))

is the result of applying T to p(i).

19

Obviously, T could be found with the least-squares approach that is

common in photogrammetry and surveying (Kraus, 2004, Appendix to Sec-

tion 4.1), that is, one could iteratively set up and solve the Gaussian normal

equations. Fortunately, however, for the case that T is restricted to combi-

nations of rotations and translations, Arun et al. (1987) have found a non-

iterative method that is exact and much more efficient. In fact, the authors

have dealt with the problem of aligning two sets of three-dimensional points;

since we have to deal with two dimensions only, the method becomes even

simpler.

The method first computes the center of gravity c1 = 1
κ

∑κ
i=1 p1(i) of

the vertices of p1 and the center of gravity c2 = 1
κ

∑κ
i=1 p2(i) of the vertices

of p2. Then, reduced coordinates q1(i) = p1(i) − c1 and q2(i) = p2(i) − c2

for i = 1, 2, . . . , κ are introduced. Finally, a rotation is searched that, when

applied to the points q1(i), minimizes the square sum of residuals to the points

q2(i). This is done by first computing the matrix H =
∑κ

i=1 q1(i)q2(i)
T and

then its singular value decomposition, that is, matrices U , Λ, and V such

that H = UΛV T , both U and V are 2× 2 unitary matrices, and Λ is a 2× 2

rectangular diagonal matrix with nonnegative real numbers. The matrix

X = V UT usually has determinant +1; in this case, it is a rotation matrix

and the optimal solution is to apply the rotation defined by X followed by

the translation defined by c2 − Xc1. If the determinant of X is −1, the

algorithm fails. This, however, only occurs if there is no reasonably good

rotation that would allow the two point sets to become matched. In this

case, we can safely reject the match as a repetition.

Interestingly, if the determinant of X is −1, X is a reflection matrix, that

20

is, it defines a reflection at a straight line ` through the origin. Therefore,

we can use the same method to find an optimal combination of a reflection

and a translation for two polylines.

In any case, we compute the residuals of the transformation found and

the a-posteriori variance of the vertex coordinates. If this exceeds a user-set

threshold, we reject the match.

Since we are often interested in pure reflections at a straight line, we also

test the result of setting the translation part of a reflection to zero. For this

test we translate the mirror axis ` such that it contains the point (c1 + c2)/2,

that is, the center of gravity of all points. We then reflect p1 across ` and

again compute the square sum of coordinate differences to p2 in order to

decide whether the transformation defines a new symmetry relation for the

polylines p1 and p2.

3.5. Grouping of basic symmetries

In the grouping step, a partition P of the set of basic symmetries is com-

puted. For every element
{

({p1}, {q1}, T1), . . . , ({pk}, {qk}, Tk)
}

of P (that

is, for every group) there has to be a transformation T of the same type as

T1, . . . , Tk such that ({p1, . . . , pk}, {q1, . . . , qk}, T) is a symmetry. That is,

applying T to polyline pi for i = 1, . . . , k yields, with only small residuals,

polyline qi. Preferably, the number of groups should be small. For particular

types of transformations there might be efficient algorithms that yield opti-

mal solutions to this problem. It is known, however, that similar problems

such as the problem Clustering (Garey and Johnson, 1990) are NP-hard,

even under very simplifying assumptions. Therefore, an iterative heuristic

method based on a Hough transform (Hough, 1962) is applied.

21

The algorithm inserts all basic symmetries of the same type into an ac-

cumulator matrix A. The cells of A correspond to disjoint equally-sized

k-dimensional ranges, where k is the number of transformation parameters

for the respective symmetry type. We insert every symmetry s as a seed into

the cell c of A whose range contains the transformation parameters of s and

a non-seed copy of s into each of the 3k − 1 adjacent cells of c. Thereby we

ensure that two symmetries with similar transformations will indeed share a

common accumulator cell and thus may become grouped.

The algorithm iteratively selects an ungrouped seed s from the accumu-

lator matrix. Then, it attempts to assigns as many elements as possible to s

by iterating over the ungrouped elements in the same cell. An element e is

assigned to the group of seed s if the transformations of e and s have simi-

lar parameters. For all elements in a group, we finally find the best fitting

transformation T using the least-squares approach from Sect. 3.4. Based on

the square sum of residuals we decide whether or not we accept the group as

a new (non-basic) symmetry.

For a pure reflection, the transformation is well defined with the mirror

axis ` (a straight line), which we parametrize with the distance d between

` and the origin of the coordinate system and the angle α ∈ [0, π[between

` and the x-axis; the accumulator matrix A thus has two dimensions. For

every mirror axis `, however, we are additionally given a start and end point

on ` defined by the spatial extent of the building parts reflected at `, see

Fig. 8. This information is useful, since the grouping of symmetries should

also respect spatial proximity. Therefore, we use a method for merging line

segments instead of grouping (infinitely long) straight lines. Merging a line

22

p q

`

s

Figure 8: The line segment s for
the basic symmetry ({p}, {q}, T),
where T is the reflection at line `.

s3

`c

s4

s5
s6

s1

s2

Sc = 〈s1, s2, s3, s4, s5, s6〉
Ec = 〈s6, s4, s5, s3, s1, s2〉

Figure 9: If s3 is the seed segment, Algorithm
GroupSegments attempts to merge line segments
s4, s5, s6, s1, s2 (in that order) with s3.

segments t with a seed segment smeans to select the two most distant vertices

u, v of the four vertices of t and s and to set s = (u, v).

Algorithm GroupSegments defines the iterative merging process in detail.

23

GroupSegments()

1 Fill matrix A with one seed plus eight non-seed copies per segment.
2 Get longest seed segment s in A and mark all its copies in A as grouped.
3 S = an empty set that will contain sets (i.e., groups) of line segments
4 while s 6= nil do
5 G = {s}, i.e., a group of segments (initially) containing only the seed
6 c = cell of A from which s was taken
7 foreach ungrouped segment r in Sc after s do
8 Try to merge r with s. If successful, insert r into G and mark all

its copies as grouped.

9 foreach ungrouped segment r in Ec after s do
10 Try to merge r with s. If successful, insert r into G and mark all

its copies as grouped.

11 Insert G into S.
12 Get longest ungrouped seed segment s in A and mark all its copies in

A as grouped.

13 return S

To control the order in which the line segments are merged with a seed

segment s in such a way that s will grow by bridging small gaps, every

accumulator cell c keeps its line segments in two arrays Sc and Ec. For every

segment s in c we compute a line interval by projecting s orthogonally onto

the line `c that is defined with the parameters lying in the center of the

parameter range represented by c. The array Sc keeps the segments in the

order in which their intervals start on `c. Similarly, Ec is inversely ordered

by interval ends, see Fig. 9. A segment t is merged with a seed segment s if

the gap between s and t is small compared to the lengths of s and t. More

precicely, we use the evaluation function f(s, t) = (L(s)+L(t))/L(s) ·(L(s)+

L(t))/L(M(s, t)) defined by Scher et al. (1982), where L(s) is the length of a

segment s and M(s, t) is the segment that results from merging two segments

s and t. A merge of s and t is accepted if both f(s, t) and f(t, s) exceed a

24

user-set threshold fmin.

4. Experimental Results

In this section we discuss experiments that were performed with the pro-

posed symmetry detector. Section 4.1 describes the input data and the pa-

rameter setting and Section 4.2 gives an overview of the results. In Sect. 4.3

we discuss results on examples, which show that the symmetry detector in-

deed allows interesting groups of buildings to be found. The symmetries can

be classified according to their cardinality, which allows hierarchies of sym-

metries to be found; this is discussed in Sect. 4.4. We conclude the section

with the discussion of an empirical study in Sect. 4.5.

4.1. Experimental setup

The presented algorithms were implemented in C++ and tested for a

dataset of 4553 building footprints of the metropolitan Boston area, which is

freely available as part of the Massachusetts Geographic Information System,

MassGIS1. According to the data specifications, the building footprints were

manually extracted from LiDAR data. In order to remove redundant vertices

that would hinder the matching process, the building footprints were simpli-

fied with the algorithm by Haunert and Wolff (2010) and an error tolerance

ε of 0.1 m.

The symmetry detector requires two files as input, one file containing the

building footprints and a second file containing edges, each of them connect-

ing two buildings. For every single building and for every pair of buildings

connected by an edge, the string-matching algorithm is applied.

1http://www.mass.gov/mgis/lidarbuildingfp2d.htm (accessed 2-3-2012)

25

parameter name symbol value
tolerance for building simplification ε 0.1 m
distance threshold for neighborhoods of buildings Dmax 50 m
tolerance for differences of angles ∆αmax 0.15 rad
tolerance for differences of edge lengths ∆`max 30%
minimum cardinality for basic symmetries kmin 5
maximum variance for basic symmetries s2max 2 m2

size of intervals for angles (for Hough transform) δα 2◦

size of intervals for distances (for Hough transform) δ` 2 m
parameter for segment grouping fmin 0.5

Table 1: Parameters used for the presented experiments.

Two methods for generating the file of edges were tested. These were

implemented in a separate program that uses the CGAL2 library for com-

putational geometry. The first method simply generates an edge between

two buildings if their distance is smaller than a user-set threshold Dmax.

The second method computes a constrained Delaunay triangulation for the

set of building footprints and defines an edge for each two buildings that

are connected by a triangle edge. The advantage of this method is that it

does not require a parameter to be set and that it guarantees the number

of edges to be linear in the number of building footprints. On the down-

side, the triangulation-based method will fail to find a symmetry between

two buildings if a third building lies between them. In the following, if not

stated otherwise, we will discuss results obtained with the distance-based

method, setting Dmax = 50 meters. With this value, both methods yielded

very similar results.

Table 1 summarizes the parameters applied, which were found by experi-

2http://www.cgal.org/ (accessed 2-3-2012)

26

ments. Since the sequence of 90◦ and 270◦ turns of building outlines is often

very characteristic, the tolerance for edge lengths is set to a relatively large

value (30%) and to the relatively small value of 0.15 rad for angles. Setting

kmin = 5 for the string-matching algorithm implies that we find many small

symmetries, most of them probably being uninteresting on their own. These

small symmetries, however, may become grouped and thus contribute to more

interesting non-basic symmetries. Basic symmetries of small cardinality that

do not become grouped can still be rejected in a post-processing step. With

the least-squares approach from Sect. 3.4, the residuals for non-basic sym-

metries were relatively large compared to the residuals for basic symmetries.

Therefore, the variance for a non-basic symmetry was allowed to be 2s2max

with s2max being the maximally allowed variance for basic symmetries.

4.2. Overview of results

For the dataset of 4553 buildings, the symmetry detector needed 14 sec-

onds on a Windows PC with 3 GB RAM and a 3.00 GHz Intel dual-core

CPU. This time includes the string matching, the least-squares adjustment,

and the grouping of symmetries. The program found 13095 basic reflections

and 27584 basic repetitions, which means that, for every building, 2.9 basic

reflections and 6.1 basic repetitions were found on average. Figure 10 shows

the number of basic pure reflections for different cardinalities. About 50 per-

cent of basic pure reflections have cardinality eight, which is due to the fact

that the dataset contains many rectangular buildings (of which each has at

least two reflections with four edges and four angles). Except for this special

case, it can be observed that reflections of odd cardinality are generally more

frequent than reflections of even cardinality. The reason for this somehow

27

0

1000

2000

3000

4000

5000

6000

7000

1098765 161514131211 222120191817 2423

Figure 10: Histogram of cardinalities for basic pure reflections. Cardinalities greater 24
exist but are not shown here.

surprising fact is that for a basic pure reflection (p, q, T) it often holds that

p = q and that p is not a closed polygon. This implies that the strings cor-

responding to p and q either both start and end with an edge or that both

start and end with an angle, thus each string contains an odd number of

symbols. The histogram of cardinalities for non-basic pure reflections (see

Fig. 11) shows that the cardinalities of basic reflections in the same group

often sum up to multiples of eight. This is because the dataset contains many

detached, rectangular houses that line up and have a common mirror axis.

Analyzing the set of basic repetitions found, it turned out that for a basic

repetition (p, q, T), the angle of the rotation component of the transformation

T is very likely to be 0◦, 90◦, or 180◦. This is because buildings that share a

common design are often aligned to the same axes.

4.3. Detecting building groups

We can use the symmetry detector for the grouping of buildings by ana-

lyzing the graph G = (V,E) that contains a vertex for every building and an

28

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

100

200

300

400

500

600

Figure 11: Histogram of cardinalities for non-basic pure reflections. Cardinalities greater
40 exist but are not shown here.

edge for every repetition found. More precisely, G is a multigraph, since there

can be multiple repetitions for a pair of buildings, and G may contain loops,

that is, edges connecting vertices with themselves. Every edge can be labeled

with multiple attributes, for example, the cardinality of the corresponding

repetition, its variance resulting from the least-squares adjustment, and the

lengths of the polylines involved. These attributes may be condensed into a

weight for each edge. Then, groups can be found by partitioning the weighted

graph into components, for example, by removing edges of low weight.

In Fig. 12 we see that this approach already works well if we only consider

the cardinality of a repetition. In the example, the repetitions with cardi-

nality of at least eight define the edges of G, which has multiple connected

components. Each connected component indeed contains buildings sharing a

common design, for example, a stair-shaped or square-wave-shaped bound-

ary. Figure 13 (left) shows that we find the group of six buildings from

Fig. 2(a) with this method. For the example in Fig. 2(b) it is more interest-

29

100m
N

Figure 12: Repetitions with cardinality of at least eight, found for a part of the Boston
dataset. The bold black links show for which pairs of buildings at least one repetition was
found. A white dot stands for a repetition that involves two parts of the same building.
Different colors show different connected components of the graph that contains an edge
for each repetition.

ing to look at the detected reflections, which are shown in Fig. 13(right) for

the triangulation-based neighborhood. We discuss the mirror axes yielded

by the proposed method in more detail in the next section.

4.4. Discussion of the cardinality-based importance rating

Figure 14 shows a part of the Boston dataset with the mirror axes found.

This figure shows that symmetry relations often form hierarchies and that

the symmetry detector can reveal them. The maximum-cardinality mirror

axis of the building labeled with (a), for example, is oriented towards Copley

Square and thus structures the front and back view of the building, while

a second mirror axes of lower cardinality structures the side views. Some

mirror axes (blue) of very small cardinalities were found for the corners of

the building. It may be interesting for some applications to distinguish such

30

N

50m

N

50m

Figure 13: Results for the examples from Fig. 2. In the left example, repetitions between
two distinct buildings are shown using the symbology from Fig. 12. Additionally, mir-
ror axes for basic pure reflections (thin black lines) and mirror axes resulting from the
grouping algorithm (bold gray lines) are shown. In the right example, one large connected
component including almost all buildings was found. The width of the horizontal corri-
dor between the buildings in the right example exceeds Dmax = 50 m, thus some of the
symmetries shown were found only with the triangulation-based neighborhood.

“diagonal” mirror axes from mirror axes that are orthogonal to the edges of

the building outline, since the latter axes are those that typically structure

the front views of buildings and thus often have a high importance. This

differentiation, however, is currently not done by the presented method, thus

it (over)rates, for example, the mirror axis labeled with (b) as relatively im-

portant. Another problem of the cardinality-based weighting of mirror axes

appears for polygons that contain small line segments representing circular

ars, for example, for the multi-story car park (c), which has two round towers

with spiral ramps. For such circles, many mirror axes of high cardinality are

found. This result is correct, of course, but for most applications circles are

perhaps not the most interesting structures we should search for. We could

avoid too large weights for circular arcs by representing every circular arc

in a polygon P as a single symbol in the corresponding string X(P). This

would require us, however, to detect arcs in a preprocessing step.

31

Finally, it is clear that the proposed method fails to find a symmetry if

the geometric error tolerance is exceeded. For example, for the north facade

of building (d), two mirror axes were found that are oriented in north-south

direction (depicted blue). In contrast, no mirror axis was found for the

south facade. In fact the mirror axes for the south facade were found by

the string-matching algorithm, but in both cases the variance resulting from

the least-squares adjustment was larger than the maximally allowed value of

2 m2; the variance was 3.5 m2 for the mirror axis of the south-west wing (d1)

and 2.5 m2 for the mirror axis of the offset in the south facade (d2). In both

cases, the geometric differences seem to be negligible when taking the very

large size of the building into account. Therefore, it would be promising to

define the maximally allowed variance depending on the size of the building.

This, however, is currently not implemented in the method.

4.5. Comparison of automatically and manually generated results

In order to find out whether humans take symmetries into account when

manually simplifying a shape and to test whether the symmetries found by

the algorithm are indeed symmetries that humans would rate as important,

a paper-based test was conducted, in which 30 students of age between 17

and 37 years were asked to manually solve three tasks. We now discuss this

study in detail.

Task 1. The participants were asked to draw the set of six building footprints
in Fig. 1(a) in a rectangle whose sides were by a factor of 0.5 shorter than the
sides of the given drawing. They were asked to keep the drawing as legible as
the original drawing and, to achieve this, were suggested to simplify shapes.
The symmetry axes in Fig. 1(a) were not shown.

The results of Task 1 were assessed by counting for each of the four mirror

32

100m

enlarged by factor 6

5–10

11–15

16–20

21–25

26–73

cardinality

(a) (b)

(c)

(d)

(d1) (d2)

Copley
Square

N

Figure 14: Mirror axes found for a part of the Boston dataset. The width and color of the
mirror axes encode the cardinality of the symmetry.

axes in Fig. 1(a) how many of the 30 participants had simplified at least one

of the buildings involved in the symmetry relation in a non-trivial way, that

is, the simplified polygon contained more than four but less than the original

number of vertices. For each non-trivial simplification it was assessed next

whether or not the simplification was still symmetric with respect to the mir-

ror axis. Table 2 summarizes the results: the overwhelming majority (81%)

of all non-trivial simplifications preserved the symmetry relation. This allows

us to conclude that symmetries are indeed important shape characteristics

that should be considered in map generalization.

Task 2. Given the set of buildings in Fig. 12, the participants were asked
to find the ten most salient groups. As the criterion for grouping, the par-
ticipants were asked to use characteristic repetitions in the shapes. To avoid
misunderstandings, one group was already marked in the given drawing.

33

mirror axis in Fig. 1(a) (1) (2) (3) (4) sum
trivial solutions among all solutions 47% 23% 20% 47% 34%

non-trivial solutions among all solutions 53% 77% 80% 53% 66%
symmetry-preserving solutions among

all non-trivial solutions
88% 91% 71% 75% 81%

Table 2: Results of Task 1 for each of the mirror axes in Fig. 1(a); the aggregated result
(sum) means that 81% of all non-trivial simplification preserved the symmetry relation.

To assess the results of Task 2, for each pair (a, b) of buildings the num-

ber N(a, b) of participants who had put a and b into a common group was

determined. Figure 15 visualizes N(a, b) for each two buildings a and b that,

according to the distance-based neighborhood defined in Sect. 4.1, are adja-

cent. We observe that most of the groups in Fig. 12, which had been found

by the algorithm, are also present in Fig. 15, that is, the buildings within

the automatically found groups had also been grouped by many participants.

The large group labeled with ∗ in Fig. 15, however, had not been found by

the algorithm. It is likely that the participants had found this group based

on other criteria than repetitive structures. One participant actually com-

mented that he had identified that group based on proximity. To assess the

results of Task 2 quantitatively, it was tested whether the number N(a, b)

and the maximum cardinality C(a, b) of a match between two buildings a and

b are correlated. As the result, a correlation coefficient of 0.61 was found, in-

dicating that the automatically found groups are indeed similar to the groups

the participants had drawn.

Task 3. Given the set of buildings in Fig. 14, the participants were asked
to find the five most salient symmetry axes. They were explicitly asked to
ignore small geometric differences and they were allowed to cover multiple
buildings with one axis. One symmetry axis was already marked in the given
drawing.

34

∗
N

100m

1–10
11–15
16–26

number of occurences
in a common group

Figure 15: Results of Task 2. Edges connecting two buildings are classified according to
the number of participants who put both buildings into a common group. The group that
was given to the participants is displayed with a dashed outline.

Figure 16 visualizes the results of Task 3. Each mirror axis a that had

been found by at least one participant is shown as a line whose color and

width represents the number N(a) of participants who had drawn this mirror

axis. We can compute the probability that a axis mirror selected by a human

is also found by the algorithm as
∑

a∈Ahuman∩Aalg
N(a)/

∑
a∈Ahuman

N(a), where

Ahuman is the set of mirror axes found by the participants and Aalg the set of

mirror axes found by the algorithm (recall Fig. 14); this probability turns out

to be 159/184 = 0.86. Note that some of the 30 participants had drawn more

than five mirror axes, thus
∑

a∈Ahuman
N(a) = 184 > 30 · 5. The result of this

assessment allows us to conclude that with high probability the important

symmetries are found by the algorithm. On the other hand, there are many

unimportant mirror axes in the result of the algorithm. In particular, among

the 150 symmetries of highest cardinality in Fig. 14, 138 symmetries result

35

1–5
5–19
20–30

number of participants
who drew a mirror axis

28

30

25

27

14 12

7

9

N

100m

Figure 16: Mirror axes that participants drew in Task 3. The mirror axis displayed with a
dashed line was given to the participants. The number of participants who drew a mirror
axis is shown if it exceeds four.

from circular arcs that are approximated by short straight-line segments. If

we neglect these problematic cases, however, then each of the five symmetries

of highest cardinality in Fig. 14 had also been selected by a large number of

participants.

5. Conclusion

We have discussed the problem of finding symmetry relations in geospa-

tial datasets of buildings. This problem is important for the solution of

map generalization problems, the grouping of buildings, landmark detection,

and building classification. The presented algorithm for symmetry detection

combines a very efficient string-matching approach based on dynamic pro-

gramming, a least-squares approach based on a singular value decomposition,

36

and a grouping method based on a Hough transform. The algorithm copes

with both geometric errors and partial symmetries. The results that we dis-

cussed in this paper show that the proposed method allows us to process

large datasets fast, that is, several thousands of buildings in a few seconds.

We have seen that the string-matching algorithm detects many small sym-

metry relations. Many of such basic symmetries, for example, reflectional

symmetries for rectangular or circular buildings, are rather uninteresting.

Therefore, additional effort was spent to group symmetries and it was pro-

posed to rate their importance based on their cardinality, that is, the number

of angles and edges of the matches found. This approach yielded meaning-

ful groups of buildings and important mirror axes in a building dataset of

Boston, which are similar to the groups and mirror axes that humans had

found.

A drawback of the presented method is that multiple parameters have

to be set. In particular, the building footprints have to be generalized with

a carefully chosen error tolerance (which may depend on the application)

before the proposed symmetry detector can be applied. On the other hand,

symmetries need to be known to ensure a good solution to the map general-

ization problem. It is interesting to develop algorithms for map generalization

that exploit known symmetry relations, but, since symmetry detection and

map generalization depend each other, we should also strive for integrated

approaches to both problems. A feasible idea could be to find symmetries in

a building’s shortcut graph (Haunert and Wolff, 2010) that defines all pos-

sible simplifications of a building and to select shortcuts (and thereby the

generalized building) under consideration of this information.

37

References

Arun, K. S., Huang, T. S., Blostein, S. D., 1987. Least-squares fitting of

two 3-d point sets. IEEE Transactions on Pattern Analysis and Machine

Intelligence 9 (5), 698–700.

Atallah, M. J., 1985. On symmetry detection. IEEE Transactions on Com-

puters c-34 (7), 663–666.

Cho, M., Lee, K. M., 2009. Bilateral symmetry detection via symmetry-

growing. In: Proc. British Machine Vision Conference (BMVC ’09).

BMVA, pp. 4.1–4.11.

Christophe, S., Ruas, A., 2002. Detecting building alignments for generalisa-

tion purposes. In: Advances in Spatial Data Handling – Proc. 10th Inter-

national Symposium on Spatial Data Handling. Springer-Verlag, Berlin,

Germany, pp. 419–432.

Damen, J., van Kreveld, M., Spaan, B., 2008. High quality building

generalization by extending the morphological operators. In: Proc. 11th

ICA Workshop on Generalisation and Multiple Representation.

URL http://aci.ign.fr/montpellier2008/papers/04 Damen et al.pdf

Gaffuri, J., Trévisan, J., 2004. Role of urban patterns for building gen-

eralisation: An application of agent. In: Proc. 7th ICA Workshop on

Generalisation and Multiple Representation.

URL http://aci.ign.fr/Leicester/paper/Gaffuri-v2-ICAWorkshop.pdf

Garey, M. R., Johnson, D. S., 1990. Computers and Intractability; A Guide

38

to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,

USA.

Gusfield, D., 1997. Algorithms on Strings, Trees, and Sequences: Computer

Science and Computational Biology. Cambridge University Press, Cam-

bridge, UK.

Haunert, J.-H., 2011. Detecting symmetries in building footprints by string

matching. In: Advancing Geoinformation Science for a Changing World

– Proc. 14th AGILE International Conference on Geographic Informa-

tion Science. Lecture Notes in Geoinformation and Cartography. Springer-

Verlag, Berlin, Germany, pp. 319–336.

Haunert, J.-H., Wolff, A., 2010. Optimal and topologically safe simplifica-

tion of building footprints. In: Proc. 18th ACM SIGSPATIAL Interna-

tional Conference on Advances in Geographic Information Systems (ACM-

GIS’10). ACM, pp. 192–201.

Heinzle, F., Anders, K.-H., 2007. Characterising space via pattern recog-

nition techniques: Identifying patterns in road networks. In: Mackaness,

W., Ruas, A., Sarjakoski, T. L. (Eds.), Generalisation of geographic infor-

mation: Cartographic modelling and applications. Elsevier, Oxford, UK,

Ch. 12, pp. 233–254.

Hillier, B., Hanson, J., 1984. The Social Logic of Space. Cambridge University

Press, Cambridge, UK.

Hough, P. V. C., 1962. Method and means for recognizing complex patterns.

U.S. Patent 3069654.

39

Jiang, B., Claramunt, C., 2002. Integration of space syntax into GIS. Trans-

actions in GIS 6 (3), 295–309.

Kada, M., Luo, F., 2006. Generalisation of building ground plans using

half-spaces. In: Proc. ISPRS Commission IV Symposium on Geospatial

Databases for Sustainable Development. Vol. 36 (part 4) of International

Archives of the Photogrammetry, Remote Sensing and Spatial Information

Sciences. ISPRS, on CD-ROM.

Knuth, D. E., J. H. Morris, J., Pratt, V. R., 1977. Fast pattern matching in

strings. Siam Journal on Computing 6 (2), 323–350.

Kraus, K., 2004. Photogrammetry – Geometry from Images and Laser Scans,

2nd Edition. de Gruyter, Berlin, Germany.

Leduc, T., Chaillou, F., Ouard, T., 2011. Towards a “typification” of the

pedestrian urban space: analysis of the isovist using digital processing

method. In: Advancing Geoinformation Science for a Changing World

– Proc. 14th AGILE International Conference on Geographic Informa-

tion Science. Lecture Notes in Geoinformation and Cartography. Springer-

Verlag, Berlin, Germany, pp. 275–292.

Lladós, J., Bunke, H., Mart́ı, E., 1997. Using cyclic string matching to find

rotational and reflectional symmetries in shapes. In: Intelligent Robots:

Sensing, Modeling and Planning. Vol. 27 of Series in Machine Perception

and Artificial Intelligence. World Scientific, pp. 164 – 179.

Loy, G., Eklundh, J.-O., 2006. Detecting symmetry and symmetric constella-

tions of features. In: Proc. 9th European Conference on Computer Vision

40

(ECCV ’06), Part II. Vol. 3952 of Lecture Notes in Computer Science.

Springer-Verlag, Berlin, Germany, pp. 508–521.

Machilsen, B., Pauwels, M., Johan, W., 2009. The role of vertical mirror

symmetry in visual shape detection. Journal of Vision 9 (12), 1–11.

Mackaness, W., Edwards, G., 2002. The importance of modelling pattern and

structure in automated map generalisation. In: Proc. Joint ISPRS/ICA

Workshop on Multi-Scale Representations of Spatial Data.

URL http://www.ikg.uni-hannover.de/isprs/workshop/macedwards.pdf

Mayer, H., 1998. Model-generalization of building outlines based on scale-

spaces and scale-space events. In: Proc. ISPRS Commission III Sympo-

sium on Object Recognition and Scene Classification from Multispatial

and Multisensor Pixels. Vol. 37 (part 3) of International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences. IS-

PRS, pp. 530–536.

Mitra, N. J., Guibas, L. J., Pauly, M., 2006. Partial and approximate sym-

metry detection for 3d geometry. ACM Transactions on Graphics 25 (3),

560–568.

Neun, M., Burghardt, D., Weibel, R., 2008. Web service approaches for pro-

viding enriched data structures to generalisation operators. International

Journal of Geographical Information Science 22 (2), 133–165.

Park, M., Lee, S., Chen, P.-C., Kashyap, S., Butt, A. A., Liu, Y., 2008.

Performance evaluation of state-of-the-art discrete symmetry detection

algorithms. In: Proc. IEEE Computer Society Conference on Computer

41

Vision and Pattern Recognition (CVPR ’08).

URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4587824

Peters, D., Wu, Y. H., Winter, S., 2010. Testing landmark identification the-

ories in virtual environments. In: Spatial Cognition. Vol. 6222 of Lecture

Notes in Computer Science. Springer-Verlag, Berlin, Germany, pp. 54–69.

Regnauld, N., 2001. Contextual building typification in automated map gen-

eralization. Algorithmica 30 (2), 312–333.

Regnauld, N., 2003. Algorithms for the amalgamation of topographic data.

In: Proc. 21st International Cartographic Conference (ICC ’03). ICA, pp.

222–234.

Ruas, A., Holzapfel, F., 2003. Automatic characterization of building align-

ments by means of expert knowledge. In: Proc. 21st International Carto-

graphic Conference (ICC ’03). ICA, pp. 1604–1616.

Scher, A., Shneier, M., Rosenfeld, A., 1982. Clustering of collinear line seg-

ments. Pattern Recognition 15 (2), 85–91.

Sester, M., 2005. Optimization approaches for generalization and data ab-

straction. International Journal of Geographical Information Science 19 (8–

9), 871–897.

Steiniger, S., 2007. Enabling pattern-aware automated map generalization.

Phd thesis, University of Zürich.

Steiniger, S., Burghardt, D., Lange, T., Weibel, R., 2008. An approach for the

42

classification of urban building structures based on discriminant analysis

techniques. Transactions in GIS 12 (1), 31–59.

Thomson, R. C., Brooks, R., 2002. Exploiting perceptual grouping for map

analysis, understanding and generalization: The case of road and river

networks. In: Proc. 4th International Workshop on Graphics Recognition

Algorithms and Application (GREC ’01). Vol. 2390 of Lecture Notes in

Computer Science. Springer-Verlag, Berlin, Germany, pp. 148–157.

Treder, M. S., 2010. Behind the looking-glass: A review on human symmetry

perception. Symmetry 2 (3), 1510–1543.

Wagemans, J., 1994. Detection of visual symmetries. Spatial Vision 9 (1),

9–32.

Werder, S., Kieler, B., Sester, M., 2010. Semi-automatic interpretation of

buildings and settlement areas in user-generated spatial data. In: Proc.

18th ACM SIGSPATIAL International Conference on Advances in Geo-

graphic Information Systems (ACM-GIS’10). ACM, pp. 330–339.

Wertheimer, M., 1938. Laws of organization in percetional forms. In: A

source book of Gestalt psychology. Routledge & Kegan Paul, London, UK,

pp. 71–88.

Wiener, J. M., Franz, G., 2004. Isovists as a means to predict spatial expe-

rience and behavior. In: Spatial Cognition. Vol. 3343 of Lecture Notes in

Computer Science. Springer-Verlag, Berlin, Germany, pp. 42–57.

43

Wolter, J. D., Woo, T. C., Volz, R. A., 1985. Optimal algorithms for sym-

metry detection in two and three dimensions. The Visual Computer 1 (1),

37–48.

Yang, W., 2008. Identify building pattens. In: Proc. XXIst ISPRS Congress.

Vol. 37 (part B2) of International Archives of the Photogrammetry, Remote

Sensing and Spatial Information Sciences. ISPRS, pp. 391–397.

Yang, X., Adluru, N., Latecki, L. J., Bai, X., Pizlo, Z., 2008. Symmetry

of shapes via self-similarity. In: Proc. 4th International Symposium on

Advances in Visual Computing, Part II. Vol. 5359 of Lecture Notes in

Computer Science. Springer-Verlag, Berlin, Germany, pp. 561–570.

44

