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ABSTRACT
We consider the problem of matching a GPS trajectory with
a road data set in which some roads are missing. To solve
this problem, we extend a map-matching algorithm by New-
son and Krumm (Proc. ACM GIS 2009, pp. 336–343) that
is based on a hidden Markov model and a discrete set of
candidate matches for each point of the trajectory. We in-
troduce an additional off-road candidate for each point of
the trajectory. The output path becomes determined by
selecting one candidate for each point of the trajectory and
connecting the selected candidates via shortest paths, which
preferably lie in the road network but, if off-road candidates
become selected, may also include off-road sections. We dis-
cuss experiments with GPS tracks of pedestrians.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS ; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms
and Problems—Pattern matching

General Terms
Algorithms

Keywords
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1. MOTIVATION
Many users record trajectories (that is, sequences of points

with time stamps) with smart phones or small computing
devices. Usually, the positioning is done with GPS, thus we
term a point of a trajectory a GPS point, but also other
sensors may be used. Map matching is the problem of find-
ing the path in the road network corresponding to the tra-
jectory. In this paper, we address off-line map matching,
meaning that we require the entire trajectory as input.
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While several authors have focused on off-line map-matching
algorithms for low-quality GPS trajectories [5, 3] the road
data is usually assumed to be complete and accurate. In the
following situations, however, the road data is incomplete:
• Some roads have not been mapped yet.
• Minor roads have not been included in the data or have

been removed by map generalization.
• The road data has been acquired for a certain means of

transportation (e.g., cars) but the user who collected
the GPS data used another means (e.g., a bicycle).
• The road data contains topological errors.

Map-matching algorithms often search for a path in the
road network that has a favorable global property, for ex-
ample, a path having minimum distance to the trajectory
(according to some distance function). Requiring the output
path to be contained in the road network, however, is prone
to failure if the road network is incomplete. We therefore
suggest a new map-matching algorithm that introduces new
(off-road) edges whenever they are needed to avoid that the
output path deviates too much from the input trajectory.

When the road data is complete, map matching can be
done based on shortest paths between candidate matches [5,
3, 2]. We discuss this approach in Sect. 2 and extend it to
handle incomplete road data in Sect. 3. We then present our
experiments (Sect. 4) and conclude the paper (Sect. 5).

2. RELATED WORK
For an overview on the literature on map matching we

refer to Quddus et al. [7]. For off-line map matching on
incomplete road data, Pereira et al. [6] have proposed to
use genetic algorithms, that is, a general-purpose heuristic
that is typically applied to NP-hard optimization problems.
In contrast, we will model the map-matching problem such
that it can be solved both efficiently and exactly.

Lou et al. [3] as well as Newson and Krumm [5], whose
approach we extend in this paper, assume that the road
network is represented as a straight-line graph G = (V,E)
and the output path P is contained in G. The path P may
start (or end) at a vertex of G or in the interior of an edge.
Furthermore, the following assumption is made.

Assumption 1. Between two consecutive measurements
of GPS points, a user travels on a path of minimum cost
(termed a shortest path) in the road network.

We here define the cost of a path in G based on a weight
w(e) for each edge e ∈ E that represents the cost of traveling
one geometric unit on e. This cost may represent geometric
distances, but also other measures can be applied.
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Figure 1: The graph G (left, dark gray) with the candi-
date matches for the trajectory (p1, p2, p3) and the candi-
date graph Gcand (right). The paths drawn black in G and
in Gcand correspond to each other.

For each point pi of the trajectory T = (p1, . . . , pn), Lou
et al. [3] and Newson and Krumm [5] define a discrete set

Ci = {c1i , . . . , ckii } of candidate matches, where ki is the car-
dinality of Ci. Let Di be the disk with a user-set radius r
centered at GPS point pi. For each edge e ∈ E that inter-
sects Di, the set Ci is defined to contain the point on e that
is closest to pi. Hence, the maximal size k of a set Ci is
in O(|E|). The output path is generated by selecting one
candidate match for each GPS point and, for each two con-
secutive GPS points, connecting the two selected matches
via a shortest path in G, see Fig. 1 (left).

To find a path that matches the trajectory best, Newson
and Krumm [5] use a hidden Markov model (HMM). This
generally describes a sequence of states of a system that is
being observed [8]. In our application, the set of possible
states (that is, candidate matches) is discrete and the set
of possible observations (that is, GPS points) continuous.
The state sequence is defined based on a Markov process,
that is, the state at a certain time only depends on the pre-
vious state and a transition probability Pr(t | s was before)
for each two states s, t (that is, the probability that, given
s, the system will next enter t). For each time step, an ob-
servation is given and, for each state s and each possible
observation o, the observation probability density f(o | s)
is known (that is, the probability density that, given s, o
will be observed). Using Bayes’ rule, the probability of
a state sequence S = (s1, . . . , sn) under a given sequence
O = (o1, . . . , on) of observations becomes

Pr(S | O) = f(O | S) · Pr(S)/f(O) , (1)

where f(O | S) = f(o1 | s1) · . . . · f(on | sn) and Pr(S) =
Pr(s1) ·Pr(s2 | s1 was before) · . . . ·Pr(sn | sn−1 was before).
If not stated otherwise, we assume that the a-priori proba-
bility Pr(s1) of s1 is the same for each state s1.

To find the state sequence that is most likely, a directed
acyclic graph Gcand = (C,A) is defined, see Fig. 1 (right).
This graph contains a vertex cvi for each time step i and
each possible state v at time i plus two vertices s and t.
Furthermore, Gcand contains an arc from s to every vertex
in C1, an arc from every vertex in Cn to t, and, for i =
1, . . . , n − 1, an arc between every vertex in Ci and every
vertex in Ci+1. The arc weights are defined by

W (scv1) = Pr(cv1) · f(o1 | cv1) (2)

W (cui−1c
v
i ) = Pr(cvi | cui−1 was before) · f(oi | cvi ) (3)

W (cunt) = 1. (4)
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Figure 2: A road network G (left) with three GPS points and
their candidate matches, including one off-road candidate
for each GPS point, and the corresponding candidate graph
Gcand (right). The two black paths correspond to each other.

With this definition, the product of arc weights of an s-
t-path in Gcand (that is, a state sequence S) is equal to
Pr(S) · f(O | S) = Pr(S | O) · f(O). Therefore, and since
f(O) is constant for all state sequences, a state sequence S
that maximizes the product of arc weights maximizes Pr(S |
O) and thus is the most likely explanation for the sequence
O of observations. Such a path can be found in O(|C|+ |A|)
time with a dynamic-programming approach, which in the
context of HMMs is known as the Viterbi algorithm [8].

In our map-matching application, an observation is given
by a GPS point pi ∈ R2. Lou et al. [3] as well as Newson
and Krumm [5] assume that a GPS measurement follows a
normal distribution around the true position. Furthermore,
by analyzing ground-truth data, Newson and Krumm [5]
have found out that, for two consecutive GPS points pi−1, pi,
the absolute difference between the Euclidean distance δi :=
dE(pi−1, pi) and the geometric length dG(u, v) of the short-
est path between the two corresponding correct matches u
and v follows an exponential probability distribution. Based
on this result, they express the transition probability den-
sities, which implies that a shortest path between all pairs
of candidate matches that belong to two consecutive GPS
points needs to be found. This requires O(kn) runs of Di-
jkstra’s algorithm [1] and thus O(kn · |E|+ kn · |V | log |V |)
time in total.

3. OUR ALGORITHM
Our idea for handling incomplete data is to allow each

GPS point pi to become matched with a special (off-road)
candidate c0i , see Fig. 2. We fix the position of c0i at GPS
point pi. The set Ci of candidate matches for pi becomes
Ci = {c0i , c1i , . . . ckii }, where ki is now the number of on-road
candidates for pi. We make the following assumption.

Assumption 2. Between two consecutive measurements
of GPS points, a user changes at most once between a road
contained and a road not contained in the data or vice versa.

To define the path P between two candidate matches cui
and cvi+1, we distinguish three cases.
(C1) If u 6= 0 and v 6= 0, that is, if both cui and cvi+1 are on-

road candidates, Assumption 2 implies that we have
to remain in the road network (we must not leave and
re-enter it). In this case, we can apply Assumption 1,
which implies that P is a minimum-cost path in G.



(C2) If u = v = 0, that is, if both cui and cvi+1 are off -
road candidates, we simply define P as the straight-
line segment connecting cui and cvi+1.

(C3) If exactly one of the candidates cui and cvi+1 is an off-
road candidate, Assumption 2 implies that P is the
concatenation of a connected off-road path and a con-
nected on-road path. The off-road path should be geo-
metrically short and the on-road path should be short
with respect to the edge weights. Defining a cost w′

for traveling one geometric unit outside of the road
network allows us to define P as a minimum-cost com-
bination of an off-road and an on-road path.

Note that in case (C3) the off-road section of P is always a
straight-line segment s between a point p in G and a GPS
point, where p either is a vertex of G or lies on an edge e of
G. In the latter case, the segment s and the edge e form a
critical angle that only depends on w′ and w(e) [4].

To define the arc weights in Gcand, we extend the orig-
inal HMM-based approach. We assume that we have two
types of observations, namely the GPS points p1, . . . , pn
and, for i = 2, 3, . . . , n, the (derived) distance δi between
pi−1 and pi. The probability density f(pi | cui ) of GPS
point pi is defined with a normal distribution centered at cui
and, since Newson and Krumm [5] found out that δi follows
an exponential probability distribution that is maximal for
δi = dG(cui−1, c

v
i ), we define a parameter β ∈ R+ and

f(δi | cui−1, c
v
i ) =

1

2β
e
−
|δi−dG(cui−1,c

v
i )|

β . (5)

To express our a-priori knowledge of the fact that the
path of the user is very likely to be contained in the road
data and that a missing link is rather an exception, we de-
fine non-constant transition probabilities. If GPS point pi−1

corresponds to an on-road candidate cui−1, we assume that
the probability of each transition to an on-road candidate
cvi is by a constant factor of ϕ higher than the probability
of a transition to the off-road candidate c0i . Similarly, given
that GPS point pi−1 corresponds to the off-road candidate
c0i−1, we assume that the probability of each transition to an
on-road candidate cvi is by a constant factor of ψ higher than
the probability of a transition to c0i . Formally, this means

Pr(cvi | cui−1 was before) =


1

ϕki+1
if u 6= 0, v = 0

ϕ
ϕki+1

if u 6= 0, v 6= 0
1

ψki+1
if u = 0, v = 0

ψ
ψki+1

if u = 0, v 6= 0

. (6)

To keep our model simple, we define Pr(cu1 ) to be equal to
the transition probability of moving from a (hypothetical)
on-road candidate to cu1 .

Similar to Equations (2)–(4), we now define the arc weights

W (scv1) = Pr(cv1) · f(p1 | cv1) (7)

W (cui−1c
v
i ) = (8)

Pr(cvi | cui−1 was before) · f(pi | cvi ) · f(δi | cui−1, c
v
i )

W (cunt) = 1 . (9)

With this setting, an s-t path in Gcand that maximizes the
product of arc weights is indeed a most likely state sequence.

To compute the paths in G associated with the arcs in
Gcand, we execute Dijkstra’s algorithm [1] for each candi-
date match cui with i < n as source. That is, we expand
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(a) roads (gray) and trajec-
tory (black)

(b) output path (black, off-
road parts thin)

Figure 3: A sample from our test data.

a shortest-path tree from cui until it contains all candidate
matches in Ci+1. To compute shortest paths to or from off-
road candidates, we could augment G, for each edge e ∈ E,
with at most two off-road edges that form a critical angle
with e and, for each vertex in V , with one off-road edge.
Then, we could execute Dijkstra’s algorithm on the aug-
mented graph. Note however, that explicitly adding all pos-
sible off-road edges can be avoided.

With our extension the asymptotic running time of the
method by Newson and Krumm [5] remains unchanged. To
speed up our method, we use a heuristic that has also been
used by Newson and Krumm. That is, if the paths become so
long that f(δi | cui−1, c

v
i ) for every unfinished target cvi would

fall below a certain threshold, we terminate the expansion of
the shortest-path tree from cui−1 and set f(δi | cui−1, c

v
i ) = 0.

4. EXPERIMENTAL RESULTS
We implemented our algorithm in Java and tested it with

OpenStreetMap data that was provided on-line1 and trajec-
tories that we recorded with a GPS receiver of type Garmin
EdgeR© 710 during four hikes in the surroundings of Würzburg,
Germany. In total, the GPS receiver yielded 7799 GPS
points over a distance of 65 km. Figure 3(a) shows the end
of Track2 in a small medieval town, where the GPS receiver
produced several outliers when we visited a restaurant. Nev-
ertheless, we did not filter the trajectories.

We weighted the edges of the road network according to
their geometric lengths and tested the method with different
parameter sets. The parameters in Table 1 overall yielded
the best results, see Fig. 3(b) for the results for the sample
in Fig. 3(a). The outliers did not prevent our method from
matching most parts of the trajectory correctly. Moreover,
the part containing the outliers plus two sections where we
indeed walked on unmapped paths did not become matched
and were correctly classified as off-road sections. In total,
our solutions for the four tracks contained 23 off-road sec-
tions, which all were correct.

Figure 4 shows results with different values for ψ and ϕ.
In Fig. 4(b), the probability of transitions to off-road candi-
dates was high, thus a small on-road section of the trajectory
that lies between two off-road parts has not become matched

1download.geofabrik.de/osm/
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(a) map and trajectory (b) ϕ = 6.8, ψ = 1.02 (c) ϕ = 10, ψ = 1.5 (d) ϕ = 1000, ψ = 150

Figure 4: A sample where two connections are missing in the map. By choosing ϕ and ψ it is possible to control to what
degree the path becomes attracted by the roads ((b)–(d)). The solution with our default setting (c) reflects the situation best.

description symbol value

radius for selection of candidate points r 40 m

standard deviation of GPS coordinates σ 25 m

cost of an off-road edge of one unit w′ 1.5

parameter for probability density of
distance measurements

β 20.0

parameter for transition probabilities
from off-road candidates

ψ 1.5

parameter for transition probabilities
from on-road candidates

ϕ 10.0

Table 1: Default parameters used in our experiments.

Track1 Track2 Track3 Track4
number of points 1969 2613 2116 1101
time to solution 14.5 s 51.1 s 7.7 s 47.2 s

number of points 196 261 211 110
time to solution 0.8 s 1.4 s 0.4 s 2.5 s

Table 2: Computation times when using all GPS points
(rows 2–3) and every tenth point (rows 4–5). All tests were
performed on a Windows PC with 3 GB of RAM and a 3.00
GHz Intel dual-core CPU; s stands for seconds CPU time.

with the road network. In contrast, when using our default
setting, the result indeed contains two off-road sections with
a short on-road section in between, see Fig. 4(c). Finally,
when setting ψ and ϕ to high values, the trajectory becomes
attracted too much by the road data, see Fig. 4(d).

Table 2 shows the running time of our method. We did
not tune our implementation to achieve a high efficiency
and did not restrict the size of the candidate set of a GPS
point. Therefore, our method needed relatively long to pro-
cess Track2 and Track4, which covered dense urban areas. By
reducing the sampling rate of the trajectories we decreased
the running time drastically but still obtained good results.

5. CONCLUSION AND FUTURE WORK
We conclude that, overall, our algorithm copes well with

edges missing in the road network. In terms of the asymp-
totic worst-case running time, we have not added complexity

to the method by Newson and Krumm [5]. We have added,
however, the parameters ψ and ϕ to define the transition
probabilities between off-road and on-road candidates and
the parameter w′ by which we determine where the path
between an on-road and an off-road candidate leaves (or
enters) the road network. Future research will deal with au-
tomatic parameter training and with on-line map matching.
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