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ABSTRACT
We consider the problem of localizing a moving vehicle based
on landmarks that were detected with a vehicle-mounted
sensor. Landmarks are represented as points; correspon-
dences of these points with the ones in a reference database
are searched based on their geometric configurations. More
specifically, we triangulate the landmark points and we match
the obtained triangles with triangles in a reference database
according to their geometric similarity. We maximize the
number of triangle matches while considering the topologi-
cal relations between different triangles, for example, if two
triangles share an edge then the corresponding reference
triangles must share an edge. Our method exploits that
the observed points typically form a certain configuration:
They appear at a limited distance from the vehicle’s trajec-
tory, thus the typical point pattern has a large extent in the
driving direction and a relatively small lateral extent. This
characteristic allows us to triangulate the observed point set
such that we obtain a triangle strip (a sequence of triangles)
in which each two consecutive triangles share one edge and
each triangle connects three points that are relatively close
to each other, that is, the triangle strip appropriately de-
fines a neighborhood relationship for the landmarks. The
adjacency graph of the triangles becomes a path; this allows
for an efficient solution of our matching problem by dynamic
programming. We present results of our method with data
acquired with a mobile laser scanning system. The land-
marks are objects of cylindric shape, for example, poles of
traffic signs, which can be easily detected with the employed
sensor. We tested the method with respect to its running
time and its robustness when imposing different types of
errors on the data. In particular, we tested the effect of
non-rigid distortions of the observed point set, which are
typically encountered during dead reckoning. Our match-
ing approach copes well with such errors since it is based
on local similarity measures of triangles, that is, we do not
assume that a global non-rigid transformation between the
observed point set and the reference point set exists.
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1. INTRODUCTION
Vehicle self-positioning can be enabled with different sys-

tems, for example, with the satellite-based system GPS.
Classically, GPS is used in cars to assist drivers in their
wayfinding tasks. Today, however, positioning systems be-
come increasingly important as components of driver assis-
tance systems that actively control the vehicle’s motion, for
example, a car may be forced to slow down when approach-
ing a turn in the road. As a long-term goal, many researchers
envision fully autonomous vehicles. Obviously, the develop-
ment of such vehicles requires a high attention to safety risks;
therefore, redundant positioning systems are needed. Since
GPS is not reliable in shadowed areas such as forests and
street canyons, it needs to be combined with other types of
positioning systems. In this paper, we present a position-
ing system based on a vehicle-mounted laser scanner. Laser
scanners may be used to locate a vehicle in an indoor envi-
ronment, for example, by matching the observations with a
polygonal reference map [10]. Our approach, however, is to
first extract a set of landmark points from the observations
and to use the landmarks for positioning. We solve the posi-
tioning problem by point pattern matching (PPM), that is,
by finding a transformation that maps each of the observed
landmark points onto or sufficiently close to a corresponding
point in a reference map. Our PPM method is deterministic,
efficient, and tailored for the vehicle positioning task. We
think that our landmark-based approach is especially use-
ful for the urban outdoor environment, where we find many
landmarks that can be represented as points, for example,
poles of traffic signs.

Point pattern matching has been applied to a wide range
of applications and it has been attacked with different ap-
proaches – a detailed review is given in [12]. Depending



on the specific application, a PPM method needs to cope
with inaccuracy and incompleteness of the datasets and with
point motions. Often the problem is to find a global trans-
formation that preserves all intra-distances and intra-angles
of a point set, that is, a translation and rotation [2]; the
Hausdorff distance between both point sets can be used to
measure the quality of the transformation [4]. In many ap-
plications, however, the intra-angles and intra-distances of a
point set may change, for example, because the points repre-
sent objects with non-rigid motions or because of non-linear
sensor distortions. Often changes of long intra-distances
may be relatively large while distances between neighboring
points do not change much. A typical application in which
small local deformation can lead to huge global distortion is
fingerprint verification. The problem can be attacked with
triangulation-based methods [1, 11], which require that the
distances of an observed point to its neighbors are similar
to the distances of the corresponding reference point to its
neighbors.

Local distortions that have a global effect also appear in
vehicle positioning: Figure 1 displays the track of a vehicle
(black arc). At certain locations (white dots) the vehicle
observes a landmark (black dots), whose coordinates (in a
local coordinate system) are calculated based on the land-
mark’s polar coordinates with respect to the vehicle and
the vehicle’s own position and orientation – we assume that
the vehicle’s position and orientation are estimated by dead
reckoning, that is, by integrating information received from
motion sensors such as odometers, gyroscopes or accelerom-
eters. After the vehicle observed a certain number of land-
marks, it tries to determine its current position (in a global
coordinate system) by finding the observed configuration of
points in a reference database, that is, by solving the PPM
problem. In this use case, the transformation between the
observed point set and the reference set cannot be expressed
as a global rotation and translation because, due to erro-
neous measurements of the motion sensors, the estimated
path (gray arc) of the vehicle may not coincide with the ac-
tual track. The point set may be deformed. The distances
between neighboring landmark points, however, may be rel-
atively accurate.

Figure 1: Deformation of a point set due to differ-
ences between the estimated vehicle path (gray) and
the actual path (black).

Our new PPM method for vehicle positioning is similar to
the existing triangulation-based approaches for fingerprint
verification. The newly developed method, however, is tai-
lored for the positioning task: The points represent land-
marks that are located at the roadside, for example, poles
of traffic signs or trees. Such objects are easily identifiable
in point clouds acquired with vehicle-mounted laser scan-
ners [3]. The landmarks appear along the track, thus the
typical point pattern has a large extent in the driving direc-
tion and a relatively small lateral extent, see Fig. 2. Our

Figure 2: A typical con-
figuration of points ob-
served from a moving
vehicle.

Figure 3: A set of
triangles connecting the
points in Fig. 2; the ad-
jacency graph of the tri-
angles is a path.

approach is to connect the observed points with a set of tri-
angles such that the triangles form a path, see Fig. 3. We
argue that the typical point configuration allows us to con-
struct such a triangle set without introducing extremely long
triangles. The presented PPM method exploits the path-like
structure of the triangle set.

The method matches triangles with triangles in a reference
database according to their geometric similarity. Topolog-
ical constraints are ensured, for example, if two triangles
share an edge then their two corresponding triangles in the
reference dataset must share an edge. Because of these con-
straints, the method can be classified as a graph matching
method. A review of graph matching methods in the pattern
recognition context is given in [5]. Often graph matching
problems are computationally very demanding, for example,
the largest common subgraph problem is NP-hard [9]. How-
ever, we define a graph matching problem that allows for an
efficient and exact solution if one of the graphs is a path,
which we ensure with our special triangulation method.

In the remaining part of the paper we present our method
for point pattern matching (Sect. 2) and discuss some ex-
perimental results (Sect. 3). Finally, we conclude the paper
and give recommendations for future research (Sect. 4).

2. MATCHINGMETHODOLOGY
Let P = {pi ∈ R

2} with i = 1, 2, . . . ,m be the set of
observed points and P ′ = {p′j ∈ R

2} with j = 1, 2, . . . , n be
the set of reference points. The matching problem is to find
a set π ⊆ P × P ′ of correspondences between the points in
P and P ′. Our method for solving this task comprises the
following steps:

1. We define the set T ′, in which each element is a trian-
gle of three distinct points in P ′. For the moment it
suffices to assume that T ′ contains all such triangles.
We will discuss in Sect. 3 how to keep T ′ small.

2. After we observed the point set P , we triangulate the
points in P , which yields the set of triangles T .

3. We search a set θ ⊆ T × T ′ of triangle matches. Each
element (t, t′) ∈ θ means that t ∈ T corresponds to the
reference triangle t′ ∈ T ′. We aim to match triangles
that are relatively similar and we want to avoid contra-
dictions between different matches in θ by considering
the topological relations of the triangles. The triangle
matches θ define the point matches π.

We define the graph G(T, E) with E containing an element
for each pair of triangles in T that share an edge. Accord-
ingly, we define the graph G′(T ′, E′) with E′ containing an
element for each pair of triangles in T ′ that share an edge.



(a) observed point set P (b) Triangulation T of P

(c) reference point set P ′
with edges forming reference
triangles T ′

(d) matching result

Figure 4: Approach to find a point configuration in
a reference database.

Obviously, we need to specify our approach; Figure 4 illus-
trates one possibility. The points in P were triangulated ac-
cording to the Delaunay criterion. Basically, we could solve
the matching problem in step 3 of our method by finding a
subgraph isomorphism f : T → T ′, where f(t) is restricted
to triangles that, according to some geometric measure, are
sufficiently similar to t ∈ T . If the reference database is
incomplete, T may contain triangles that do not have a cor-
responding triangle in T ′. In this case we would fail to find
a subgraph isomorphism f but instead we could solve the
largest common subgraph problem, that is, we would need
to find an isomorphism g : Tsub → T ′ with Tsub ⊆ T and
|Tsub| as high as possible. By solving the largest common
subgraph problem we would consider both topological and
geometric information. However, there is a drawback of this
approach: The largest common subgraph problem (as well
as the subgraph isomorphism problem) is NP-hard [9], which
means that we cannot hope for an efficient and exact solu-
tion. In order to overcome this drawback, we propose an
alternative triangulation method (Sect. 2.1). Furthermore,
we define a relation between the matched subgraphs of G
and G′ that is weaker than an isomorphism (Sect. 2.2). We
then present an efficient algorithm that solves the matching
problem while ensuring the defined relation (Sect. 2.3).

2.1 Triangulating the observed point set
The common definition of a triangulation requires that

the union of all triangles equals the convex hull of the input
points [8]. We relax this requirements. Instead, we only
require that each point in P belongs to at least one trian-
gle in T and that the graph G is connected. More specif-

ically, we triangulate the points P such that the graph G
becomes a path, that is, we define a sequence of consecu-
tively adjacent triangles. Furthermore, we require that the
triangle sequence can be dynamically updated: whenever
we observe a new landmark we would like to append one
triangle to the triangle sequence constructed so far. Subject
to these requirements we would like to obtain a set of well-
shaped triangles. In other words, the triangulation should
be ‘similar’ to a Delaunay triangulation. We achieve this by
trying to avoid overlapping triangles (triangles whose interi-
ors intersect) and by preferring triangles with large interior
angles. In order to formalize our triangulation algorithm, we
assume that the point sequence (p1, p2, . . . , pm) with m ≥ 3
is sorted according to the order in which the points were
observed along the vehicle’s track. Furthermore, we denote
the smallest angle of a triangle by αMin : P 3 → R

+
0 . Algo-

rithm 1 yields the triangle sequence (t1, t2, . . . , tm−2); these
triangles constitute the set T .

Algorithm 1 Algorithm for triangulating a point sequence

1: t1 ← (p1, p2, p3)
2: p′ ← p1
3: p′′ ← p2
4: for i← 4 to m
5: t′ ← (p′, pi−1, pi)
6: t′′ ← (p′′, pi−1, pi)
7: if t′ overlaps ti−3 and t′′ does not overlap ti−3

8: ti−2 ← t′′

9: p′ ← pi−1

10: else if t′ does not overlap ti−3 and t′′ overlaps ti−3

11: ti−2 ← t′

12: p′′ ← pi−1

13: else if αMin(t
′) < αMin(t

′′)
14: ti−2 ← t′′

15: p′ ← pi−1

16: else
17: ti−2 ← t′

18: p′′ ← pi−1

19: end if
20: end for

Figure 5 shows the progress of the algorithm for an exam-
ple. In any case the triangle (p1, p2, p3) is the first triangle
in the sequence. For any point pi with i > 3 we consider
two candidate triangles that can be added, namely t′ and
t′′, which are defined in lines 5 and 6 of algorithm 1, respec-
tively. Both t′ and t′′ append the triangulation at an edge
that was added in the last iteration: t′ contains the edge
(p′, pi−1) and t′′ contains the edge (p′′, pi−1). If only one of
these two triangles overlaps the last triangle in the sequence,
the other triangle is added to it (lines 7–12). Otherwise the
triangle that has the largest minimum angle among t′ and
t′′ is added (lines 13–18).

Figure 6 shows a second instance processed with algo-
rithm 1. The example shows that, in some cases, we cannot
avoid overlapping triangles. Our matching method, how-
ever, copes with such cases. Therefore we accept such tri-
angle sequences. In any case, we obtain a sequence of con-
secutively adjacent triangles. Since we append the triangle
sequence by maximizing the minimum angle, we obtain well-
shaped triangles.
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(a) in the first iteration (i = 4) of algorithm 1 the triangles
t′ = (p1, p3, p4) and t′′ = (p2, p3, p4) are tested; the triangle
t′′ is added to T because t′ overlaps (p1, p2, p3)
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(b) in the seventh iteration (i = 10) of algorithm 1 the tri-
angles t′ = (p7, p9, p10) and t′′ = (p8, p9, p10) are tested; the
triangle t′ is added to T because αMin(t

′′) < αMin(t
′)
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t4
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t8
t9 t10

t11

t12
t13

(c) final result

Figure 5: Progress of algorithm 1. The gray arc is
the vehicle’s trajectory.
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(a) the triangle se-
quence after process-
ing points p1–p8
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(b) both t′ = (p7, p8, p9) and t′′ =
(p6, p8, p9) overlap the last trian-
gle (p6, p7, p8) in the sequence; t′ is
selected since αMin(t

′′) < αMin(t
′)

Figure 6: An instance for which algorithm 1 pro-
duces overlapping triangles: point p9 appears after
a turn-over.
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Figure 7: The idea behind constraint (C5b) illus-
trated for the example in Fig. 5. The triangles t7
to t10 are not matched. Therefore, the distances
(dashed lines) between the triangles tj6 = t6 and
tj7 = t11 are compared with the distances between
the matching reference triangles.

2.2 Matching problem
A problem instance of the matching problem is defined by

the triangle sequence (t1, t2, . . . , tm−2) obtained with algo-
rithm 1 from the observed points, the reference triangle set
T ′, and a tolerance ε ∈ R

+ that defines whether two trian-
gles are sufficiently similar or not. The problem is to find
the set θ of triangle matches.

For each match (t, t′) in θ, we want that the triangles
t and t′ are sufficiently similar. Therefore we define con-
straint (C1).

(C1) Let smax : T ∪ T ′ → R
+
0 , smed : T ∪ T ′ → R

+
0 , and

smin : T ∪ T ′ → R
+
0 be the lengths of the sides of t ∈

T ′ ∪ T (with smax(t) ≥ smed(t) ≥ smin(t)). For each
(t, t′) ∈ θ we require that |smax(t) − smax(t

′)| ≤ ε,
|smed(t)− smed(t

′)| ≤ ε, and |smin(t)− smin(t
′)| ≤ ε.

Since we do not want that any two elements in θ are con-
flicting we define additional constraints. For all (a, a′) ∈ θ
and (b, b′) ∈ θ we require:

(C2) if a = b then a′ = b′, that is, a triangle in T must not
be matched to more than one reference triangle, and

(C3) if a and b share a common edge then a′ and b′ must
share a common edge.

Note that, for the largest common subgraph problem, we
would need to replace the ‘if’ in constraints (C2) and (C3) by
‘if and only if’. Our problem statement is in a way weaker,
for example, it allows two distinct triangles to be matched
with the same reference triangle. We cannot strictly for-
bid this case with our dynamic programming approach in
Sect. 2.3. However, we can introduce the two additional
constraints (C4) and (C5), which make our problem state-
ment stronger. With these constraints we assume that we
avoid most incorrect triangle matches.

Let ti1 , ti2 , . . . , ti|θ| with ij ∈ {1, 2, . . . ,m − 2} and ij <

ij+1 for j = 1, 2, . . . , |θ| − 1 be the triangles in T that are
matched to a reference triangle. Furthermore, let t′j be the
reference triangle matched with tij . In other words, the se-
quence S = ((ti1 , t

′
1), (ti2 , t

′
2), . . . , (ti|θ| , t

′
|θ|)) of the matches

in θ is sorted according to the position of the triangles in
the triangle strip. For all j = 1, 2, . . . , |θ| − 1 we require:

(C4) the two triangles tij and tij+1 must not be matched
to the same reference triangle, that is, t′j 	= t′j+1, and

(C5) if tij and tij+1 do not share a common edge then

(a) the reference triangles t′j and t′j+1 matched to
tij and tij+1 must not share a common edge.

(b) the distances between the vertices of tij and the
vertices of tij+1 must be sufficiently similar to
the distances between the vertices of t′j and the
vertices of t′j+1.

We use the error tolerance ε to state constraint (C5b) more
precisely: For each triangle pair we can calculate nine dis-
tances between the vertices of the two different triangles. We
do this for the triangle pair (tij , tij+1) and sort the distances,
and we do the same for the triangle pair (t′j , t

′
j+1). We re-

quire that the longest distance for (tij , tij+1) does not differ
more than ε from the longest distance for (t′j , t

′
j+1). The

same we require for the second to ninth longest distances.
Figure 7 illustrates constraint (C5b) on an example.



Constraints (C1)–(C5) define the set of feasible solutions
to our problem. We measure the quality of a feasible solution
according to two objectives:

(O1) The number of triangle matches in θ should be max-
imized.

(O2) Among the solutions that maximize (O1), we search
the one that minimizes σ2 =

∑
(t,t′)∈θ c(t, t

′) with

c(t, t′) =
((

smax(t)− smax(t
′)
)2

+
(
smed(t)− smed(t

′)
)2

+
(
smin(t)− smin(t

′)
)2)

.

2.3 Matching algorithm
In order to solve the matching problem defined in Sect. 2.2,

we define the directed acyclic graph Gmatch(Vmatch, Amatch),
in which each path corresponds to a feasible solution to our
problem. The optimal solution is found by searching a path
of maximum weight in Gmatch. For directed acyclic graphs,
this problem can be solved by dynamic programming [7],
which requires O(|Vmatch| + |Amatch|) time. The nodes of
the obtained path define the set of triangle matches.

The node set Vmatch is the set of candidate matches, that
is, it contains all matches (t, t′) such that, according to con-
straint (C1), the triangles t ∈ T and t′ ∈ T ′ are sufficiently
similar. In order to find Vmatch, we create an index for
the triangles in T ′. We use a kd-tree of three dimensions,
in which each triangle t′ ∈ T ′ is represented by the vec-
tor

(
smax(t

′), smed(t
′), smin(t

′)
)
. Indexing triangles based on

their side lengths is generally considered the best approach
to find geometrically similar triangles [6]. We define the

function fcand : T → 2T
′
, such that, for each t ∈ T , the

set fcand(t) ⊆ T ′ contains those reference triangles that are
sufficiently similar to t. We obtain the set fcand(t) from the
kd-tree by applying a range query. The set Vmatch contains
a match (t, t′) for each t ∈ T and t′ ∈ fcand(t). The set
Amatch contains an arc from node (ti, a

′) ∈ Vmatch to node
(tj , b

′) ∈ Vmatch with i, j = 1, 2, . . .m− 2 if and only if

(R1) j > i and

(R2) a′ 	= b′ and

(R3) ti and tj share the same number of edges as a′ and
b′ and

(R4) in the case that ti and tj share no edges then the
distances between the vertices of ti and tj and the
distances between the vertices of a′ and b′ are suffi-
ciently similar according to Sect. 2.2, constraint (C5b).

We introduce node weights w : Vmatch → R
+ such that the

path of maximumweight corresponds to the optimal solution
to the matching problem.

w(t, t′) =m− c(t, t′)/cmax

with cmax = max{c(t, t′) | (t, t′) ∈ Vmatch}.
We now prove the correctness of our approach.

Theorem 1. The path of maximum weight in Gmatch is
the optimal solution to the matching problem that was de-
fined in Sect. 2.2.

Proof. We need to show that there is a path in Gmatch

with nodes θ if and only if θ is a feasible solution to the
matching problem and that the path of maximum weight
satisfies objectives (O1) and (O2). The set θ satisfies con-
straint (C1) if and only if θ is a subset of Vmatch. However,
not all subsets of Vmatch define a path in Gmatch, just as not
all subsets of Vmatch satisfy constraints (C2)–(C5).

First, we show that each feasible solution to the matching
problem defines a path in Gmatch. If we are given a solu-
tion θ that satisfies constraints (C2)–(C5) we can sort the
matches in θ according to the positions of the triangles in
the triangle strip. We obtain the corresponding sequence S
of matches. Clearly S is a path in Gmatch, since each pair
a =

(
(tij , t

′
j), (tij+1 , t

′
j+1)

)
of consecutive matches in S is

contained in Amatch: constraint (C2) implies that a satisfies
requirement (R1); constraint (C3) implies that a satisfies
requirement (R3) if ij + 1 = ij+1, that is, if tij and tij+1

share a common edge; constraint (C5a) implies that a satis-
fies requirement (R3) if ij +1 < ij+1, that is, if tij and tij+1

do not share a common edge; constraint (C4) implies that a
satisfies requirement (R2); constraint (C5b) implies that a
satisfies requirement (R4).

Second, we show that each path p in Gmatch constitutes
a feasible solution to the matching problem. Because of
requirement (R1), Gmatch is acyclic and the path cannot
contain two distinct matches (t, t′) and (u, u′) with t = u;
this implies that constraint (C2) is satisfied. Since we tri-
angulated the points in P with algorithm 1, two triangles ti
and tj with j > i only share an edge if j = i + 1. There-
fore, constraint (C3) is satisfied if it is satisfied for each two
consecutive matches in p. This, however, is assured with
requirement (R3). In our problem definition, constraints
(C4) and (C5) are only active for two subsequent matches(
(tij , t

′
j), (tij+1 , t

′
j+1)

)
. Therefore, they are satisfied by im-

posing requirements (R2), (R3), and (R4) on arcs.
Together, the first part and the second part of our proof

imply that there is indeed a path in Gmatch with nodes θ if
and only if θ is a feasible solution to the matching problem.
To prove the correctness of our weight setting we first con-
sider an alternative setting: By defining unit weights for all
nodes in Vmatch the path of maximum weight will be opti-
mal according to objective (O1) since a maximum number of
matches will be selected. The same is true if we define a large
constant weight for all nodes, for example, we can set the
weight to m, that is, the number of observed points. In our
actual weight setting w this value is reduced by c(t, t′)/cmax

to also consider objective (O2). Since a path in Gmatch con-
tains at most m− 2 nodes and c(t, t′)/cmax ≤ 1 we have

∑
(t,t′)∈θ

c(t, t′)/cmax ≤ m− 2 < w(u, u′) for all (u, u′) ∈ θ.

This implies that the weight of a path with k nodes is always
greater than the weight of a path with k − 1 nodes, which
implies that objective (O1) is assured by searching the path
of maximum weight. If there are two or more paths with
the same number of nodes, then the path that minimizes∑

(t,t′)∈θ c(t, t
′) among the paths with a maximum number

of nodes has the highest weight. Consequently, the path of
maximum weight yields the optimal solution to the matching
problem.



3. EXPERIMENTAL RESULTS
The developed matching method was tested for a dataset

of points representing poles of traffic signs, trunks, or other
cylindric objects in the city of Hanover, Germany. The point
features were automatically detected in a point cloud that
was captured with a streetmapper system on a 22 km long
track, see Fig. 8. A detailed description of the system and
the operator used for the detection of point features can be
found in [3]. We present the set-up of our tests in Sect. 3.1
and the results in Sect. 3.2.

Figure 8: The streetmapper system used to acquire
the scan in which point features (poles) were de-
tected. The system comprises four terrestrial laser
scanners, a GPS antenna (on top of the van), an
odometer (mounted close to the bumper), an IMU,
and a control computer.

3.1 Experimental set-up
The complete set of 2658 points defined the reference set

P ′ for all our experiments. We used the same dataset to
define several sample sets; each of these sample sets defined
the input set P of observed points for one experiment. In
order to test our method under conditions close to reality,
we added noise to these points. More precisely, we defined
the samples for P as follows:

1. We fragmented the track of 22 km into 88 sub-tracks,
each corresponding to a drive of 40 seconds.

2. We simulated a drive along each sub-track and con-
structed the sequence of observed points by assuming
a viewing distance of 25 m and a field of view of 100◦

(viewing direction equal to direction of motion).

3. We deformed the observed point sets – similar to the
model sketched in Fig. 1 – by subjecting them to ran-
dom, normally distributed errors of four types, namely
errors in measuring

(a) the driving distance (for example, using the ve-
hicle’s odometer) – here we assumed a standard
deviation of 5 cm per m.

(b) the vehicle’s orientation (for example, using the
vehicle’s gyroscope) – here we assumed a standard
deviation of 0.1◦ per m.

(c) the distance between the vehicle and the land-
mark (for example, using a vehicle-mounted laser
scanner) – here we assumed a standard deviation
of 0.2 m.

(d) the direction angle of the landmark from the ve-
hicle (for example, using the same scanner) – here
we assumed a standard deviation of 0.5◦.

We consider this setting rather pessimistic – or realistic if we
assume that the vehicle observing P is equipped with low-
cost sensors. Definitely, we do not need the streetmapper
system in Fig. 8 to achieve this accuracy.

For five sub-tracks the set P contained less than three
point – obviously this implies that we cannot construct any
triangle. This problem occurred on a highway with noise
protection walls to both sides. We only consider the re-
maining 83 sub-tracks in our test statistics.

To keep the number of triangles T ′ in the reference database
small, we did not include large triangles. More precisely,
we included each triangle in (P ′)3 whose smallest enclos-
ing disc has a radius not exceeding a user-defined threshold
rMax ∈ R

+. The idea behind this approach is that, assuming
an immobile sensor with viewing distance rMax, all triangles
constructed for the observed point set P will have this prop-
erty. In this case we will not miss any matching reference
triangle with our approach. In our experiment, however, the
sensor was moving. Therefore, we set rMax higher than the
viewing distance, that is, we set rMax = 50 m. We cannot
guarantee that there is a matching reference triangle for each
triangle in T . However, it is still reasonable to exclude large
triangles, since these do not contribute much information:
Long distances are very inaccurate when assuming our er-
ror model. With our approach the set T ′ contained 643247
triangles.

Finally, we need to specify the parameter ε that defines
whether two triangles are sufficiently similar. We tested four
settings, namely, ε := 0.25 m, ε := 0.50 m, ε := 0.75 m, and
ε := 1.00 m. We present results of these tests in the next
section.

3.2 Test results
Table 1 summarizes our experimental results for the tests

defined in the last section. The smallest instance that we
processed contained three landmarks, that is, the set T con-
tained only one triangle. The largest of our instance con-
tained 127 landmarks – this situation occurred when the
track followed an alley with many trees at both sides. Due
to regular distances between the trees, we obtained many
matching candidates for the triangles in T . Therefore, this
instance was not only the instance with most landmarks but
also the instance with the largest number of nodes in Gmatch.
The time for processing this instance was relatively high (see
second row of Table 1) but with all our settings for ε the
solution only contained correct matches. The third and sec-
ond row of Table 1 show average results for all 83 instances.
Obviously, the number of candidate matches per triangle
increases with a higher value of ε because more reference
triangles are considered sufficiently similar. If we allow two
triangles to be matched even if their edge lengths differ by
one meter, we obtain many (58.1 on average) matching can-



ε := 0.25 m ε := 0.50 m ε := 0.75 m ε := 1.00 m

solution time for the largest instance (127 landmarks) 0.28s 5.46s 33.74s 129.11s
average number of candidate matches (matches satisfying
constraint (C1)) per triangle of observed points

1.5 9.2 26.7 58.1

average solution time (including triangulation and matching) 0.04s 0.41s 2.75s 11.88s

total number of unmatched triangles of observed points 2772 1685 385 107
percentage of unmatched triangles of observed points 91.5% 55.6% 12.7% 3.5%
total number of correctly matched triangles of observed points 235 1335 2631 2906
percentage of correctly matched triangles of observed points 7.8% 44.1% 86.9% 96.0%
total number of incorrectly matched triangles of observed points 22 9 13 16
percentage of incorrectly matched triangles of observed points 0.7% 0.3% 0.4% 0.5%

number of instances with any incorrect match 20 6 6 6
number of instances where majority of matches is correct 64 80 81 80

Table 1: Experimental results for our 83 sub-tracks. Computation times are in seconds CPU time. All
experiments were performed on a Windows PC with 64 bits, 8 GB RAM, and a 2.93 GHz Intel CPU.

didates. The average time for solving the problem instances
increases with higher values for ε but even with ε := 1.00 m
it is far below 40 s, that is, the duration of the drive along
the track. If we can develop an algorithm that starts when
the first three landmarks were observed and dynamically up-
dates the matching result when a new landmark is observed,
we can hope for a practicable solution. We discuss this idea
of a dynamic version of our algorithm in the next section.

The fifth to ninth row of Table 1 allow us to assess the
reliability of our matching method. In our experiments
with ε := 0.25 m and ε := 0.5 m most of the triangles
in T were unmatched because most of the triangles were
deformed more than the specified tolerance. Nevertheless,
in both cases we obtain only a few incorrect matches and
the number of correct matches is much higher. In partic-
ular, for ε := 0.5 m we observed incorrect matches only
for six instances. For the other 77 instances all matches
found were correct – this should suffice to localize the ve-
hicle. If we count the instances for which the majority of
triangle matches is correct than we obtain an even higher
number (80). Presumably we can find the right location
for all these instances. If we assess the experiments for
ε := 0.75 m and ε := 1.00 m than we obtain much more
correct triangle matches. The number of instances with in-
correct matches, however, does not decrease. Certainly, the
higher number of triangle matches will improve the accuracy
of the estimated coordinates of the vehicle. The localization
can be performed, however, also when a few correct triangle
matches are found.

Finally, we discuss Fig. 9, which shows the running time
for all our experiments with ε := 0.75. Only for four in-
stances the solution required more than 10 seconds. Cer-
tainly we can keep the running time small by restricting
the size of P , for example, by only considering the last k
landmarks observed, with k being a user-defined threshold.

Obviously, if the reference dataset is much larger than in
our experiment (for example, it covers a hole country) then
we need to think about how to keep the set of matching can-
didates for triangles small. If the position is approximately
known, however, we could restrict the number of candidate
matches for the triangles in T to those reference triangles
in T ′ that are in a certain neighborhood of the estimated
position, for example, by partitioning the reference dataset
into tiles.

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140
landmarks

time (s)

Figure 9: Running time of our matching algorithm
with ε := 0.75 m. In each experiment the method
was applied with another set P of observed points.

4. CONCLUSION AND OUTLOOK
We have presented a new deterministic and efficient method

for point pattern matching that is designed to enable the
self-positioning of vehicles. The method matches a set of
triangles with a a set of reference triangles by considering
the geometric similarity of triangles and the topological re-
lations between them. A special triangulation algorithm is
applied to enforce that the triangles connecting the observed
points form a path – this property allows us to efficiently
solve the matching problem. We argued that our path-like
triangulation appropriately defines a neighborhood relation
of points if the observed point set has a configuration that
is typical for the positioning task: The observed points ap-
pear to the sides of a vehicle’s track, thus the point patters
has a large extent in direction of driving and a small lateral
extent.

We tested our method for samples of up to 127 points and
a reference dataset of 2658 points. Our tests allow us to
conclude that the method is fast enough for application in
practice and robust against random errors that are typical
when recording the track by dead reckoning.



Future research will address the following research ques-
tions:

1. How robust is the method against incompleteness of
the reference database? We will conduct further tests
to answer this question.

2. How can we extend the method to allow for efficient
and accurate updating of a previously found position?
Again assuming that the point pattern has the char-
acteristic large extent in one direction, we could add
triangles at the front of the current triangulation whilst
the vehicle is driving. When calculating a new posi-
tion, only the candidate matches for the added trian-
gles need to be found. Furthermore, our dynamic pro-
gramming approach for solving the matching problem
by finding the path of maximum weight in a graph is
useful for this task: matching solutions found for the
sequence of triangles 1 to m − 2 can be reused when
searching the solution for the triangles 1 to m− 1.

3. In addition to the landmark points currently handled
by our method, how can we enable the positioning
based on planes, which are well detectable in the laser
scanner point cloud?
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