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Abstract 

This paper presents an algorithmic approach to the problem of finding 
symmetries in building footprints. The problem is motivated by map gen-
eralization tasks, for example, symmetry-preserving building simplifica-
tion and symmetry-aware grouping and aggregation. Moreover, symme-
tries in building footprints may be used for landmark selection and 
building classification.  

The presented method builds up on existing methods for symmetry de-
tection in polygons that use algorithms for string matching. It detects both 
axial symmetries and repetitions of geometric structures. In addition to the 
existing string-matching approaches to symmetry detection, we consider 
the problem of finding partial symmetries in polygons while allowing for 
small geometric errors. Moreover, we discuss how to find optimally ad-
justed mirror axes and to assess the quality of a detected mirror axis using 
a least-squares approach. 

The presented approach was tested on a large building data set of the 
metropolitan Boston area. The dominant symmetry relations were found. 
Future work is needed to aggregate the obtained symmetry relations, for 
example, by finding sets of mirror axes that are almost collinear. Another 
open problem is the integration of information on symmetry relations into 
algorithms for map generalization. 
 



1 Introduction 

Many buildings contain symmetric structures. No matter whether a sym-
metric building design was chosen for aesthetics, functionality, or simply 
for minimizing construction costs, humans perceive symmetry as an im-
portant building characteristic. Since many geographic analysis tasks re-
quire methods for shape characterization, an automatic symmetry detector 
is needed. This paper presents a new algorithm for the detection of symme-
tries in polygons. This algorithm is tailored to deal with building footprints 
that we typically find in cadastral or topographic databases. It was tested 
for a building data set of the metropolitan Boston area.  

A building footprint consists of multiple polygonal rings (that is, one ex-
terior ring and multiple interior rings). The presented method finds (par-
tial) symmetries in one ring or between two rings, no matter whether the 
rings are interior or exterior. In the following we refer to each ring as a 
polygon. 

The work presented in this paper contributes to the general aim of en-
riching spatial data with information on geometric structures and patterns. 
Such information is valuable for multiple applications. Our main motiva-
tion is map generalization, which aims to decrease a map’s level of detail 
while preserving its characteristic structures. With respect to buildings, we 
particularly aim at symmetry-preserving simplification and symmetry-
aware aggregation. Both problems have not been approached yet. 

For building simplification we recently presented an algorithm based on 
discrete optimization (Haunert and Wolff, 2010). This algorithm allows us 
to integrate multiple quality criteria such as the preservation of a building’s 
area and its dominating edge directions. Symmetry preservation, however, 
is currently not considered as a quality criterion in our method (and not in 
other methods), thus we may lose symmetric structures by simplification, 
see Fig. 1. In order to overcome this drawback, we need to detect symme-
tries in the input building. Then, we can define a cost function that penal-
izes those simplifications that destroy symmetries. 

 

 
Fig. 1. Two buildings (left) and their simplifications (right) obtained with 
the building simplification method by Haunert and Wolff (2010) and the 
error tolerance ߝ ൌ 8 m. The symmetry relations are lost.  

=  8 m



Building aggregation means to find groups of buildings. Each group 
may be replaced by a single map object, for example, a building block. In 
map generalization, the grouping of objects is usually done according to 
Gestalt criteria, for example, alignment, similarity, and proximity, which 
model criteria of human perceptional grouping (Wertheimer, 1938). Obvi-
ously, symmetry is an important criterion for grouping. In Fig. 2 we clearly 
perceive that five buildings form an ensemble – this is because of their 
symmetric arrangement. Therefore, replacing the ensemble by a single 
shape can be a favorable generalization action. 
 

 
Fig. 2. An ensemble of five build-
ings (dark grey) that a human can 
identify based on symmetry. 

 
Fig. 3. Because of symmetry rela-
tions, the dark grey building can be 
used as a landmark. 

 
Map generalization is not the only application of symmetry detection. 

For example, buildings whose major symmetry axes are collinear with im-
portant lines of sights can serve as landmarks for navigation (see Fig. 3). 
Moreover, such buildings often have representative functions like town 
halls or castles. The dark grey building in Fig. 3, for example, is the main 
building of Harvard Medical School. Therefore, symmetry can be used as a 
cue for both automatic landmark selection (that is, deciding which build-
ing serves best as a landmark in a routing instruction) and building classi-
fication, which are topical problems in geographic information science. 
For a recent approach to compare different landmark selection methods we 
refer to Peters et al. (2010). Steiniger et al. (2008) and Werder et al. (2010) 
have proposed shape measures to classify building footprints and, more 
generally, polygons according to their functionality. 

The paper is structured as follows. We first discuss related work on data 
enrichment in map generalization and on algorithms for symmetry detec-
tion (Section 2). Section 3 introduces a new algorithm for symmetry detec-



tion. In Section 4 we discuss experimental results with this algorithm. Sec-
tion 5 concludes the paper. 

2 Related Work 

The gathering of knowledge on patterns and structures in geographic data, 
data enrichment, is often considered as a prerequisite for automatic map 
generalization (Mackaness and Edwards, 2002; Neun et al., 2008; Steinig-
er, 2007). Thomson and Brooks (2002) show how to find long sequences 
of (almost) collinear road segments in road datasets. Such sequences, so-
called strokes, correspond to major road axes that need to be preserved 
during generalization. Heinzle and Anders (2007) present algorithms to 
find star-like structures, rings and regular grids in road networks in order 
to improve the generalization of networks. Christophe and Ruas (2002) as 
well as Ruas and Holzapfel (2003) present methods to find alignments of 
buildings. Gaffuri and Trévisan (2004) show how to deal with such pat-
terns in a multi-agent system for map generalization. Methods for the 
grouping of buildings are proposed by Regnauld (2003) and Yan et al. 
(2008). These methods, however, do not consider symmetry as a criterion 
for grouping. 

In contrast, symmetry detection has found much attention in the litera-
ture on image analysis and pattern recognition. Symmetry detection in im-
ages is often done based on local image features that are highly distinctive 
and invariant against certain transformations, for example, rotation and 
scale. Loy and Eklundh (2006) as well as Cho and Lee (2009), for exam-
ple, use so-called SIFT (scale-invariant feature transform) descriptors. A 
comparative study on symmetry detection in images is given by Park et 
al. (2008). Mitra et al. (2006) present a method for finding symmetries in 
three-dimensional models. Similar to the symmetry detectors for images, 
their method relies on characteristic points. In this case, however, these 
points are defined based on the curvature of the model’s surface. Point 
pairs that correspond by shape symmetry are found using RANdom SAm-
ple Consensus (RANSAC). 

In contrast to symmetry detection in images, symmetry detection in two-
dimensional polygons is often done by string matching. The basic string 
matching approach of Wolter et al. (1985) is to encode the polygon ܲ as a 
string ܺ, for example, as a sequence of angles and edge lengths, see Fig. 4. 
In order to find an axial symmetry relation, we need to test whether the 
string ܺିଵ (meaning the reversal of ܺ) is a substring of the string ܺܺ 
(meaning the concatenation of ܺ with itself). This test can be done in Θሺ݊ሻ 



time where ݊ is the number elements in ܺܺ by using the algorithm of 
Knuth et al. (1977). In the example in Fig. 4, the string ܺିଵ is indeed a 
substring of  ܺܺ. Its location within ܺܺ yields the axial symmetry relation. 
Similarly, we can find a rotational symmetry relation by finding ܺ itself 
within ܺܺ. We need to avoid trivial solutions, however, that match ܺ to 
the first or second half of ܺܺ. This can be done by removing the first and 
the last element from	ܺܺ before matching. Based on a similar approach by 
string matching, the algorithm of Atallah (1985) finds all axes of sym-
metry of a polygon with ݊ vertices in Θሺ݊ log ݊ሻ time. In order to cope 
with geometric distortions, Lladós et al. (1997) use an approach based on a 
string edit distance. 

Yang et al. (2008) present an approach to symmetry detection based on 
critical contour points. The critical points are the vertices of a simplified 
version of the original contour. However, since symmetry-preserving algo-
rithms for line and building simplification do not exist, we need to be care-
ful with this approach. In the preprocessing, we use a building simplifica-
tion algorithm with a conservative setting in order to remove marginal but 
potentially disturbing details. 

The general string-matching approach seems to be applicable for sym-
metry detection in building footprints. Not considered in the string-
matching approaches discussed, however, is the problem of finding partial 
symmetry relations (only parts of the shape are symmetric). The next sec-
tion presents a solution to this problem. Furthermore, we address the prob-
lem of generating optimal mirror axes by least-squares adjustment. 

 

 
Fig. 4. Principle of the algorithm for symmetry detection by Wolter et al. (1985). 
By finding string ܺିଵ in string ܺܺ, it becomes clear that the polygon has an axial 
symmetry relation. According to that relation, for example, edge ݏଷ,ଵ is a mirror 
image of edge ݏଶ,ଷ. 
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3  Methodology for Symmetry Detection 

Generally, the symmetry relations we aim to detect are geometric trans-
formations of which each maps a continuous part ݌ଵ of a building outline 
onto (or sufficiently close to) a continuous part ݌ଶ of a second building 
outline. Both parts may either belong to different polygons or to the same 
polygon. Moreover, both ݌ଵ and ݌ଶ may be the same. For instance, let ݌ଵ 
and ݌ଶ be equal to the entire polygon in Fig. 4. Indeed, there is a non-
trivial transformation that maps ݌ଵ onto itself: the reflection at the vertical 
line through ݒଷ. Reflections, however, are but one type of transformation 
we can detect with the presented method. More generally, we allow the 
following two types of transformations: 

 ଵ݌ ଶ is obtained by (successively) translating and rotating݌ [1]

 .ଵ݌ ଶ is obtained by (successively) reflecting, translating, and rotating݌ [2]

Accordingly, we term the pair ሺ݌ଵ,  ଶሻ a type-1 match or a type-2 match. In݌
particular, we are interested in axial symmetries, that is, type-2 matches 
that correspond by a reflection on a straight line.  

We first formalize the problems of finding type-1 and type-2 matches as 
a string matching problem (Section 3.1) and then discuss a solution by dy-
namic programming (Section 3.2). Finally, we discuss an approach based 
on least-squares adjustment that allows us to find axial symmetries in the 
detected set of type-2 matches (Section 3.3).  

3.1 Symmetry Relations in the String Representation 

By encoding a polygon ܲ as a string ܺሺܲሻ of edge lengths and angles, we 
obtain a shape representation that is invariant against rotations and transla-
tions. This allows us to define each type-1 match based on a pair of similar 
strings, one of them being a substring of ܺሺ ଵܲሻܺሺ ଵܲሻ and the other one a 
substring of ܺሺ ଶܲሻܺሺ ଶܲሻ, where ଵܲ and ଶܲ are two potentially distinct pol-
ygons. Similarly, we define each type-2 match based on a pair of similar 
strings, one of them being a substring of ܺሺ ଵܲሻܺሺ ଵܲሻ and the other one a 
substring of ܺିଵሺ ଶܲሻܺିଵሺ ଶܲሻ. Two strings ݔଵ and ݔଶ are called similar if 
the following four criteria hold: 

[1] The number ݇ of symbols is the same in both strings. 

[2] Both strings start with the same type of symbol, that is, either with a 
symbol representing an edge length or an angle. 



[3] For ݅ ൌ 1,2, … , ݇, if the ݅-th symbol in ݔଵ	 and the ݅-th symbol in ݔଶ 
represent angles, both angles differ at most by Δߙ୫ୟ୶. 

[4] For ݅ ൌ 1,2, … , ݇, if the ݅-th symbol ݔଵ	ሺ݅ሻ in ݔଵ	 and the ݅-th symbol ݔଶ	ሺ݅ሻ in ݔଶ		 represent edge lengths, the ratio maxሼݔଵሺ݅ሻ, ଶሺ݅ሻሽݔ minሼݔଵሺ݅ሻ, ⁄ଶሺ݅ሻሽݔ  does not exceed 1 ൅ Δ݈୫ୟ୶. 

The parameters Δߙ୫ୟ୶ ∈ Թ଴ା and Δ݈୫ୟ୶ ∈ Թ଴ା allow users to specify the 
geometric error tolerance. Furthermore, we define the number ݇ of sym-
bols as the cardinality of a match. We are not interested in matches of sin-
gle line segments, which have cardinality one. In order to exclude such in-
significant matches, a user needs to define a third parameter ݇୫୧୬ ∈ Գ. 
The cardinality of a match must not be smaller than ݇୫୧୬. 

Next, we exclude matches that are dominated by other matches: A 
match of two strings ݔଵ and ݔଶ is dominated by a match of two strings ݕଵ 
and ݕଶ if 

 ݔଵ is a substring of ݕଵ and ݔଶ is a substring of ݕଶ and 

 ݔଵ	 has the same position in ݕଵ as ݔଶ in ݕଶ, that is, the number of sym-
bols in ݕଵ preceding ݔଵ equals the number symbols in ݕଶ preceding ݔଶ. 

Additionally, we need to take care that we do not select a substring of a 
string ܺܺ that is longer than the original string ܺ representing the polygon 
and we should avoid reporting a match of two polygon parts twice. 

Finally, if we have found a match of two strings that satisfies the above-
mentioned criteria, we need to decode the two strings into two shapes, for 
example, to visualize the matching result. The shapes ݌ଵ and ݌ଶ	for the two 
strings ݔଵ and ݔଶ of a match are computed as follows. 

For each edge symbol in a string, we add the corresponding polygon 
edge to the shape for the string. If the string begins (or ends) with a symbol 
for an angle, we add both polygon edges that form this angle. With this 
approach, however, the first (or last) edge of ݌ଵ and the first (or last) edge 
of ݌ଶ get very different lengths. Therefore, we shorten the longer edge of 
both unmatched edges such that they get the same lengths. 

3.2 String Matching by Dynamic Programming 

In this section we discuss a solution to the problem of finding all type-2 
matches satisfying the criteria from Sect. 3.1. The type-1 matches can be 
found in a straightforward way. We first discuss the special case that Δߙ୫ୟ୶ ൌ Δ݈୫ୟ୶ ൌ 0. In this case, a type-2 match of maximum cardinality 



can be found by solving the longest (or maximum) common substring 
problem for the strings ܺሺ ଵܲሻܺሺ ଵܲሻ and ܺିଵሺ ଶܲሻܺିଵሺ ଶܲሻ. 

The longest common substring problem can be solved in linear time us-
ing a generalized suffix tree (Gusfield, 1997). We are interested, however, 
in finding multiple symmetry relations. Therefore, we search for all maxi-
mal common substrings of ܺሺ ଵܲሻܺሺ ଵܲሻ and ܺିଵሺ ଶܲሻܺିଵሺ ଶܲሻ. Note that 
there is a difference between a maximum and a maximal common sub-
string of two strings	ݔଵ and 	ݔଶ: a common substring ݔ of ݔଵ and ݔଶ is 
maximum if no other common substring of ݔଵ and ݔଶ is longer than ݔ; for ݔ being a maximal common substring, however, it suffices that there is no 
other common substring of ݔଵ and ݔଶ that contains ݔ, that is, a match de-
fined by a maximal common substring is not dominated by any other 
match. 

The problem of finding all maximal common substrings of two 
strings	ݔଵ with ݉ symbols and 	ݔଶ with ݊ symbols can be solved in Θሺ݉݊ሻ 
time by dynamic programming. To specify this approach, we define the ݉ ൈ ݊ matrix ܦ of integers. We denote the number in row ݅ and column ݆ 
of ܦ by ݀௜,௝. Additionally, we define ݀଴,௝ ൌ ݀௠ାଵ,௝ ൌ 0 for ݆ ൌ0,1, … , ݊ ൅ 1 and ݀௜,଴ ൌ ݀௜,௡ାଵ ൌ 0 for ݅ ൌ 0,1, … ,݉ ൅ 1. For ݅ ൌ1,2, … ,݉ and ݆ ൌ 1,2, … , ݊ we define 

  ݀௜,௝ ൌ ൜1 ൅ ݀௜ିଵ,௝ିଵ if	ݔଵሺ݅ሻ ൌ ଶሺ݆ሻ0ݔ else ,  (1) 

 

where ݔଵሺ݅ሻ denotes the ݅-th symbol in ݔଵ and ݔଶሺ݆ሻ the ݆-th symbol in ݔଶ. 
The values of ܦ can be computed in increasing order of the indices for 
rows and columns. 

Once we have computed the matrix ܦ, we can easily find the maximal 
common substrings. For each pair ݅ ∈ ሼ1,2, … ,݉ሽ, ݆ ∈ ሼ1,2, … , ݊ሽ with ݀௜,௝ ൐ 0 and ݀௜ାଵ,௝ାଵ ൌ 0, the substring of 	ݔଵ starting at index position ൫݅ െ ݀௜,௝ ൅ 1൯	and ending at index position ݅ corresponds to one maximal 
common substring of ݔଵ and ݔଶ. In ݔଶ, this substring starts at index posi-
tion ൫݆ െ ݀௜,௝ ൅ 1൯ and ends at index position ݆. 

In order to deal with geometric differences between the two building 
parts of a match and to avoid the selection of substrings that are longer 
than the original encoding of the building polygon, we define the values ݀௜,௝ in a slightly different way: 

 



݀௜,௝ ൌ ቐ1 ൅ ݀௜ିଵ,௝ିଵ if	ݔଵሺ݅ሻ ൎ ݀௜ିଵ,௝ିଵ		and			ଶሺ݆ሻݔ ൏ min൛݉ 2ൗ , ݊ 2ൗ ൟ,1 if	ݔଵሺ݅ሻ ൎ ݀௜ିଵ,௝ିଵ		and			ଶሺ݆ሻݔ ൌ min൛݉ 2ൗ , ݊ 2ൗ ൟ0 else , 
(2) 

 
We define the relation ൎ according to the similarity criteria 3 and 4 that 

we introduced in Sect. 3.1. The additional condition ݀௜ିଵ,௝ିଵ ൏min൛݉ 2ൗ , ݊ 2ൗ ൟ in the first line of equation (2) avoids that we generate 
strings that are too long, that is, if ݀௜ିଵ,௝ିଵis equal to the length of the 
string for one of the involved polygons, we do not further extend the corre-
sponding match but start with the construction of a new match. This is 
done in the second line of equation (2) by setting ݀௜,௝ to one. 

In order to avoid reporting the same match twice, we need to introduce a 
small modification to the procedure for finding the maximal common sub-
strings in ܦ: instead of considering each pair of indices ݅ ∈ ሼ1,2, … ,݉ሽ, ݆ ∈ ሼ1,2, … , ݊ሽ for defining the two ends of the corresponding substrings, 
we only consider each pair of indices ݅ ∈ ൛݉ 2ൗ െ 1,݉ 2ൗ ,… ,݉ െ 1ൟ, ݆ ∈ ൛݊ 2ൗ െ 1, ݊ 2ൗ ,… , ݊ െ 1ൟ. 

Note that, when implementing the presented method, we should avoid 
comparing edges with angles. Therefore, we can use two matrices ܦ஑ and ୣܦ, each of dimension ݉ 2ൗ ൈ ݊ 2ൗ , instead of one matrix ܦ of dimension ݉ ൈ ݊. We use ܦ஑ for the comparisons of angles and ୣܦ for the compari-
sons of edge lengths. 

3.3 Least-Squares Adjustment 

As a result of the algorithm in Sect. 3.2 we obtain a set of matches, each 
represented as a pair of strings. We can use the decoding presented in 
Sect. 3.1 to find the corresponding pair of shapes. The two shapes ݌ଵ and ݌ଶ of a match are polylines, both having the same number ߢ of vertices. 
For ݅ ൌ 1,2, … ,  ଵ corresponds with the ݅-th vertex݌ the ݅-th vertex of ,ߢ
of ݌ଶ.  

If ݌ଵ and ݌ଶ correspond by axial symmetry, we can compute the mirror 
axis by choosing any pair of corresponding vertices ݒଵ and ݒଶ and compu-
ting a straight line that is perpendicular to the vector ݒଵݒଶሬሬሬሬሬሬሬሬሬԦ and passes 
through the midpoint between ݒଵ and ݒଶ. If we do this for each type-2 
match, we obtain candidates for mirror axes. These axes, however, are not 
very accurate, because we used a single pair of vertices for their construc-
tion. In order to obtain more accurate mirror axes, we apply a least-squares 



adjustment that uses the information given with all pairs of corresponding 
vertices. The main benefit of this approach is that, in addition to the ad-
justed mirror axis, it offers a standard deviation that allows us to conclude 
whether the match indeed corresponds to an axial symmetry, or whether 
another type of transformation is involved, for example, a transformation 
or rotation. 

For the adjustment we use a Gauss-Helmert model, which has the gen-
eral form 

  Ψ൫ ෨ܺ, ෨൯ܮ ൌ 0,   (3) 
 
where ෨ܺ is the vector of unknowns without errors and ܮ෨ the vector of ob-
servations without errors (Niemeier, 2002). The aim of the adjustment pro-
cess is to add a vector ݒ of corrections to the vector of erroneous observa-
tions ܮ	and to estimate the vector of unknowns such that the system of 
equations (3) holds and the square sum ݒ ⋅ -of the corrections is mini ݒ
mized. 

In our case, there are two unknowns, ݉ and ܾ, which define the mirror 
axis in the form ݕ	 ൌ ݔ݉	 ൅ ܾ. The vector of observations contains the co-
ordinates of the vertices, which means that it has 4ߢ elements.  

For each pair of corresponding vertices ݒଵ (with coordinates ݔଵ and ݕଵ) 
and ݒଶ (with coordinates ݔଶ and ݕଶ), we introduce two constraints. 

The first constraint means that the midpoint between ݒଵ and ݒଶ lies on 
the mirror axis: 

 ሺݕଵ ൅ ଶሻݕ 2⁄ 	ൌ 	݉ ሺݔଵ ൅ ଶሻݔ 2⁄ ൅ ܾ              (4) 
 
The second constraint means that the vector ݒଵݒଶሬሬሬሬሬሬሬሬሬԦ is perpendicular to the 

mirror axis: 
 ሺݔଶ െ ଵሻݔ ൅ ሺݕଶ െ ଵሻ݉ݕ ൌ 0              (5) 

 
In order to estimate the corrections and unknowns we linearize equa-

tions (4) and (5) and apply the common iterative adjustment procedure 
(Niemeier, 2002). In each iteration, we update the unknowns ݉ and ܾ. The 
initial mirror axis is defined based on the two corresponding vertices with 
the maximum distance. In addition to the estimates for ݉ and ܾ we obtain 
a standard deviation ݏ based on the corrections ݒ. A mirror axis is selected 
if ݏ does not exceed a user-specified value ݏ୫ୟ୶ ∈ Թ଴ା. 



4 Experimental Results 

The presented algorithms were implemented in C++ and tested for a data 
set of 5134 building footprints of the metropolitan Boston area. The data 
set is freely available as part of the Massachusetts Geographic Information 
System, MassGIS1. According to the data specifications, the building foot-
prints were manually extracted from LiDAR data. 

In order to remove marginal details that would hinder the matching pro-
cess, the building footprints were automatically generalized with an error 
tolerance ߝ of 1 m. A neighborhood for the polygons was defined based on 
a triangulation of the free space not covered by polygons. This triangula-
tion was obtained by using the CGAL2 library for computational geometry. 
Each two polygons that were connected with a triangle edge are defined as 
neighbors. 

For each single building and for each pair of neighboring buildings, the 
type-1 and type-2 matches were searched. Furthermore, for each type-2 
match, five iterations of the least-squares adjustment were applied. To-
gether, these computations took 8 seconds on a Windows PC with 3 GB 
RAM and a 3.00 GHz Intel dual-core CPU. 

Table 1. Parameters used for the presented experiments 

parameter name symbol value 
tolerance for building simplification 1 ߝ m 
tolerance for differences of angles Δߙ୫ୟ୶ 0.15 rad (ൎ 8.6°) 
tolerance for differences of edge lengths Δ݈୫ୟ୶ 30% 
minimum cardinality for matches ݇୫୧୬ 8 
maximum standard dev. for mirror axes ݏ୫ୟ୶ 1 m 

 
Table 1 summarizes the parameters applied, which were found by ex-

periments. Note, however, that setting ݇୫୧୬ ൌ 8 implies that two sym-
metry axes are found for a rectangle. Setting ݇୫୧୬ to a higher value implies 
that no symmetry axes are found for a rectangle. Therefore, ݇୫୧୬ ൌ 8 is, in 
a way, a natural choice. The sequence of 90° and 270° turns of building 
outlines is often very characteristic, thus the tolerance for edge lengths is 
set to a relatively large value (30%) and to the relatively small value of 
8.6° for angles (which can be interpreted as roughly 10% of a right angle). 

According to the defined criteria, 11528 type-1 matches and 14100 
type-2 matches were found. This means that, for each building, 2.2 type-1 

                                                      
1 http://www.mass.gov/mgis/lidarbuildingfp2d.htm (accessed 21-10-10) 
2 http://www.cgal.org/ (accessed 21-10-10) 



matches and 2.7 type-2 matches were found on average. It is interesting 
that the type-2 matches are more frequent than the type-1 matches, as it 
shows that a reflection is indeed a preferred concept in building design 
(compared to pure repetition). Using the approach based on least-squares 
adjustment, 10477 mirror axes were found, that is, on average, 2.0 for each 
building. This also implies that 74% of the type-2 matches indeed repre-
sent (pure) axial reflections. We now discuss some selected samples from 
the data set.  

Figure 5 (left) illustrates all type-2 matches found for a set of five 
apartment buildings. For each match, the corresponding building parts are 
shown as bold lines. Note that the same part may be involved in multiple 
matches. Additionally, the figure shows the hypotheses for mirror axes 
(thin lines). Obviously, many hypotheses are wrong, that is, a translation 
and/or a rotation need to be performed in addition to the axial reflection in 
order to match the two shapes. Figure 5 (right), however, shows that cor-
rect mirror axes are found by filtering the matches based on the standard 
deviation that we obtained by least-squares adjustment. Additionally, the 
least-squares adjustment yields accurate axes. The adjustment process is 
visualized in Fig. 6 for two buildings. In these examples, the initial axes 
are very inaccurate, but after five iterations we obtain results that are good 
enough, for example, for visualization. 

 

 
Fig. 5. Hypotheses for mirror axes (left) and selected mirror axes after adjustment 
(right). The selection of the axes is based on the variance of coordinates that is es-
timated based on residuals at the polygon vertices. Bold parts of the polygon out-
lines correspond by symmetry according to the mirror axes shown. 



 
Fig. 6. Illustration of the adjustment process for two buildings with symmetry re-
lations. The figures show the building parts that correspond by symmetry (bold 
parts of the polygon outlines), the initial mirror axes (light grey lines) the mirror 
axes after one iteration of the adjustment process (dark grey lines) and after five 
iterations (black lines). The dashed lines show which pairs of polygon vertices 
were used to compute the initial axes. 

Figures 7, 8, and 9 show the mirror axes that were detected for the sam-
ples in Figures 1, 2, and 3, respectively. Generally, the results are satisfac-
tory, that is, the most obvious symmetry relations were found. There are, 
however, a few open problems that we discuss for the result in Fig. 9. 

In some cases we would probably like to report a symmetry relation 
though each continuous part of the building outline in the relation is small. 
For example, the mirror axis in Fig. 9 labeled with (1) is noticeable but not 
detected by the algorithm. In this example, there are two continuous build-
ing parts that contribute to the symmetry relation, the front façade and the 
back façade of a building. Since each of the two parts is small (that is, the 
corresponding string contains less than 8 symbols), the mirror axis is not 
detected. Together, however, both parts would have the required size. The 
aggregation of small matches is a problem that still needs to be solved. 

Furthermore, the approach based on string matching relies on pair-wise 
correspondences of polygon vertices or edges. This is problematic, since 
two shapes can be similar without having such correspondences. We tried 
to ease this restriction by applying an algorithm for building simplification 
that removes potentially disturbing details. The problem, however, still oc-
curs in some cases, especially, if the buildings have curved outlines. The 
mirror axis in Fig. 9 labeled with (2) corresponds to a symmetry relation of 
two buildings with circular arcs. The arcs of both buildings were digitized 
in two very different ways, thus no vertex or edge correspondences were 
found. This problem could be solved by detecting arcs in the building out-
line. For buildings that have a rectilinear shape, however, the algorithm 
yields good results. 



 
Fig. 7. Detected mirror axes (thin lines) and corresponding building parts (bold 
lines) for the sample in Fig. 1. 

 
Fig. 8. Detected mirror axes (thin lines) and corresponding building parts (bold 
lines) for the sample in Fig. 2. 

 
Fig. 9. Detected mirror axes (thin continuous lines) and corresponding building 
parts (bold lines) for the sample in Fig. 3. The dashed lines labeled with (1) and 
(2) display axes that were not detected. 
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Fig. 10. Detected repetitions (type-1 matches) in building polygons. The bold pol-
ygon parts were matched with some other part. The bold arcs link polygons whose 
parts were matched. The grey lines show edges of the triangulation that was com-
puted to define the neighborhood relation for the buildings. The numbers are re-
ferred to in the text. 

Finally, we discuss the type-1 matches (that is, repetitions of building 
parts) yielded by the string-matching method. If we aim to group the build-
ings according to their similarity, we may be interested in the graph ܩሺܸ,  contains an edge for each ܧ ሻ where ܸ is the set of buildings andܧ
pair of buildings for which at least one type-1 match was found. This 
graph is illustrated in Fig. 10 (bold arcs). We observe that the connected 
components of ܩ define a grouping where each group indeed contains 
buildings of a similar design. For example, the group of four buildings la-
beled with (1) contains buildings of two different designs that are similar. 
We find buildings of the same design in different parts of the data set, for 
example, the buildings labeled with (2). These buildings are not matched 
because they do not have a similar neighbor. This reflects the proximity 
criterion in perceptional grouping. Occasionally, we fail to find repetitions 
(3) or we find matches between buildings that are relatively dissimilar (4). 
Therefore, additional research on similarity-based grouping is needed. For 
example, we need to decide how to consider both axial symmetries and 
repetitions for grouping. 
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5 Conclusion and Outlook 

We have discussed the problem of finding symmetry relations and mirror 
axes in geospatial datasets of buildings. This problem is important for the 
solution of map generalization problems, landmark detection, and building 
classification. The presented algorithm for symmetry detection uses a very 
efficient string-matching approach based on dynamic programming. Mir-
ror axes are found using an approach based on least-squares adjustment. 
The algorithm copes both with geometric errors and partial symmetries. 

The results that we discussed in this paper show that the proposed meth-
od allows us to process large datasets fast (that is, several thousands of 
buildings in a few seconds) and to find most of the dominant symmetry re-
lations. On average, for each building two mirror axes were found. In addi-
tion to the symmetry axes, the algorithm yields matches of similar building 
parts. 

Future work is needed to aggregate symmetry relations. This is im-
portant, since symmetry relations involving multiple disconnected building 
parts are currently not considered in the algorithm proposed. 

Furthermore, it is planned to integrate the derived information into 
methods for map generalization. We can expect that using the information 
derived with the presented algorithm will clearly improve the results of 
map generalization, in particular, building simplification and aggregation. 
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