Hypergraph Representation via Axis-Aligned Point-Subspace Cover

Oksana Firman Joachim Spoerhase

 $\begin{array}{c} \text{contact representation} \\ {}_{\text{by discs}} \end{array}$

contact representation by discs

intersection representation

by segments

contact representation by discs

intersection representation

by segments

covering representation

points by rectangles

2 - 4

contact representation by discs

intersection representation

by segments

contact representation

by discs

intersection representation

points by rectangles

 $ext{points}
ightarrow ext{vertices}$ covering objects ightarrow hyperedges by segments

contact representation

by discs

intersection representation

by segments

 $\stackrel{points}{\text{covering objects}} \rtimes \stackrel{\text{vertices}}{\underset{\text{hyperedges}}{\text{vertices}}}$

set of points P in 2D

set of points P in 2D

set of lines

set of points P in 2D

set of points P in 2D

set of lines

Point Line Cover – Motivation

set of points P in 2D

point line cover instances

 \subset

general hypergraphs

set of lines

Point Line Cover – Motivation

Point Line Cover – Motivation

and so on...

and so on...

(every hyperedge has exactly 3 vertices, one from each group)

3-uniform3-partite

(every hyperedge has exactly 3 vertices, one from each group)

axis-aligned point line cover instance

k-hypergraph k-partite and k-uniform

axis-aligned point line cover instance

Which k-hypergraphs can be *represented* via axis-aligned point line cover instances?

Paths

Notation.

 $[k] = \{1, \dots, k\}$ for A hypergraph G = (V, E) $V = V_1 \cup \ldots \cup V_k$ Paths

Def.

Let $s, t \in V$. An *s*-*t* path is a sequence of vertices $s = v_1, \ldots, v_r = t$ such that $\forall i \in [r-1] v_i$ and v_{i+1} belong to the same edge.

 $[k] = \{1, \dots, k\}$ for A hypergraph G = (V, E) $V = V_1 \cup \ldots \cup V_k$

Paths

Def.

Let $s, t \in V$. An *s*-*t* path is a sequence of vertices $s = v_1, \ldots, v_r = t$ such that $\forall i \in [r-1] v_i$ and v_{i+1} belong to the same edge.

 $[k] = \{1, \dots, k\}$ for A hypergraph G = (V, E) $V = V_1 \cup \ldots \cup V_k$

Paths

Def.

Let $s, t \in V$. An *s*-*t* path is a sequence of vertices $s = v_1, \ldots, v_r = t$ such that $\forall i \in [r-1] v_i$ and v_{i+1} belong to the same edge.

 $[k] = \{1, \dots, k\}$ for A hypergraph G = (V, E) $V = V_1 \cup \ldots \cup V_k$

Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v' from the same group V_i where $i \in [k]$ are *separable* if there exists $j \in [k]$ with $j \neq i$ such that every $v \cdot v'$ path contains a vertex in V_j .

Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v' from the same group V_i where $i \in [k]$ are *separable* if there exists $j \in [k]$ with $j \neq i$ such that every v-v' path contains a vertex in V_j .

(Informally, removing V_j from the vertex set and from the edges separates v and v'.)

Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v' from the same group V_i where $i \in [k]$ are *separable* if there exists $j \in [k]$ with $j \neq i$ such that every v-v' path contains a vertex in V_j .

(Informally, removing V_j from the vertex set and from the edges separates v and v'.)

Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v' from the same group V_i where $i \in [k]$ are *separable* if there exists $j \in [k]$ with $j \neq i$ such that every v-v' path contains a vertex in V_j .

(Informally, removing V_j from the vertex set and from the edges separates v and v'.)

Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v' from the same group V_i where $i \in [k]$ are *separable* if there exists $j \in [k]$ with $j \neq i$ such that every v-v' path contains a vertex in V_j .

(Informally, removing V_j from the vertex set and from the edges separates v and v'.)

A k-hypergraph is called *vertex separable* if every two vertices from the same group are separable.

Main Result

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

For each group V_i we use an auxiliary graph G_i that gives us the *i*-th coordinate for the points and the lines.

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

For each group V_i we use an auxiliary graph G_i that gives us the *i*-th coordinate for the points and the lines.

hyperedge in $G \rightarrow$ vertex in G_i

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

For each group V_i we use an auxiliary graph G_i that gives us the *i*-th coordinate for the points and the lines. hyperedge $e \to \text{point } p^e$ vertex $v_i \to \text{line } \ell^{v_i}$

hyperedge in $G \rightarrow$ vertex in G_i G_1 V_1 V_2 V_3 V_1 V_2 V_3 C_1 C_2 C_3 C_3 C_4 C_2 C_3 C_4 C_2 C_3 C_4 C_5 C_5

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

For each group V_i we use an auxiliary graph G_i that gives us the *i*-th coordinate for the points and the lines. hyperedge $e \to \text{point } p^e$ vertex $v_i \to \text{line } \ell^{v_i}$

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

For each group V_i we use an auxiliary graph G_i that gives us the *i*-th coordinate for the points and the lines. hyperedge $e \to \text{point } p^e$ vertex $v_i \to \text{line } \ell^{v_i}$

hyperedge in $G \rightarrow$ vertex in G_i G_1 G_2 G_3 V_1 V_2 V_3 G_1 G_2 G_3 G_3 G_4 G_2 G_3 G_4 G_5 G_6

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

For each group V_i we use an auxiliary graph G_i that gives us the *i*-th coordinate for the points and the lines. hyperedge $e \to \text{point } p^e$ vertex $v_i \to \text{line } \ell^{v_i}$

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

For each group V_i we use an auxiliary graph G_i that gives us the *i*-th coordinate for the points and the lines. hyperedge $e \to \text{point } p^e$ vertex $v_i \to \text{line } \ell^{v_i}$

hyperedge in $G \to \text{vertex in } G_i$ $V_2 \quad V_3$ $G_1 \quad Q_2 \quad Q_3$ $I \quad Q_3 \quad Q_3$ $I \quad Q_$

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

For each group V_i we use an auxiliary graph G_i that gives us the *i*-th coordinate for the points and the lines. hyperedge $e \to \text{point } p^e$ vertex $v_i \to \text{line } \ell^{v_i}$

hyperedge in $G \rightarrow$ vertex in G_i $V_2 \quad V_3$ $G_1 \quad e \text{ and } e' \text{ from } G_i \text{ are adjacent iff they have a common vertex in } V_j, \ j \neq i$ $G_1 \quad G_2 \quad G_3 \quad G_3 \quad f = 1$ $1 \quad 0 \quad 2$ $I \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

For each group V_i we use an auxiliary graph G_i that gives us the *i*-th coordinate for the points and the lines. hyperedge $e \to \text{point } p^e$ vertex $v_i \to \text{line } \ell^{v_i}$

11 - 10

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

For each group V_i we use an auxiliary graph G_i that gives us the *i*-th coordinate for the points and the lines.

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

For each group V_i we use an auxiliary graph G_i that gives us the *i*-th coordinate for the points and the lines.

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

For each group V_i we use an auxiliary graph G_i that gives us the *i*-th coordinate for the points and the lines. hyperedge $e \to \text{point } p^e$ vertex $v_i \to \text{line } \ell^{v_i}$

e and e' from G_i are adjacent iff they hyperedge in $G \to \text{vertex in } G_i$ have a common vertex in V_i , $j \neq i$ G_1 G_2 G_3 V_2 V_3 V_1 2• 2 $p^{e_2} = (2, 1, 1)$ $p^{e_3} = (2, 1, 2)$ $p^{e_1} = (1, 1, 1)$ = (1, 1, 1)= (1, 1, 1) = (1, ., 1) $\ell^{v_2} = (2, ., 1)$ $\ell^{v_3} = (2, 1, .)$

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

For each group V_i we use an auxiliary graph G_i that gives us the *i*-th coordinate for the points and the lines. hyperedge $e \to \text{point } p^e$ vertex $v_i \to \text{line } \ell^{v_i}$

e and e' from G_i are adjacent iff they hyperedge in $G \to \text{vertex in } G_i$ have a common vertex in V_i , $j \neq i$ G_1 G_2 G_3 V_2 V_3 V_1 2•2 $p^{e_2} = (2, 1, 1)$ $p^{e_1} = (1, 1, 1)$ $p^{e_3} = (2, 1, 2)$ $= (\cdot, 1, 1) \longrightarrow \ell^{v_2^2} = (2, \cdot, 1) \\ \ell^{v_3^2} = (2, 1, \cdot) \longrightarrow \ell^{v_3^2}$ $= (\cdot, 1, 2)$ = (2, \cdot, 2)

vertex separable there is a representation \Rightarrow

Assume that G is not vertex separable but it has a point line cover representation.

• it contains at least two distinct vertices v and v' from the same group V_i that are not separable;

- it contains at least two distinct vertices v and v' from the same group V_i that are not separable;
- for each group V_j with $j \neq i$, there exists a v v' path $v = v_1, \ldots, v_r = v'$ such that $v_t \notin V_j$ for each $t \in [r]$;

- it contains at least two distinct vertices v and v' from the same group V_i that are not separable;
- for each group V_j with $j \neq i$, there exists a $v \cdot v'$ path $v = v_1, \ldots, v_r = v'$ such that $v_t \notin V_j$ for each $t \in [r]$;
- all lines ℓ^{v_t} with $t \in [r]$ that represent the vertices v_1, \ldots, v_r lie on the same hyperplane H_j perpendicular to the x_j -axis;

- it contains at least two distinct vertices v and v' from the same group V_i that are not separable;
- for each group V_j with $j \neq i$, there exists a $v \cdot v'$ path $v = v_1, \ldots, v_r = v'$ such that $v_t \notin V_j$ for each $t \in [r]$;
- all lines ℓ^{v_t} with $t \in [r]$ that represent the vertices v_1, \ldots, v_r lie on the same hyperplane H_j perpendicular to the x_j -axis;

- it contains at least two distinct vertices v and v' from the same group V_i that are not separable;
- for each group V_j with $j \neq i$, there exists a $v \cdot v'$ path $v = v_1, \ldots, v_r = v'$ such that $v_t \notin V_j$ for each $t \in [r]$;
- all lines ℓ^{v_t} with $t \in [r]$ that represent the vertices v_1, \ldots, v_r lie on the same hyperplane H_j perpendicular to the x_j -axis;

- it contains at least two distinct vertices v and v' from the same group V_i that are not separable;
- for each group V_j with $j \neq i$, there exists a $v \cdot v'$ path $v = v_1, \ldots, v_r = v'$ such that $v_t \notin V_j$ for each $t \in [r]$;
- all lines ℓ^{v_t} with $t \in [r]$ that represent the vertices v_1, \ldots, v_r lie on the same hyperplane H_j perpendicular to the x_j -axis;
- the lines ℓ^v and $\ell^{v'}$ lie in the intersection $\bigcap_{i \in I_i} H_j$.

Assume that G is not vertex separable but it has a point line cover representation.

 V_2

 V_3

12 - 8

- it contains at least two distinct vertices v and v' from the same group V_i that are not separable;
- for each group V_j with $j \neq i$, there exists a $v \cdot v'$ path $v = v_1, \ldots, v_r = v'$ such that $v_t \notin V_j$ for each $t \in [r]$;
- all lines ℓ^{v_t} with $t \in [r]$ that represent the vertices v_1, \ldots, v_r lie on the same hyperplane H_j perpendicular to the x_j -axis;
- the lines ℓ^v and $\ell^{v'}$ lie in the intersection $\bigcap_{j \neq i} H_j$.

 V_3

 V_2

 $\sqrt{3}$

Space	d-dimensional	
Covering objects	lines	
Representable hypergraphs	vertex separable	

Space		<i>d</i> -dimensional
Covering objects	lines	
Representable	vertex	
hypergraphs	separable	
	polynomial	
	recognition	
	algorithm	

Space		d-dimensional
Covering objects	lines	(d-1)- dimensional subspaces
Representable hypergraphs	vertex separable	all
	polynomial recognition algorithm	

Space		d-dimensional
Covering objects	lines	(d-1)- dimensional subspaces
Representable hypergraphs	vertex separable	all
	polynomial recognition algorithm	similar to representation of bipartite graphs in 2D

Space		d-dimensional	
Covering objects	lines	$\ell\text{-dimension}$ subspaces $2 \le \ell \le (d-2)$	(d-1)- dimensional subspaces
Representable hypergraphs	vertex separable	generalized vertex separable	all
	polynomial recognition algorithm		

Space		d-dimensional	
Covering objects	lines	$\ell\text{-dimension}$ subspaces $2 \le \ell \le (d-2)$	(d-1)- dimensional subspaces
Representable hypergraphs	vertex separable	generalized vertex separable	all
	polynomial recognition algorithm	polynomial for a fixed d	

Space	<i>d</i> -dimensional				
Covering objects	$\begin{array}{ll} \ell \text{-dimension} \\ \text{lines} & \text{subspaces} \\ & 2 \leq \ell \leq (d-2) \end{array}$		lines subspaces dime		(d-1)- dimensional subspaces
Representable hypergraphs	vertex separable	generalized vertex separable	all		
	polynomial recognition algorithm	polynomial for a fixed <i>d</i> What about	non-constant d ?		

• Generalization to ℓ -dimensional subspace, $\ell < d$

Space	<i>d</i> -dimensional			
Covering objects	lines	$\ell\text{-dimension}$ subspaces $2 \le \ell \le (d-2)$	(d-1)- dimensional subspaces	
Representable hypergraphs	vertex generalized separable vertex separable		all	
	polynomial recognition algorithm	polynomial for a fixed <i>d</i> What about	non-constant d?	

• Design *improved* algorithms for vertex separable hypergraphs (e.g vertex cover, matching) parameterized by ℓ and d

Space	<i>d</i> -dimensional			
Covering objects	lines	$\ell\text{-dimension}$ subspaces $2 \le \ell \le (d-2)$	(d-1)- dimensional subspaces	
Representable hypergraphs	vertex generalized separable vertex separable		all	
	$\begin{array}{ccc} polynomial & polynomial \\ recognition & for a fixed d \\ algorithm & What al \end{array}$		non-constant d?	

- Design *improved* algorithms for vertex separable hypergraphs (e.g vertex cover, matching) parameterized by ℓ and d
- Relation to other graph classes

• Generalization to ℓ -dimensional subspace, $\ell < d$

Space		d-dimensional		Thople
Covering objects	lines	$\ell\text{-dimension}$ subspaces $2 \le \ell \le (d-2)$	(d-1)- dimensional subspaces	Thank you!
Representable hypergraphs	vertex separable	generalized vertex separable	all	
	polynomial recognition algorithm	$\begin{array}{c} \textbf{polynomial} \\ \textbf{for a fixed } d \\ \hline \textbf{What about} \end{array}$	non-constant d?	Stand

- Design *improved* algorithms for vertex separable hypergraphs (e.g vertex cover, matching) parameterized by ℓ and d
- Relation to other graph classes

with

Ukraine