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Abstract1

A promising approach to submit a vector map from a server to a mobile client is to2

send a coarse representation first, which then is incrementally refined. We consider3

the problem of defining a sequence of such increments for polygons of different land4

cover classes in a planar partition. In order to submit well-generalised data sets, we5

propose a method of two steps: First, we create a generalised representation from a6

detailed data set, using an optimisation approach that satisfies certain cartographic7

constraints. Secondly, we define a sequence of basic merge and simplification opera-8

tions that transforms the most detailed data set gradually into the generalised data9

set. As each intermediate result defines an intermediate level of detail (LoD), we10

refer to this procedure as interpolation of LoDs. The obtained sequence of LoDs is11

stored without geometrical redundancy in the tGAP (topological Generalised Area12

Partitioning) structure, which is an existing data structure supporting progressive13

transfer of data. This structure and the algorithm for the interpolation of LoDs have14
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been implemented in an object-relational database and tested for land cover data15

from the official German topographic data set ATKIS at scale 1:50,000. Results16

of these tests allow to conclude that the data at lowest LoD and at intermediate17

LoDs is well generalised. Applying specialised heuristics the applied optimisation18

method copes with large data sets; the tGAP structure allows to efficiently query19

and retrieve a data set of an extent and at an LoD defined by the user.20

Key words: progressive transfer, map generalisation, aggregation21

1 Introduction22

In recent years the Internet has become an important source of23

digital maps for mobile users. However, applications suffer from24

bandwidth limitations and restricting devices like small displays.25

Sending a large-scale map for each request is expensive and time26

consuming. From a user’s perspective this is unsatisfactory if27

zoom and pan interactions are needed, for example, to first nav-28

igate to an area of interest. As this task does not require a map29

at highest resolution, it is reasonable to send less detailed maps30

first. In order to define these representations such that charac-31

teristic features are preserved, automatic generalisation methods32

are needed.33

In this paper we discuss the generalisation problem in the context34
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of vector data sets for mobile users and focus on the generalisa-35

tion of polygons in a planar partition representing different land36

cover types. This data model is commonly used for topographic37

databases. Generalising such data requires operators for aggre-38

gation, collapse and line simplification. In order to explain our39

motivation and general approach, we first concentrate on the ag-40

gregation task; however, we also consider collapse of areas to lines41

and line simplification in our approach.42

Often minimal allowed sizes are defined for polygons at a certain43

level of detail (LoD), thus generalisation requires to aggregate44

the polygons in the original data set to satisfy size constraints45

for a target LoD. An existing approach for this problem is to it-46

eratively select the smallest polygon in the data set and to merge47

it with its most compatible neighbour until all polygons satisfy48

the defined thresholds. In fact this procedure does not only yield49

a data set at a single output LoD, but, in each iteration, also50

defines an intermediate result. Due to this characteristic, the al-51

gorithm has earlier been applied to set up a data structure for52

progressive data submission: When zooming in, the merge oper-53

ations simply need to be inverted, in order to gradually refine54

the data set. We have earlier developed the tGAP (topological55
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Generalised Area Partitioning) data structure to store the results56

of this simple generalisation procedure (van Oosterom, 2005); it57

allows to progressively submit a data set by sending data at a low58

LoD first and refining the data set by sending increments. We ap-59

ply the tGAP structure also in this paper; however, we propose60

a new approach to define the sequence of generalisation steps, in61

order to improve the quality of generalisation at low LoDs.62

Recent research on map generalisation has shown that constraint-63

and optimisation-based approaches are more flexible and pro-64

vide better results than classical rule-based approaches, in which65

conditions are bound to predefined actions (Harrie and Weibel,66

2007). In view of this, we developed a method for the general-67

isation of land cover data based on mixed-integer programming68

(Haunert and Wolff, 2006), which is a technique for constrained69

combinatorial optimisation. Figure 1 illustrates the advantages70

of our method compared to the simple iterative merging proce-71

dure. Figure 1(a) shows a sample from the german topographic72

database ATKIS DLM50, which contains the same amount of de-73

tails as a topographic map at scale 1:50,000. The sample contains74

a settlement that is fragmented into several small, non-adjacent75

polygons. We generalised this data set to satisfy constraints de-76
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fined for the database ATKIS DLM250, which corresponds to77

scale 1:250,000. Figure 1(b) shows the result of iteratively merg-78

ing polygons with their most compatible neighbours, only taking79

local compatibility measures into account. In this case the settle-80

ment is lost, as the small fragments are merged with the adjacent81

forest polygons. Instead, our optimisation method globally min-82

imises the change of land cover classes. The result is shown in83

Fig. 1(c): the settlement is kept. We give a more detailed expla-84

nation of our optimisation approach in Sect. 3.1.2.85

(a) (b)

250m

(c)

Farmland SettlementGrassland SwampForest

Fig. 1. Comparison of two aggregation methods: (a) Input data set ATKIS DLM50,

(b) result of iterative merging, (c) result by optimisation; both results satisfy size

constraints defined for the ATKIS DLM250.
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In contrast to the iterative merging procedure, optimisation meth-86

ods for map generalisation normally generate data sets at a single87

target LoD, that is, they do not define a sequence of data sets88

that could be used for gradual refinement. Our ambition is to89

combine the benefits of both approaches: we still wish to provide90

the data in a hierarchical structure that allows a gradual refine-91

ment when zooming in, but would like to be more free in choosing92

the method to produce representations at low LoDs; in particular,93

we would like to apply our existing optimisation method. In order94

to achieve both, we suggest to set up the tGAP structure with95

two representations at different LoDs: the most detailed data set96

and a generalised data set, which, for example, can be obtained97

with our optimisation method. With this input, the iterative al-98

gorithm can be controlled to meet the given result or, from a99

different view, it can be used to interpolate intermediate LoDs.100

We refer to the obtained structure as constrained tGAP structure101

explained in Section 3. Before introducing this new approach, we102

review related work of other researchers.103
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2 Related work104

2.1 Map generalisation105

Map generalisation is the process of deriving a map of smaller106

scale from a given map. This task is closely related to the defini-107

tion of cartographic constraints (Beard (1991), Weibel and Dut-108

ton (1998)). Violated constraints are commonly referred to as109

conflicts that need to be resolved by generalisation operators,110

for example, areas that are too small to be represented in a cer-111

tain scale need to be aggregated or collapsed (Bader and Weibel,112

1997). We distinguish hard and soft constraints: While hard con-113

straints need to be ensured in any case, soft constraints are often114

contradicting, thus only satisfiable to a certain degree. Conse-115

quently, map generalisation is often expressed as optimisation116

problem, aiming to satisfy soft constraints as much as possible.117

The optimisation is often done by application of meta-heuristics118

such as hill-climbing and simulated annealing (Ware and Jones,119

1998). In recent years, the application of multi-agent systems has120

become a mainstream approach (Barrault et al., 2001). This al-121

lows to express constraints on map objects and groups of map122

objects in a generic way. Galanda (2003) discusses this approach123
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in the context of polygon maps, using a hill-climbing strategy124

for optimisation. Researchers in the field of computational ge-125

ometry have proposed global and deterministic optimisation ap-126

proaches, for example, to solve the line simplification problem127

(de Berg et al., 1998). Often specialised heuristics are needed to128

find efficient algorithms. We formalised the aggregation task in129

map generalisation as optimisation problem and also proposed130

a deterministic approach, which is based on mixed-integer pro-131

gramming (Haunert and Wolff, 2006). The iterative aggregation132

algorithm that we discussed in Sect. 1 has been applied in differ-133

ent versions by other authors, for example, Jaakkola (1997) use a134

similar algorithm for the generalisation of raster data with land-135

cover information. van Smaalen (2003) as well as Cheng and Li136

(2006) discuss criteria that need to be considered for automated137

aggregation. According to Timpf (1998) aggregation is the most138

common type of hierarchy occurring in map series.139

2.2 Progressive transfer of vector data140

The idea of gradually refining low-resolution vector data in mo-141

bile applications has been discussed by several researchers. The142

refinement of terrain models in computer graphics is presented143
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by De Floriani et al. (2000). Brenner and Sester (2005) present144

a method to gradually refine building ground plans. As in our145

first method by iterative aggregation, sequences of refinement in-146

crements result from inverted sequences of simplification steps.147

Bertolotto and Egenhofer (2001) and Follin et al. (2005a) gen-148

erally express differences between different given vector maps by149

atomic generalisation and refinement operators. These include150

the merge operation of two areas, which is sufficient to model151

the differences in the example of Fig. 1(a) and (c). However, we152

need to define an appropriate sequence of such pairwise merges,153

as we intend to also show intermediate results. Methods for the154

definition of intermediate representations between two scales are155

proposed by Cecconi (2003) and Merrick et al. (2007). Both are156

based on morphing algorithms between polygonal lines that allow157

a smooth animation when zooming in or out. Also the method of158

Brenner and Sester (2005) includes a morphing technique to give159

an impression of a continuous process, which is referred to as con-160

tinuous generalisation. However, these morphing techniques are161

not used to provide a gradual transformation between two given162

maps that would allow a progressive refinement. We do not con-163

sider the problem of animating discrete steps in a smooth way,164
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thus avoid the term continuous generalisation.165

3 Map generalisation approach for defining a sequence of LoDs166

Our basic assumption is that we are given an algorithm for the167

classical map generalisation problem, that is, for a given input168

data set we can produce a data set at any reduced LoD by ap-169

propriately setting the parameters of the algorithm. We can apply170

our optimisation approach for this task or any other generalisa-171

tion method available. Figure 2 illustrates three different ideas to172

generate a sequence of LoDs by applying such an algorithm.173

(a) (b) (c)

Fig. 2. Approaches to create a sequence of LoDs: (a) generalisation from a single

source data set; (b) successive generalisation; (c) interpolation between two data

sets.

In Fig. 2(a) the most detailed data set is used as input for the174

algorithm to generate all levels of the sequence. Though each175

single data set is well generalised, the obtained sequence of data176
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sets does not conform to the idea of gradual refinement: a single177

step in the sequence can imply large changes in the data set.178

An alternative approach is to generate the sequence of LoDs in179

small steps, in each step using the previously generated data set180

as input for the generalisation algorithm (Fig. 2(b)). Though this181

iterative approach leads to a sequence of relatively small changes182

between two consecutive LoDs, it entails the risk of generating183

unsatisfactory results at low LoDs. In particular, this iterative184

approach does not allow to optimise global quality measures, for185

example, to minimise changes of land cover classes between the186

highest LoD and the lowest LoD.187

Figure 2(c) shows a third approach, which we propose to over-188

come the disadvantages of both other methods: We first create189

the lowest LoD and then define a sequence of intermediate repre-190

sentations (Fig. 2(c)). Using our optimisation method for the first191

step, we can ensure a well-generalised data set at lowest LoD. In192

order to define the intermediate LoDs, we can apply a slightly193

modified version of the iterative algorithm that we have earlier194

used to set up the tGAP structure. We explain both parts of our195

method in the remainder of this section.196
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3.1 Generalisation method for a low LoD197

Our generalisation method for deriving a data set at a low LoD198

comprises three generalisation operators that we apply in succes-199

sion: A skeletonisation method that collapses narrow polygons200

and polygon parts to lines (Haunert and Sester, 2008), an op-201

timisation method that aggregates polygons to satisfy size con-202

straints (Haunert and Wolff, 2006), and an optimisation method203

for line simplification according to de Berg et al. (1998). Com-204

pared to existing generalisation methods, the proposed workflow205

implies improvements in terms of quality, which are mainly due206

to the application of optimisation techniques for aggregation. We207

first present an overview on the applied generalisation workflow208

and then give a more detailed presentation of the aggregation209

method.210

3.1.1 Applied generalisation operators211

Figure 3 shows a sample from the input data set after applying212

the procedures for collapse, aggregation, and line simplification.213

Comparing Figures 3 (a) and (b) we observe that the river poly-214

gon (blue) in the upper right corner of Fig. 3(a) collapses. This215
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(a) (b)

(c)

500m

(d)

Fig. 3. Applied generalisation steps: (a) original map , (b) after collapse by skeletons,

(c) after aggregation, (d) after line simplification.

is because the polygon’s width is lower than 50m – a threshold216

that we defined according to the resolution of a map at scale217

1:250,000. Our procedure, which is based on straight skeletons,218

also allows to collapse polygon parts, for example, the narrow219

13



connection between the main body of the large settlement (red)220

and the small annex on its left side. Bader and Weibel (1997) pre-221

sented a similar collapse procedure, which uses a skeleton based222

on a triangulation of a polygon.223

Aggregation is necessary to satisfy size constraints defined for224

the target LoD, which are given in our case with the specifica-225

tions of the ATKIS DLM250. In contrast to existing methods our226

approach is not based on iterative merging of pairs of polygons.227

Instead, we solve the problem by optimisation, aiming to keep228

class changes small and to create geometrically compact compos-229

ite polygons while satisfying hard size constraints. Figure 3 (c)230

shows the result of this method. Though the settlements in Fig. 3231

(b) do not have sufficient size for the target LoD, a settlement of232

sufficient size is created by including adjacent forest areas; this233

leads to a solution of little class changes and compact shapes.234

Finally, we adapt the line geometries to the target LoD. To235

solve this task we implemented a line simplification algorithm236

of de Berg et al. (1998) that defines the simplified line by a sub-237

sequence of the original line vertices. The method ensures the238

bandwidth criterion, that is, for each vertex of the original line239

the distance to the simplified line must not exceed a user-defined240
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tolerance. Furthermore, the method ensures the simplicity of the241

planar partition. Subject to these hard constraints the number of242

vertices in the simplified line is minimised.243

3.1.2 Aggregation by optimisation244

We earlier presented our optimisation approach to area aggre-245

gation in map generalisation and proved that the problem is246

NP-hard (Haunert and Wolff, 2006). Due to the absence of ef-247

ficient exact algorithms, we solved the problem by mixed-integer248

programming and specialised heuristics. In particular, we intro-249

duced a heuristic that allows to decompose arbitrarily large data250

sets into multiple instances of manageable size (Haunert, 2007a).251

The results presented in this paper were generated with this ap-252

proach. However, for the set-up of the tGAP structure with two253

data sets of different LoD, we do not require the application of a254

specific optimisation technique, for example, we could also apply255

meta-heuristics like simulated annealing, which are common in256

map generalisation (Ware and Jones, 1998). Therefore, we only257

review the problem definition, including the defined constraints258

and optimisation criteria. For this we choose a graph-theoretical259

notation.260
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We are given a planar graph G(V, E), with V containing a node261

for each polygon in the original data set and E containing an262

edge for each two polygons that share a common boundary. We263

represent the sizes of polygons by weights w : V → R+ and their264

land cover classes by γ : V → Γ, with Γ being the set of all265

classes. In order to represent minimal allowed sizes for polygons266

in the target LoD, we introduce the function θ : Γ → R+, that267

is, we allow for different thresholds for different classes. We aim268

to partition V into mutually disjoint sets V1 ∪ . . . ∪ Vk = V . Ad-269

ditionally, we aim to find land cover classes γ′1, . . . , γ
′
k ∈ Γ. Note270

that we do not assume that the number k is given in advance.271

An object in the target scale is defined by a pair (Vi, γ
′
i). For each272

such pair we introduce the requirements (hard constraints) that273

(1) Vi has weight at least θ(γ′i),274

(2) Vi contains at least one node v with γ(v) = γ′i,275

(3) the subgraph induced by Vi is connected.276

We identify two objectives (soft constraints) for the optimisation277

problem:278

(1) Changes of land cover classes should be minimised.279

(2) Composite objects should have maximally compact shapes.280
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In order to express the first objective, we define a cost that is281

charged when changing a polygon of unit size from one class into282

another. For this we introduce the cost function d : Γ2 → R+
0 ,283

whose values could be given explicitly by a quadratic matrix with284

|Γ| × |Γ| elements. The function d can be seen as a semantic dis-285

tance between classes, that is, it is preferred to change a class to286

a semantically similar one; different authors have proposed meth-287

ods to derive such measures from given data models (Rodŕıguez288

and Egenhofer, 2004; Yaolin et al., 2002). With these distances,289

we define the total cost for class change as290

k∑
i=1

∑
v∈Vi

w(v) · d(γ(v), γ′i) . (1)

To express the compactness of a shape, we tested two different291

measures (Haunert, 2007b). The first approach is simply to min-292

imise the boundary length of the partition, that is, we charge a293

cost proportional to the perimeter of a composite region Vi ⊆ V :294

cp(Vi) = perimeter(Vi). (2)

The second measure is defined as cost for a composite region Vi295

receiving class γ′i ∈ Γ:296

cd(Vi, γ
′
i) = min

 ∑
v∈Vi

w(v) · δ(v, u)
∣∣∣∣ u ∈ Vi ∧ γ(u) = γ′i

 , (3)
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with δ : V 2 → R+
0 being the Euclidean distance between the297

centroids of two polygons. This means that one node u ∈ Vi with298

unchanged class is selected as a reference point and, for each299

node v ∈ Vi, a cost is charged, which is equal to the product of300

the size of v and its distance to u. As a composite region might301

contain more than one node with unchanged class, we select the302

reference point among them, such that the cost is minimal. We303

refer to such a node as centre. Figure 4 illustrates this measure.304

u

Fig. 4. Compactness according to Equation (3). Node u is selected as centre.

In order to define the trade-off between these criteria, we combine305

the terms for class change, boundary length and distances to306

centres in a weighted sum, that is, we minimise307

s·
k∑

i=1

∑
v∈Vi

w(v) · d(γ(v), γ′i)

+(s− 1)·
k∑

i=1

[
s′ · cp(Vi) + (s′ − 1) · cd(Vi, γ

′
i)

]
,

(4)

with weight factors s , s′ ∈ [0, 1].308

Applying our method with this cost function and size constraints309
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for the ATKIS DLM250, we automatically generalised a data set310

of the ATKIS DLM50. This has an extent of 22 km × 22 km,311

which corresponds to a complete sheet of a map at scale 1:50,000.312

The processing took 82 minutes. Compared to the iterative merg-313

ing procedure we reduced the costs for class change by 20%, the314

costs for non-compact shapes by 2%, and the overall costs by315

8%. We conclude that, applying the developed heuristics, our ap-316

proach yields high-quality results in modest time. For a more317

detailed discussion of these tests we refer to our earlier publica-318

tion (Haunert, 2007a).319

3.2 Generalisation method for intermediate LoDs320

In order to define data sets at intermediate LoDs, we aim to321

find a gradual transformation of the data set at highest LoD into322

the given generalisation result from Sect. 3.1.2. We say that a323

polygon a is assigned to a polygon b, meaning that a is removed324

from the current data set and the new shape of b becomes the325

union of both shapes; the class of b is not changed. Formally, this326

merge operation is represented by the sorted pair (a, b). We seek327

a sequence of such pairs that yields our generalised data set.328

To guarantee that such a sequence exists, we first assure many-to-329
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one relationships between the polygons in both data sets. Since330

we applied a collapse operator in our generalisation workflow, this331

condition is not met: some polygons were decomposed into mul-332

tiple parts, different parts were potentially merged with different333

neighbours. Therefore, we need to expect many-to-many relation-334

ships between polygons at different LoDs. In other words, the335

generalised data set contains boundaries that were not present in336

the input data set. In order to ensure many-to-one relationships,337

we add the additional boundaries in the generalised data set to338

the data set at highest LoD, that is, we perform a map overlay339

between the input data set and the data set obtained from the340

aggregation method. Now there is a sequence of pairwise merges341

that transforms the input data set into the generalised one. Usu-342

ally, we have multiple possibilities to define such a sequence.343

Our approach to define the sequence of merge operations is simi-344

lar to the original iterative algorithm. In contrast, when selecting345

the most compatible neighbour of a polygon, we restrict the set346

of candidates to polygons in the same composite region. We say347

that a polygon is active if it still has a neighbour that, in the348

given result, is contained in the same composite region. For each349

composite region we define a polygon of unchanged class accord-350
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ing to Equation 3 as centre. The following three requirements351

ensure that a sequence transforms the input map into the given352

aggregation result:353

• The sequence must not be terminated, if there is an active354

polygon.355

• A polygon can only be assigned to neighbours in the same356

composite region.357

• A centre must not be assigned to another polygon.358

According to our idea of gradual refinement, we also require that,359

in each step, the least important active polygon i becomes merged360

with a neighbour j. If i is not a centre, we assign i to j, else, to361

avoid a contradiction with the third requirement, we assign j to362

i. According to the objective in Equation 4 we define Cost(a, b)363

to be the cost of the resulting map when assigning a to b. The364

algorithm in Algorithm 1 specifies the approach. In Line 2 the365

smallest active area of the data set is selected. Lines 5–6 and366

Lines 8–9 define the merge operations for the cases that a is a367

centre or not, respectively.368

It remains to define intermediate degrees of simplification for369

lines. We denote a line at highest LoD by l1, its vertices by V1, and370
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Algorithm 1 Generation of intermediate LoDs

1: while there is an active polygon do

2: a← smallest active polygon

3: N ← neighbours of a in the same composite region

4: if a is a centre then

5: b← b′ ∈ N with minimum Cost(b′, a)

6: assign b to a.

7: else

8: b← b′ ∈ N with minimum Cost(a, b′)

9: assign a to b

10: end if

11: end while

the simplified line at lowest LoD by l2, having vertices V2 ⊆ V1.371

To define intermediate LoDs we split l1 into multiple lines, each372

corresponding to a single line segment of l2. Simplifying these373

lines with parameters for the intermediate scale, we obtain a set374

of vertices V such that V1 ⊇ V ⊇ V2, thus an intermediate repre-375

sentation that allows a refinement by adding vertices when zoom-376

ing from low to high LoD. We have applied this procedure on the377

client side to produce the presented results, but also could store378

the resulting hierarchy of vertices on the server side.379

Using Algorithm 1 and the explained procedure for intermediate380

line simplification levels, we obtain intermediate representations381

as shown in Fig. 5. The sequence only implies small changes in382

each step and terminates with the well-generalised data set ob-383
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tained from our optimisation method. In the next section we384

explain how to represent this sequence in the tGAP structure.385

Fig. 5. Two examples processed with Algorithm 1. From left to right: Original map,

found intermediate representations, and map generalised by optimisation.

4 The tGAP structure386

The tGAP structure is a collection of data structures that store387

the results of a generalisation performed in a preprocessing step.388

The data structures support a vario-scale representation of a pla-389

nar partition without redundancy of geometry. Area features at390

the highest level of detail (LoD) ? are stored using a topological391

model. There is no redundancy of geometry in this level as the392

shared boundary edges between neighbour faces are stored only393

? We use the terms LoD and map scale interchangeably.
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once. The generalisation process reduces the level of detail by394

merging features (see Figure 6). For features created from gener-395

alisation references are stored to the composing features of higher396

detail level. The data structures provide the features to be shown397

at any required LoD, thus enabling an on-the-fly generalisation398

by feature selection.399

Fig. 6. Steps of the generalisation process for the partition shown at ‘Step 0’. Faces

are numbered, and edges are labelled with letters. The subscript to a face number

is its importance value.

The off-line generalisation that fills the tGAP is an iterative pro-400

cess. Figure 6 illustrates the generalisation process for the planar401

partition shown in ‘Step 0’; the other maps show the result of402

each generalisation step. In each step, the least important area403

feature is merged to its most compatible neighbour. A dashed404

arrow shows the least important face for the current step, and its405

most compatible neighbour (where the arrow is headed). In the406
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next step, the least important face is merged to its most compat-407

ible neighbour. The process continues until all is merged to one408

face.409

4.0.1 Building tGAP structure410

The result of each generalisation step is again a planar partition,411

which is a collection of faces. A face is constructed by the set of412

edges that form its boundary. The collection of faces at a certain413

generalisation step determines the collection of edges that form414

the partition at this step. There is a last issue in the generalisa-415

tion process: boundary edges get simplified as the level of detail416

decreases. To capture the generalisation process we need to keep417

track of face merging, how this is reflected to boundary edges,418

and the simplification of edges. The data structures forming the419

tGAP take care of these three issues. The tGAP structure consists420

of a structure holding the hierarchy of faces, an edge forest that421

holds the corresponding relations between boundary edges, and422

BLG (Binary Line Generalisation) trees, for each edge one tree,423

which stores the result of the Douglas-Peucker algorithm (Dou-424

glas and Peucker, 1973) for line simplification. There is a trade-of425

decision between storing BLGs and do simplification from BLG426
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reading, or storing edges geometry and perform line simplification427

online. Here we chose for online line simplification. For the com-428

plete treatment of BLGs we refer the interested readers to (van429

Oosterom and Schenkelaars, 1995; van Oosterom, 2005; Meijers,430

2006).431

Fig. 7. The face tree corresponding to the generalisation of Figure 6. Nodes in the

tree are faces, and lines depict merging of two faces into the parent face.

Generalisation starts with the original (i.e., highest LoD) faces.432

A generalisation step merges two neighbour faces to a new one,433

which continues further in the generalisation process. The new434

face and the merged faces have a parent-child relation. The hier-435

archy of faces created by this process is a tree. Leaf nodes are the436

original faces, the root is the full map extent. Figure 7 shows the437

face hierarchy created by the generalisation process of Figure 6.438

In the right side of the tree are shown the steps performed to439

create the tree, each step is associated with its importance value.440
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Fig. 8. The edge forest for the generalisation process of Figure 6.

We store faces using the left-right topology without edge refer-441

ences. This model stores the edge geometry (as a directed polyline442

with start and end node references), together with references to443

the left and right face of the edge. Each face is constructed from444

the list of edges that refer to it as a left or right face. That deter-445

mines the type of changes an edge undergoes in the generalisation446

process. An edge disappears if it is part of the common boundary447

of the two merged faces, e.g., edge ‘g’ in Step 1 (see Figure 6).448

The other edges may continue existing, but the left or right face449

of each edge is changed, e.g. edges ‘d’, ‘e’, ‘f’, and ‘i’ in Step 1. An450

edge takes the importance value from the importance of the step451

in which it changed. Figure 8 shows the complete edge hierarchy452

for the generalisation process of Figure 6. On the right side there453

are the steps at which changes occur, each step associated with454

its importance level.455
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4.0.2 Using tGAP structure456

Fig. 9. Selection in the face tree: faces to appear at the importance value = 0.4.

After the tGAP structure is built, it can be used to select features457

to be shown for a certain scale. A given map scale is translated to458

importance value, which is used to select features. A face will be459

shown if the given importance value is in the importance range460

of the face. Figure 9 gives faces to be shown for an importance461

value equal to 0.4. This importance value is in the range [0.3,462

0.6) formed between steps 2 and 3. The map created from Step463

2 is unchanged for values in this range. Faces to be shown are464

the leaf nodes of the (sub)tree created by cutting all nodes with465

importance values lower than 0.4; these are faces 5 and 6.466

Edges to be shown at the importance value 0.4 are those that467

include this value in their importance range. They are the bound-468

aries of faces to be shown for that importance. Figure 10 shows469
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Fig. 10. Selection of edges to appear at the importance value = 0.4.

the edges to be displayed at the importance value 0.4. The edges470

are the leaf nodes in the forest remained after cutting nodes with471

importance less than 0.4.472

4.1 Implementation in Oracle Spatial473

The constrained tGAP information is stored in Oracle Spatial.474

The Oracle tables and their relationships are shown in Figure 11.475

Arrows associating tables show foreign key relationships. Table476

Face holds information about faces: the centroid needed from the477

optimisation algorithm, the class to which it belongs, the small478

scale aggregate region to which it is constrained, centre which479

takes only values 1 and 0, 1 meaning the face is a centre, the480

area size used to calculate the cost of merging, the importance481

range, and its parent (in the face tree). Information about edges482
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is split in two tables: EdgeGeo that stores the geometry, its length483

needed for cost calculation, and references to start and end node;484

EdgeLOD that stores references to left, and right face as they485

change during the generalisation (while the geometry remains486

the same), and the corresponding importance ranges. Node table487

stores the geometry of nodes. Table ClassInfo stores information488

about classes: code as referred in Face table, name and descrip-489

tion, as well as weight needed for calculation of importance values490

of faces. Table ClassCompatibility stores the compatibility values491

as cost of changing from the from class to the to class.

Fig. 11. UML diagram of tables and relationships that store the tGAP information

in Oracle Spatial.

492
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5 Progressive transfer493

In our approach edges are sent progressively from the server to494

the client. Edge information sent by the server consists of edge ge-495

ometry, scale and topological information, i.e., importance range496

as well as references to left-right faces and start-end nodes. The497

server also sends thematic information about faces, but not their498

geometry. The client builds topology, i.e., creates geometry of499

faces, and visualises faces with their thematic information.500

There are different situations in the server-client communication:501

the initial state, panning, zoom-in, and zoom-out operations. In502

all the situations the client provides a spatial extent and a scale503

to the server. The initial state is the first request from the client504

side. For an initial state requesting data, e.g., at the importance505

value 0.7, the SQL queries on the server are:506

select g.edge id, i.left face, i.right face,

g.start node, g.end node, g.geometry

from EdgeLOD i, EdgeGeo g

where i.edge id = g.edge id and

i.imp low <= 0.7 and i.imp high > 0.7

order by i.imp high desc;

select face id, class, region

from Face
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where imp low <= 0.7 and imp high > 0.7

order by imp high desc;

The first query collects edge information, the second collects face507

information. Additionally, both queries should consider the spa-508

tial extent (in the where clause). Ordering by imp high allows509

sending edges according to their importance, i.e., edges that are510

visible at smaller scales will be sent first. Queries for pan and511

zoom-out operations are similar to the above, the only difference512

being in the spatial extent request.513

A zoom-in operation on the client side requires refinement of514

the already received information. Features that appear at larger515

scales have lower importance values (see Figures 9 and 10). This516

requires faces and edges whose importance is lower than the cur-517

rent importance. To get additional information, e.g., for the range518

[0.2, 0.7[, we collect separately the geometry of edges that appear519

for the first time in this range, topological information for edges520

to appear at importance value 0.2 as well as face information521

for this last value. The first query below collects geometry of new522

edges, the second collects topology information of edges to appear523

at importance 0.2, and the third collects thematic information of524

faces.525
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select edge id, start node, end node, geometry

from EdgeGeo

where edge id in

(select edge id

from EdgeLOD

group by edge id

having min(imp high) > 0.2 and max(imp high) <= 0.7);

select edge id, left face, right face

from EdgeLOD

where imp low <= 0.2 and imp high > 0.2;

select face id, class, region

from Face

where imp low <= 0.2 and imp high > 0.2;

The client visualises edges as they come, but has to wait until all526

the information for the requested range is sent, then builds the527

topology of faces and visualises them.528

We may send information in small packages, one package contain-529

ing the information about two faces merged in a step. We collect530

the information for each step with importance in the requested531

range. The importance values of all these steps are collected by :532

select distinct(imp high) as step imp

from Face

where imp high > 0.2 and imp high <= 0.7

order by imp high desc;
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Information for one package is collected from similar queries with533

the above, replacing the ‘having’ condition in the first query with534

max(imp high) = step imp, and the ‘where’ condition in the last two535

queries with imp high = step imp. A drawback of this solution is536

that a lot of queries and requests have to be send from the client537

to the sever. First of all: this causes overhead, but perhaps more538

serious, due to network delays it is not sure that all answers539

are also received in the proper order. A specific communication540

channel supporting ’streaming’ data has to be used. On the server541

side still the original queries are executed (including the order542

by), but before sending the query results to the client, smaller543

streaming packages are created. One package contains the used544

edges and the faces involved in a step of the tGAP structure545

creation: two faces are merged and at least one edge is removed.546

The streaming communication at the client side will also make547

sure that the packages are processed in the right order. In case548

a package is missing due to a delay, the client waits for it before549

processing others.550
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6 Future work551

Our method is based on the assumption that the aggregation is552

the dominating relationship between features of two given data553

sets. Additional lines resulting from the collapse operation ex-554

plained in (Haunert and Sester, 2008) are simply included in the555

original (large scale) map. Using the proposed skeleton operator,556

the overhead is limited, but, if we applied more generalisation557

operators like displacement, exaggeration, and typification, this558

will result in more additional edges and faces. Instead of hav-559

ing the collapse operation (and other operations) only available560

as preprocessing operation, it might also be fully integrated in561

the tGAP structure. The effect of including the area-to-line col-562

lapse function is that the tGAP face-tree will become a tGAP563

face-DAG (directed acyclic graph) as the collapsed face will be564

partitioned and assigned to multiple parents. However, this will565

happen at most only once for every face (area object) and does566

fit well in the proposed table structure after a slight modification567

in change of cardinality of the parent attribute in the face table.568

Until now we do not have empirical results concerning the in-569

clusion of additional operators. For the future, we plan to per-570
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form tests on a data set of realistic size. We also plan to test our571

method with two different settings for the line simplification. This572

can either be done by progressively sending the (stored) BLGs to573

the client or by sending the full edge geometry to the client and574

performing the line simplification on-the-fly.575

As discussed at the end of Section 5, additional research is needed576

concerning the use of streaming protocols and the appropriate577

size of submitted packages.578

7 Conclusion579

We have presented a new approach to set up a data structure for580

the progressive submission of vector maps. Our idea is to first581

generalise the large scale map to a much smaller scale (of op-582

timised high quality) and, in a second step, to find a sequence583

of basic merge operations that enables a gradual transformation584

between both representations. Though we used a simple itera-585

tive algorithm for the second task, our approach ensures a well-586

generalised map at small scale; this is often needed for navigation587

tasks, e.g., to pan to the user’s area of interest.588

We have shown how to cope with aggregation and line simplifica-589
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tion and suggested a simple way to also consider area to line (or590

point) collapse. Generally, we do not restrict to any certain gener-591

alisation method in the first preprocessing step. The main contri-592

bution of the paper is that it demonstrates an approach to have593

a good quality variable scale structure. The unconstrained tGAP594

structure may result in less quality medium and small scale repre-595

sentations. Using constraints, either computed (see Section 3.1.2)596

or from other medium/small scale source, will guarantee that the597

quality at the constraint scale is obtained (and that the quality at598

the intermediate scales is improved based on the conducted visual599

inspection). Besides the improved quality there are two important600

additional characteristics for the constrained tGAP structure: 1.601

it does not contain any geometric redundancy (and only minimal602

multiple representations of a feature; e.g. at most once for an603

area to line collapse) and 2. it does support progressive transfer604

of vector data to be used in smooth zoom functionality at the605

client side.606
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