
1

Hypergraph Representation via

Axis-Aligned Point-Subspace Cover

Oksana Firman Joachim Spoerhase



2 - 1

Geometric Representation of (Hyper)graphs



2 - 2

Geometric Representation of (Hyper)graphs

contact representation
by discs

[Koebe, 1936]



2 - 3

Geometric Representation of (Hyper)graphs

contact representation

intersection representationby discs

by segments

[Koebe, 1936]
[Chalopin, Gonçalves,
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STOC’09 ]



3 - 1

Point Line Cover

set of points P in 2D



3 - 2

Point Line Cover

set of points P in 2D set of lines



3 - 3

Point Line Cover

Hypergraph representation

set of points P in 2D set of lines



3 - 4

Point Line Cover

Hypergraph representation

vertices
set of points P in 2D set of lines



3 - 5

Point Line Cover

Hypergraph representation

hyperedges

set of points P in 2D set of lines



4 - 1

Point Line Cover – Motivation

Hypergraph representation

point line cover instances general hypergraphs⊂

set of linesset of points P in 2D



4 - 2

Point Line Cover – Motivation

Hypergraph representation

point line cover instances general hypergraphs⊂

intersection property
does not hold

set of linesset of points P in 2D



4 - 3

Point Line Cover – Motivation

Hypergraph representation

point line cover instances general hypergraphs⊂

intersection property
does not hold

Is there a simple combinatorial characterization?

set of linesset of points P in 2D

Open Q. [Kumar, Ramesh,
ICALP 2000]



5 - 1

Axis-Aligned Point Line Cover in 2D



5 - 2

Axis-Aligned Point Line Cover in 2D

`y1`y2`y3`y4

`x6

`x5

`x4

`x3

`x2

`x1



5 - 3

Axis-Aligned Point Line Cover in 2D

y1

y2

y3

y4

x1

x2

x3

x4

x5

x6`y1`y2`y3`y4

`x6

`x5

`x4

`x3

`x2

`x1



5 - 4

Axis-Aligned Point Line Cover in 2D

y1

y2

y3

y4

x1

x2

x3

x4

x5

x6`y1`y2`y3`y4

`x6

`x5

`x4

`x3

`x2

`x1



5 - 5

Axis-Aligned Point Line Cover in 2D

y1

y2

y3

y4

x1

x2

x3

x4

x5

x6`y1`y2`y3`y4

`x6

`x5

`x4

`x3

`x2

`x1 1
1 1
1
1
111 1

1

0 0 0
00

0 0 0
000

0 0 0



6 - 1

Axis-Aligned Point Line Cover in 3D

`z1
`z2 `z3 `z4

`x1 `x2

`x3

`x4

`y1

`y2
`y3

`y4

`y5



6 - 2

Axis-Aligned Point Line Cover in 3D

`z1
`z2 `z3 `z4

`x1 `x2

`x3

`x4

`y1

`y2
`y3

`y4

`y5

X Y Z

1

2

3

4

5



6 - 3

Axis-Aligned Point Line Cover in 3D

`z1
`z2 `z3 `z4

`x1 `x2

`x3

`x4

`y1

`y2
`y3

`y4

`y5

X Y Z

1

2

3

4

5



6 - 4

Axis-Aligned Point Line Cover in 3D

`z1
`z2 `z3 `z4

`x1 `x2

`x3

`x4

`y1

`y2
`y3

`y4

`y5

X Y Z

1

2

3

4

5



6 - 5

Axis-Aligned Point Line Cover in 3D

`z1
`z2 `z3 `z4

`x1 `x2

`x3

`x4

`y1

`y2
`y3

`y4

`y5

X Y Z

1

2

3

4

5

and so on...



6 - 6

Axis-Aligned Point Line Cover in 3D

`z1
`z2 `z3 `z4

`x1 `x2

`x3

`x4

`y1

`y2
`y3

`y4

`y5

X Y Z

1

2

3

4

5

3-partite

3-uniform

and so on...

(every hyperedge has
exactly 3 vertices,

one from each group)



6 - 7

Axis-Aligned Point Line Cover in 3D

`z1
`z2 `z3 `z4

`x1 `x2

`x3

`x4

`y1

`y2
`y3

`y4

`y5

X Y Z

1

2

3

4

5

3-partite

3-uniform

and so on...

(every hyperedge has
exactly 3 vertices,

one from each group)

easy to check

NP-hard



6 - 8

Axis-Aligned Point Line Cover in 3D

`z1
`z2 `z3 `z4

`x1 `x2

`x3

`x4

`y1

`y2
`y3

`y4

`y5

X Y Z

1

2

3

4

5

3-partite

3-uniform

and so on...

(every hyperedge has
exactly 3 vertices,

one from each group)

easy to check

NP-hard

3-hypergraph



7 - 1

Representable Hypergraphs

axis-aligned point line cover instance

k-hypergraph

k-partite and k-uniform



7 - 2

Representable Hypergraphs

axis-aligned point line cover instance

k-hypergraph

k-partite and k-uniform

?



7 - 3

Representable Hypergraphs

axis-aligned point line cover instance

k-hypergraph

k-partite and k-uniform

?

No
exception: 2D intersection property

does not hold



7 - 4

Representable Hypergraphs

axis-aligned point line cover instance

k-hypergraph

k-partite and k-uniform

?

No

Which k-hypergraphs can be represented
via axis-aligned point line cover instances?

exception: 2D intersection property
does not hold
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Separability – Key Property

Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v′ from
the same group Vi where i ∈ [k] are separable if there exists
j ∈ [k] with j 6= i such that every v-v′ path contains a vertex in
Vj .

v

v′

Vi

A k-hypergraph is called
vertex separable if every two vertices
from the same group are separable.

(Informally, removing Vj from the vertex set
and from the edges separates v and v′.)
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