
Detecting Symmetries in Building Footprints by
String Matching

Jan-Henrik Haunert

Chair of Computer Science I, University of Würzburg,
Am Hubland, 97074 Würzburg, Germany
jan.haunert@uni-wuerzburg.de

Abstract

This paper presents an algorithmic approach to the problem of finding
symmetries in building footprints. The problem is motivated by map gen-
eralization tasks, for example, symmetry-preserving building simplifica-
tion and symmetry-aware grouping and aggregation. Moreover, symme-
tries in building footprints may be used for landmark selection and
building classification.

The presented method builds up on existing methods for symmetry de-
tection in polygons that use algorithms for string matching. It detects both
axial symmetries and repetitions of geometric structures. In addition to the
existing string-matching approaches to symmetry detection, we consider
the problem of finding partial symmetries in polygons while allowing for
small geometric errors. Moreover, we discuss how to find optimally ad-
justed mirror axes and to assess the quality of a detected mirror axis using
a least-squares approach.

The presented approach was tested on a large building data set of the
metropolitan Boston area. The dominant symmetry relations were found.
Future work is needed to aggregate the obtained symmetry relations, for
example, by finding sets of mirror axes that are almost collinear. Another
open problem is the integration of information on symmetry relations into
algorithms for map generalization.

1 Introduction

Many buildings contain symmetric structures. No matter whether a sym-
metric building design was chosen for aesthetics, functionality, or simply
for minimizing construction costs, humans perceive symmetry as an im-
portant building characteristic. Since many geographic analysis tasks re-
quire methods for shape characterization, an automatic symmetry detector
is needed. This paper presents a new algorithm for the detection of symme-
tries in polygons. This algorithm is tailored to deal with building footprints
that we typically find in cadastral or topographic databases. It was tested
for a building data set of the metropolitan Boston area.

A building footprint consists of multiple polygonal rings (that is, one ex-
terior ring and multiple interior rings). The presented method finds (par-
tial) symmetries in one ring or between two rings, no matter whether the
rings are interior or exterior. In the following we refer to each ring as a
polygon.

The work presented in this paper contributes to the general aim of en-
riching spatial data with information on geometric structures and patterns.
Such information is valuable for multiple applications. Our main motiva-
tion is map generalization, which aims to decrease a map’s level of detail
while preserving its characteristic structures. With respect to buildings, we
particularly aim at symmetry-preserving simplification and symmetry-
aware aggregation. Both problems have not been approached yet.

For building simplification we recently presented an algorithm based on
discrete optimization (Haunert and Wolff, 2010). This algorithm allows us
to integrate multiple quality criteria such as the preservation of a building’s
area and its dominating edge directions. Symmetry preservation, however,
is currently not considered as a quality criterion in our method (and not in
other methods), thus we may lose symmetric structures by simplification,
see Fig. 1. In order to overcome this drawback, we need to detect symme-
tries in the input building. Then, we can define a cost function that penal-
izes those simplifications that destroy symmetries.

Fig. 1. Two buildings (left) and their simplifications (right) obtained with
the building simplification method by Haunert and Wolff (2010) and the
error tolerance 8 m. The symmetry relations are lost.

= 8 m

Building aggregation means to find groups of buildings. Each group
may be replaced by a single map object, for example, a building block. In
map generalization, the grouping of objects is usually done according to
Gestalt criteria, for example, alignment, similarity, and proximity, which
model criteria of human perceptional grouping (Wertheimer, 1938). Obvi-
ously, symmetry is an important criterion for grouping. In Fig. 2 we clearly
perceive that five buildings form an ensemble – this is because of their
symmetric arrangement. Therefore, replacing the ensemble by a single
shape can be a favorable generalization action.

Fig. 2. An ensemble of five build-
ings (dark grey) that a human can
identify based on symmetry.

Fig. 3. Because of symmetry rela-
tions, the dark grey building can be
used as a landmark.

Map generalization is not the only application of symmetry detection.

For example, buildings whose major symmetry axes are collinear with im-
portant lines of sights can serve as landmarks for navigation (see Fig. 3).
Moreover, such buildings often have representative functions like town
halls or castles. The dark grey building in Fig. 3, for example, is the main
building of Harvard Medical School. Therefore, symmetry can be used as a
cue for both automatic landmark selection (that is, deciding which build-
ing serves best as a landmark in a routing instruction) and building classi-
fication, which are topical problems in geographic information science.
For a recent approach to compare different landmark selection methods we
refer to Peters et al. (2010). Steiniger et al. (2008) and Werder et al. (2010)
have proposed shape measures to classify building footprints and, more
generally, polygons according to their functionality.

The paper is structured as follows. We first discuss related work on data
enrichment in map generalization and on algorithms for symmetry detec-
tion (Section 2). Section 3 introduces a new algorithm for symmetry detec-

tion. In Section 4 we discuss experimental results with this algorithm. Sec-
tion 5 concludes the paper.

2 Related Work

The gathering of knowledge on patterns and structures in geographic data,
data enrichment, is often considered as a prerequisite for automatic map
generalization (Mackaness and Edwards, 2002; Neun et al., 2008; Steinig-
er, 2007). Thomson and Brooks (2002) show how to find long sequences
of (almost) collinear road segments in road datasets. Such sequences, so-
called strokes, correspond to major road axes that need to be preserved
during generalization. Heinzle and Anders (2007) present algorithms to
find star-like structures, rings and regular grids in road networks in order
to improve the generalization of networks. Christophe and Ruas (2002) as
well as Ruas and Holzapfel (2003) present methods to find alignments of
buildings. Gaffuri and Trévisan (2004) show how to deal with such pat-
terns in a multi-agent system for map generalization. Methods for the
grouping of buildings are proposed by Regnauld (2003) and Yan et al.
(2008). These methods, however, do not consider symmetry as a criterion
for grouping.

In contrast, symmetry detection has found much attention in the litera-
ture on image analysis and pattern recognition. Symmetry detection in im-
ages is often done based on local image features that are highly distinctive
and invariant against certain transformations, for example, rotation and
scale. Loy and Eklundh (2006) as well as Cho and Lee (2009), for exam-
ple, use so-called SIFT (scale-invariant feature transform) descriptors. A
comparative study on symmetry detection in images is given by Park et
al. (2008). Mitra et al. (2006) present a method for finding symmetries in
three-dimensional models. Similar to the symmetry detectors for images,
their method relies on characteristic points. In this case, however, these
points are defined based on the curvature of the model’s surface. Point
pairs that correspond by shape symmetry are found using RANdom SAm-
ple Consensus (RANSAC).

In contrast to symmetry detection in images, symmetry detection in two-
dimensional polygons is often done by string matching. The basic string
matching approach of Wolter et al. (1985) is to encode the polygon as a
string , for example, as a sequence of angles and edge lengths, see Fig. 4.
In order to find an axial symmetry relation, we need to test whether the
string (meaning the reversal of) is a substring of the string
(meaning the concatenation of with itself). This test can be done in Θ

time where is the number elements in by using the algorithm of
Knuth et al. (1977). In the example in Fig. 4, the string is indeed a
substring of . Its location within yields the axial symmetry relation.
Similarly, we can find a rotational symmetry relation by finding itself
within . We need to avoid trivial solutions, however, that match to
the first or second half of . This can be done by removing the first and
the last element from	 before matching. Based on a similar approach by
string matching, the algorithm of Atallah (1985) finds all axes of sym-
metry of a polygon with vertices in Θ log time. In order to cope
with geometric distortions, Lladós et al. (1997) use an approach based on a
string edit distance.

Yang et al. (2008) present an approach to symmetry detection based on
critical contour points. The critical points are the vertices of a simplified
version of the original contour. However, since symmetry-preserving algo-
rithms for line and building simplification do not exist, we need to be care-
ful with this approach. In the preprocessing, we use a building simplifica-
tion algorithm with a conservative setting in order to remove marginal but
potentially disturbing details.

The general string-matching approach seems to be applicable for sym-
metry detection in building footprints. Not considered in the string-
matching approaches discussed, however, is the problem of finding partial
symmetry relations (only parts of the shape are symmetric). The next sec-
tion presents a solution to this problem. Furthermore, we address the prob-
lem of generating optimal mirror axes by least-squares adjustment.

Fig. 4. Principle of the algorithm for symmetry detection by Wolter et al. (1985).
By finding string in string , it becomes clear that the polygon has an axial
symmetry relation. According to that relation, for example, edge , is a mirror
image of edge , .

1

5

 ,

 0 0 1 7

 ,

,

, , , , , , , , 53.1°, 6, 53.1°, 5, 73.8°, 5

					 53.1°, 6, 53.1°, , . °, , . °, , . °, 5, 73.8°, 5
,

,

, . °, , . °, , . °

3 Methodology for Symmetry Detection

Generally, the symmetry relations we aim to detect are geometric trans-
formations of which each maps a continuous part of a building outline
onto (or sufficiently close to) a continuous part of a second building
outline. Both parts may either belong to different polygons or to the same
polygon. Moreover, both and may be the same. For instance, let
and be equal to the entire polygon in Fig. 4. Indeed, there is a non-
trivial transformation that maps onto itself: the reflection at the vertical
line through . Reflections, however, are but one type of transformation
we can detect with the presented method. More generally, we allow the
following two types of transformations:

[1] is obtained by (successively) translating and rotating

[2] is obtained by (successively) reflecting, translating, and rotating .

Accordingly, we term the pair , a type-1 match or a type-2 match. In
particular, we are interested in axial symmetries, that is, type-2 matches
that correspond by a reflection on a straight line.

We first formalize the problems of finding type-1 and type-2 matches as
a string matching problem (Section 3.1) and then discuss a solution by dy-
namic programming (Section 3.2). Finally, we discuss an approach based
on least-squares adjustment that allows us to find axial symmetries in the
detected set of type-2 matches (Section 3.3).

3.1 Symmetry Relations in the String Representation

By encoding a polygon as a string of edge lengths and angles, we
obtain a shape representation that is invariant against rotations and transla-
tions. This allows us to define each type-1 match based on a pair of similar
strings, one of them being a substring of and the other one a
substring of , where and are two potentially distinct pol-
ygons. Similarly, we define each type-2 match based on a pair of similar
strings, one of them being a substring of and the other one a
substring of . Two strings and are called similar if
the following four criteria hold:

[1] The number of symbols is the same in both strings.

[2] Both strings start with the same type of symbol, that is, either with a
symbol representing an edge length or an angle.

[3] For 1,2, … , , if the -th symbol in 	 and the -th symbol in
represent angles, both angles differ at most by Δ .

[4] For 1,2, … , , if the -th symbol 	 in 	 and the -th symbol 	 in 		 represent edge lengths, the ratio max , min ,⁄ does not exceed 1 Δ .

The parameters Δ ∈ and Δ ∈ allow users to specify the
geometric error tolerance. Furthermore, we define the number of sym-
bols as the cardinality of a match. We are not interested in matches of sin-
gle line segments, which have cardinality one. In order to exclude such in-
significant matches, a user needs to define a third parameter ∈ .
The cardinality of a match must not be smaller than .

Next, we exclude matches that are dominated by other matches: A
match of two strings and is dominated by a match of two strings
and if

 is a substring of and is a substring of and

 	 has the same position in as in , that is, the number of sym-
bols in preceding equals the number symbols in preceding .

Additionally, we need to take care that we do not select a substring of a
string that is longer than the original string representing the polygon
and we should avoid reporting a match of two polygon parts twice.

Finally, if we have found a match of two strings that satisfies the above-
mentioned criteria, we need to decode the two strings into two shapes, for
example, to visualize the matching result. The shapes and 	for the two
strings and of a match are computed as follows.

For each edge symbol in a string, we add the corresponding polygon
edge to the shape for the string. If the string begins (or ends) with a symbol
for an angle, we add both polygon edges that form this angle. With this
approach, however, the first (or last) edge of and the first (or last) edge
of get very different lengths. Therefore, we shorten the longer edge of
both unmatched edges such that they get the same lengths.

3.2 String Matching by Dynamic Programming

In this section we discuss a solution to the problem of finding all type-2
matches satisfying the criteria from Sect. 3.1. The type-1 matches can be
found in a straightforward way. We first discuss the special case that Δ Δ 0. In this case, a type-2 match of maximum cardinality

can be found by solving the longest (or maximum) common substring
problem for the strings and .

The longest common substring problem can be solved in linear time us-
ing a generalized suffix tree (Gusfield, 1997). We are interested, however,
in finding multiple symmetry relations. Therefore, we search for all maxi-
mal common substrings of and . Note that
there is a difference between a maximum and a maximal common sub-
string of two strings	 and 	 : a common substring of and is
maximum if no other common substring of and is longer than ; for

 being a maximal common substring, however, it suffices that there is no
other common substring of and that contains , that is, a match de-
fined by a maximal common substring is not dominated by any other
match.

The problem of finding all maximal common substrings of two
strings	 with symbols and 	 with symbols can be solved in Θ
time by dynamic programming. To specify this approach, we define the

 matrix of integers. We denote the number in row and column
of by , . Additionally, we define , , 0 for 0,1, … , 1 and , , 0 for 0,1, … , 1. For 1,2, … , and 1,2, … , we define

, 1 , if	0 else , (1)

where denotes the -th symbol in and the -th symbol in .
The values of can be computed in increasing order of the indices for
rows and columns.

Once we have computed the matrix , we can easily find the maximal
common substrings. For each pair ∈ 1,2, … , , ∈ 1,2, … , with , 0 and , 0, the substring of 	 starting at index position , 1 	and ending at index position corresponds to one maximal
common substring of and . In , this substring starts at index posi-
tion , 1 and ends at index position .

In order to deal with geometric differences between the two building
parts of a match and to avoid the selection of substrings that are longer
than the original encoding of the building polygon, we define the values , in a slightly different way:

, 1 , if	 			and		 , min 2 , 2 ,1 if	 			and		 , min 2 , 20 else ,
(2)

We define the relation according to the similarity criteria 3 and 4 that

we introduced in Sect. 3.1. The additional condition ,min 2 , 2 in the first line of equation (2) avoids that we generate
strings that are too long, that is, if , is equal to the length of the
string for one of the involved polygons, we do not further extend the corre-
sponding match but start with the construction of a new match. This is
done in the second line of equation (2) by setting , to one.

In order to avoid reporting the same match twice, we need to introduce a
small modification to the procedure for finding the maximal common sub-
strings in : instead of considering each pair of indices ∈ 1,2, … , , ∈ 1,2, … , for defining the two ends of the corresponding substrings,
we only consider each pair of indices ∈ 2 1, 2 ,… , 1 , ∈ 2 1, 2 , … , 1 .

Note that, when implementing the presented method, we should avoid
comparing edges with angles. Therefore, we can use two matrices and

, each of dimension 2 2, instead of one matrix of dimension
. We use for the comparisons of angles and for the compari-

sons of edge lengths.

3.3 Least-Squares Adjustment

As a result of the algorithm in Sect. 3.2 we obtain a set of matches, each
represented as a pair of strings. We can use the decoding presented in
Sect. 3.1 to find the corresponding pair of shapes. The two shapes and

 of a match are polylines, both having the same number of vertices.
For 1,2, … , , the -th vertex of corresponds with the -th vertex
of .

If and correspond by axial symmetry, we can compute the mirror
axis by choosing any pair of corresponding vertices and and compu-
ting a straight line that is perpendicular to the vector and passes
through the midpoint between and . If we do this for each type-2
match, we obtain candidates for mirror axes. These axes, however, are not
very accurate, because we used a single pair of vertices for their construc-
tion. In order to obtain more accurate mirror axes, we apply a least-squares

adjustment that uses the information given with all pairs of corresponding
vertices. The main benefit of this approach is that, in addition to the ad-
justed mirror axis, it offers a standard deviation that allows us to conclude
whether the match indeed corresponds to an axial symmetry, or whether
another type of transformation is involved, for example, a transformation
or rotation.

For the adjustment we use a Gauss-Helmert model, which has the gen-
eral form

 Ψ , 0, (3)

where is the vector of unknowns without errors and the vector of ob-
servations without errors (Niemeier, 2002). The aim of the adjustment pro-
cess is to add a vector of corrections to the vector of erroneous observa-
tions 	and to estimate the vector of unknowns such that the system of
equations (3) holds and the square sum ⋅ of the corrections is mini-
mized.

In our case, there are two unknowns, and , which define the mirror
axis in the form 	 	 . The vector of observations contains the co-
ordinates of the vertices, which means that it has 4 elements.

For each pair of corresponding vertices (with coordinates and)
and (with coordinates and), we introduce two constraints.

The first constraint means that the midpoint between and lies on
the mirror axis:

 2⁄ 	 	 2⁄ (4)

The second constraint means that the vector is perpendicular to the

mirror axis:
 0 (5)

In order to estimate the corrections and unknowns we linearize equa-

tions (4) and (5) and apply the common iterative adjustment procedure
(Niemeier, 2002). In each iteration, we update the unknowns and . The
initial mirror axis is defined based on the two corresponding vertices with
the maximum distance. In addition to the estimates for and we obtain
a standard deviation based on the corrections . A mirror axis is selected
if does not exceed a user-specified value ∈ .

4 Experimental Results

The presented algorithms were implemented in C++ and tested for a data
set of 5134 building footprints of the metropolitan Boston area. The data
set is freely available as part of the Massachusetts Geographic Information
System, MassGIS1. According to the data specifications, the building foot-
prints were manually extracted from LiDAR data.

In order to remove marginal details that would hinder the matching pro-
cess, the building footprints were automatically generalized with an error
tolerance of 1 m. A neighborhood for the polygons was defined based on
a triangulation of the free space not covered by polygons. This triangula-
tion was obtained by using the CGAL2 library for computational geometry.
Each two polygons that were connected with a triangle edge are defined as
neighbors.

For each single building and for each pair of neighboring buildings, the
type-1 and type-2 matches were searched. Furthermore, for each type-2
match, five iterations of the least-squares adjustment were applied. To-
gether, these computations took 8 seconds on a Windows PC with 3 GB
RAM and a 3.00 GHz Intel dual-core CPU.

Table 1. Parameters used for the presented experiments

parameter name symbol value
tolerance for building simplification 1 m
tolerance for differences of angles Δ 0.15 rad (8.6°)
tolerance for differences of edge lengths Δ 30%
minimum cardinality for matches 8
maximum standard dev. for mirror axes 1 m

Table 1 summarizes the parameters applied, which were found by ex-

periments. Note, however, that setting 8 implies that two sym-
metry axes are found for a rectangle. Setting to a higher value implies
that no symmetry axes are found for a rectangle. Therefore, 8 is, in
a way, a natural choice. The sequence of 90° and 270° turns of building
outlines is often very characteristic, thus the tolerance for edge lengths is
set to a relatively large value (30%) and to the relatively small value of
8.6° for angles (which can be interpreted as roughly 10% of a right angle).

According to the defined criteria, 11528 type-1 matches and 14100
type-2 matches were found. This means that, for each building, 2.2 type-1

1 http://www.mass.gov/mgis/lidarbuildingfp2d.htm (accessed 21-10-10)
2 http://www.cgal.org/ (accessed 21-10-10)

matches and 2.7 type-2 matches were found on average. It is interesting
that the type-2 matches are more frequent than the type-1 matches, as it
shows that a reflection is indeed a preferred concept in building design
(compared to pure repetition). Using the approach based on least-squares
adjustment, 10477 mirror axes were found, that is, on average, 2.0 for each
building. This also implies that 74% of the type-2 matches indeed repre-
sent (pure) axial reflections. We now discuss some selected samples from
the data set.

Figure 5 (left) illustrates all type-2 matches found for a set of five
apartment buildings. For each match, the corresponding building parts are
shown as bold lines. Note that the same part may be involved in multiple
matches. Additionally, the figure shows the hypotheses for mirror axes
(thin lines). Obviously, many hypotheses are wrong, that is, a translation
and/or a rotation need to be performed in addition to the axial reflection in
order to match the two shapes. Figure 5 (right), however, shows that cor-
rect mirror axes are found by filtering the matches based on the standard
deviation that we obtained by least-squares adjustment. Additionally, the
least-squares adjustment yields accurate axes. The adjustment process is
visualized in Fig. 6 for two buildings. In these examples, the initial axes
are very inaccurate, but after five iterations we obtain results that are good
enough, for example, for visualization.

Fig. 5. Hypotheses for mirror axes (left) and selected mirror axes after adjustment
(right). The selection of the axes is based on the variance of coordinates that is es-
timated based on residuals at the polygon vertices. Bold parts of the polygon out-
lines correspond by symmetry according to the mirror axes shown.

Fig. 6. Illustration of the adjustment process for two buildings with symmetry re-
lations. The figures show the building parts that correspond by symmetry (bold
parts of the polygon outlines), the initial mirror axes (light grey lines) the mirror
axes after one iteration of the adjustment process (dark grey lines) and after five
iterations (black lines). The dashed lines show which pairs of polygon vertices
were used to compute the initial axes.

Figures 7, 8, and 9 show the mirror axes that were detected for the sam-
ples in Figures 1, 2, and 3, respectively. Generally, the results are satisfac-
tory, that is, the most obvious symmetry relations were found. There are,
however, a few open problems that we discuss for the result in Fig. 9.

In some cases we would probably like to report a symmetry relation
though each continuous part of the building outline in the relation is small.
For example, the mirror axis in Fig. 9 labeled with (1) is noticeable but not
detected by the algorithm. In this example, there are two continuous build-
ing parts that contribute to the symmetry relation, the front façade and the
back façade of a building. Since each of the two parts is small (that is, the
corresponding string contains less than 8 symbols), the mirror axis is not
detected. Together, however, both parts would have the required size. The
aggregation of small matches is a problem that still needs to be solved.

Furthermore, the approach based on string matching relies on pair-wise
correspondences of polygon vertices or edges. This is problematic, since
two shapes can be similar without having such correspondences. We tried
to ease this restriction by applying an algorithm for building simplification
that removes potentially disturbing details. The problem, however, still oc-
curs in some cases, especially, if the buildings have curved outlines. The
mirror axis in Fig. 9 labeled with (2) corresponds to a symmetry relation of
two buildings with circular arcs. The arcs of both buildings were digitized
in two very different ways, thus no vertex or edge correspondences were
found. This problem could be solved by detecting arcs in the building out-
line. For buildings that have a rectilinear shape, however, the algorithm
yields good results.

Fig. 7. Detected mirror axes (thin lines) and corresponding building parts (bold
lines) for the sample in Fig. 1.

Fig. 8. Detected mirror axes (thin lines) and corresponding building parts (bold
lines) for the sample in Fig. 2.

Fig. 9. Detected mirror axes (thin continuous lines) and corresponding building
parts (bold lines) for the sample in Fig. 3. The dashed lines labeled with (1) and
(2) display axes that were not detected.

2

1

Fig. 10. Detected repetitions (type-1 matches) in building polygons. The bold pol-
ygon parts were matched with some other part. The bold arcs link polygons whose
parts were matched. The grey lines show edges of the triangulation that was com-
puted to define the neighborhood relation for the buildings. The numbers are re-
ferred to in the text.

Finally, we discuss the type-1 matches (that is, repetitions of building
parts) yielded by the string-matching method. If we aim to group the build-
ings according to their similarity, we may be interested in the graph , where is the set of buildings and contains an edge for each
pair of buildings for which at least one type-1 match was found. This
graph is illustrated in Fig. 10 (bold arcs). We observe that the connected
components of define a grouping where each group indeed contains
buildings of a similar design. For example, the group of four buildings la-
beled with (1) contains buildings of two different designs that are similar.
We find buildings of the same design in different parts of the data set, for
example, the buildings labeled with (2). These buildings are not matched
because they do not have a similar neighbor. This reflects the proximity
criterion in perceptional grouping. Occasionally, we fail to find repetitions
(3) or we find matches between buildings that are relatively dissimilar (4).
Therefore, additional research on similarity-based grouping is needed. For
example, we need to decide how to consider both axial symmetries and
repetitions for grouping.

2

2

3

1 4

5 Conclusion and Outlook

We have discussed the problem of finding symmetry relations and mirror
axes in geospatial datasets of buildings. This problem is important for the
solution of map generalization problems, landmark detection, and building
classification. The presented algorithm for symmetry detection uses a very
efficient string-matching approach based on dynamic programming. Mir-
ror axes are found using an approach based on least-squares adjustment.
The algorithm copes both with geometric errors and partial symmetries.

The results that we discussed in this paper show that the proposed meth-
od allows us to process large datasets fast (that is, several thousands of
buildings in a few seconds) and to find most of the dominant symmetry re-
lations. On average, for each building two mirror axes were found. In addi-
tion to the symmetry axes, the algorithm yields matches of similar building
parts.

Future work is needed to aggregate symmetry relations. This is im-
portant, since symmetry relations involving multiple disconnected building
parts are currently not considered in the algorithm proposed.

Furthermore, it is planned to integrate the derived information into
methods for map generalization. We can expect that using the information
derived with the presented algorithm will clearly improve the results of
map generalization, in particular, building simplification and aggregation.

References

Atallah, M. J. (1985). On Symmetry Detection. IEEE Transactions on Computers,
c-34(7), 663–666.

Cho, M. and Lee, K. M (2009). Bilateral Symmetry Detection via Symmetry-
Growing. In: Proc. British Machine Vision Conference (BMVC '09).

Christophe, S. and Ruas, A. (2002). Detecting Building Alignments for Generali-
sation Purposes. In: Proc. ISPRS Commission IV Symposium on Geospatial
Theory, Processing and Applications. International Archives of the Photo-
grammetry, Remote Sensing and Spatial Information Sciences, vol. XXXIV,
part 4.

Gaffuri, J. and Trévisan, J. (2004). Role of Urban Patterns for Building Generali-
sation: An Application of AGENT. In: Proc. 7th ICA Workshop on Generali-
sation and Multiple Representation.

Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences: Computer Sci-
ence and Computational Biology. Cambridge University Press.

Haunert, J.-H. and Wolff, A. (2010). Optimal and Topologically Safe Simplifica-
tion of Building Footprints. Pages 192–201 of: Proc. 18th ACM

SIGSPATIAL International Conference on Advances in Geographic Infor-
mation Systems (ACM-GIS'10).

Heinzle, F. and Anders, K.-H. (2007). Characterising Space via Pattern Recogni-
tion Techniques: Identifying Patterns in Road Networks. Chap. 12, pages
233–254 of: Mackaness, W., Ruas, A., and Sarjakoski, T. L. (eds), Generalisa-
tion of geographic information: Cartographic modelling and applications.
Elsevier.

Knuth, D. E., J. H. Morris, Jr., and Pratt, V. R. (1977). Fast Pattern Matching in
Strings. Siam Journal on Computing, 6(2), 323–350.

Lladós, J., Bunke, H., and Martí, E. (1997). Using Cyclic String Matching to Find
Rotational and Reflectional Symmetries in Shapes. Pages 164–179 of: Intelli-
gent Robots: Sensing, Modeling and Planning. Series in Machine Perception
and Artificial Intelligence, vol. 27. World Scientific.

Loy, G. and Eklundh, J.-O. (2006). Detecting Symmetry and Symmetric Constel-
lations of Features. Pages 508–521 of: Proc. 9th European Conference on
Computer Vision (ECCV '06), Part II. Lecture Notes in Computer Science,
vol. 3952. Springer.

Mackaness, W. and Edwards, G. (2002). The Importance of Modeling Pattern and
Structure in Automated Map Generalisation. In: Proc. Joint ISPRS/ICA
Workshop on Multi-Scale Representations of Spatial Data.

Mitra, N. J., Guibas, L. J., and Pauly, M. (2006). Partial and Approximate Sym-
metry Detection for 3D Geometry. ACM Transactions on Graphics, 25(3),
560–568.

Neun, M., Burghardt, D., and Weibel, R. (2008). Web Service Approaches for
Providing Enriched Data Structures to Generalisation Operators. International
Journal of Geographic Information Science, 22(2), 133–165.

Niemeier, W. (2002). Ausgleichungsrechnung. Walter de Gruyter.
Park, M., Lee, S., Chen, P.-C., Kashyap, S., Butt, A. A., and Liu, Y. (2008). Per-

formance Evaluation of State-of-the-Art Discrete Symmetry Detection Algo-
rithms. In: Proc. IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR '08).

Peters, D., Wu, Y. H., and Winter, S. (2010). Testing Landmark Identification
Theories in Virtual Environments. Pages 54–69 of: Spatial Cognition. Lecture
Notes in Computer Science, vol. 6222. Springer.

Regnauld, N. (2003). Algorithms for the Amalgamation of Topographic Data. In:
Proc. 21st International Cartographic Conference (ICC '03).

Ruas, A. and Holzapfel, F. (2003). Automatic Characterization of Building
Alignments by Means of Expert Knowledge. In: Proc. 21st International Car-
tographic Conference (ICC '03).

Steiniger, S. (2007). Enabling Pattern-Aware Automated Map Generalization.
PhD thesis, University of Zürich.

Steiniger, S., Burghardt, D., Lange, T., and Weibel, R. (2008). An Approach for
the Classification of Urban Building Structures Based on Discriminant Analy-
sis Techniques. Transactions in GIS, 12(1), 31–59.

Thomson, R. C. and Brooks, R. (2002). Exploiting Perceptual Grouping for Map
Analysis, Understanding and Generalization: The Case of Road and River

Networks. Pages 148–157 of: Proc. 4th International Workshop on Graphics
Recognition Algorithms and Applications. Lecture Notes in Computer Sci-
ence, vol. 2390. Springer.

Werder, S., Kieler, B., and Sester, M. (2010). Semi-Automatic Interpretation of
Buildings and Settlement Areas in User-Generated Spatial Data. In: Proc. 18th
ACM SIGSPATIAL International Conference on Advances in Geographic In-
formation Systems (ACM GIS '10). To Appear.

Wertheimer, M. (1938). Laws of Organization in Percetional Forms. Pages 71–88
of: A Source Book of Gestalt Psychology. Routledge & Kegan Paul.

Wolter, J. D., Woo, T. C., and Volz, R. A. (1985). Optimal Algorithms for Sym-
metry Detection in two and three Dimensions. The Visual Computer, 1(1),
37–48.

Yan, H., Weibel, R., and Yang, B. (2008). A Multi-Parameter Approach to Auto-
mated Building Grouping and Generalization. GeoInformatica, 12(1), 73–89.

Yang, X., Adluru, N., Latecki, L. J., Bai, X., and Pizlo, Z. (2008). Symmetry of
Shapes Via Self-Similarity. Pages 561–570 of: Proc. 4th International Sympo-
sium on Advances in Visual Computing, Part II. Lecture Notes In Computer
Science, vol. 5359. Springer.

