Hypergraph Representation via Axis-Aligned Point-Subspace Cover

Oksana Firman Joachim Spoerhase

Geometric Representation of (Hyper)graphs

Geometric Representation of (Hyper)graphs

contact representation
by discs

Geometric Representation of (Hyper)graphs

by discs
[Chalopin, Gonçalves,

intersection representation

Geometric Representation of (Hyper)graphs

by discs
intersection representation
by segments

covering representation points by rectangles

Geometric Representation of (Hyper)graphs

> by discs
[Chalopin, Gonçalves,
intersection representation
by segments
covering representation
points by rectangles

Geometric Representation of (Hyper)graphs

covering representation
points by rectangles
by discs

intersection representation
by segments
points \rightarrow vertices
covering objects \rightarrow hyperedges

Geometric Representation of (Hyper)graphs

> by discs

points vertices covering objects

covering representation
points by rectangles

intersection representation
by segments

Point Line Cover

set of points P in 2D

Point Line Cover

set of points P in 2D

Point Line Cover

set of points P in 2D
set of lines
Hypergraph representation

Point Line Cover

set of points P in 2D

set of lines

Hypergraph representation

Point Line Cover
 hyperedges
 set of points P in 2D

set of lines
Hypergraph representation

Point Line Cover - Motivation

set of points P in 2D

> set of lines

Hypergraph representation

point line cover instances
\subset
general hypergraphs

Point Line Cover - Motivation

set of points P in 2D

> set of lines

Hypergraph representation

point line cover instances

Point Line Cover - Motivation

set of points P in 2D

> set of lines

Hypergraph representation

intersection property does not hold
point line cover instances

general hypergraphs

Axis-Aligned Point Line Cover in 2D

Axis-Aligned Point Line Cover in 2D

Axis-Aligned Point Line Cover in 2D

Axis-Aligned Point Line Cover in 2D

Axis-Aligned Point Line Cover in 2D

Axis-Aligned Point Line Cover in 3D

Axis-Aligned Point Line Cover in 3D

(every hyperedge has exactly 3 vertices,
one from each group)
3-uniform easy to check
3-partite
NP-hard

Axis-Aligned Point Line Cover in 3D

Representable Hypergraphs

axis-aligned point line cover instance
k-partite and k-uniform

Representable Hypergraphs

axis-aligned point line cover instance

$$
\underset{k \text {-hypergraph }}{\downarrow} \uparrow ?
$$

k-partite and k-uniform

Representable Hypergraphs

axis-aligned point line cover instance

\downarrow 个?
 k-hypergraph
 k-partite and k-uniform

No
exception: 2D intersection property does not hold

Representable Hypergraphs

axis-aligned point line cover instance

\downarrow 个?
 k-hypergraph
 k-partite and k-uniform

No
exception: 2D intersection property does not hold

Which k-hypergraphs can be represented via axis-aligned point line cover instances?

Paths

Notation.

$$
\begin{aligned}
& {[k]=\{1, \ldots, k\} \text { for }} \\
& \text { A hypergraph } G=(V, E) \\
& V=V_{1} \cup V_{k}
\end{aligned}
$$

Paths

Def.

Let $s, t \in V$. An $s-t$ path is a sequence of vertices
$s=v_{1}, \ldots, v_{r}=t$ such that $\forall i \in[r-1] v_{i}$ and v_{i+1} belong to the same edge.

Paths

Def.

Let $s, t \in V$. An s - t path is a sequence of vertices $s=v_{1}, \ldots, v_{r}=t$ such that $\forall i \in[r-1] v_{i}$ and v_{i+1} belong to the same edge.

Paths

Def.

Let $s, t \in V$. An $s-t$ path is a sequence of vertices $s=v_{1}, \ldots, v_{r}=t$ such that $\forall i \in[r-1] v_{i}$ and v_{i+1} belong to the same edge.

```
[k] ={1,\ldots,k} for
A hypergraph G}=(V,E
V= VI}\cup\ldots\cup\mp@subsup{V}{k}{
```


Separability - Key Property

Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v^{\prime} from the same group V_{i} where $i \in[k]$ are separable if there exists $j \in[k]$ with $j \neq i$ such that every $v-v^{\prime}$ path contains a vertex in V_{j}.

Separability - Key Property

Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v^{\prime} from the same group V_{i} where $i \in[k]$ are separable if there exists $j \in[k]$ with $j \neq i$ such that every $v-v^{\prime}$ path contains a vertex in V_{j}.
(Informally, removing V_{j} from the vertex set and from the edges separates v and v^{\prime}.)

Separability - Key Property

Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v^{\prime} from the same group V_{i} where $i \in[k]$ are separable if there exists $j \in[k]$ with $j \neq i$ such that every $v-v^{\prime}$ path contains a vertex in V_{j}.
(Informally, removing V_{j} from the vertex set and from the edges separates v and v^{\prime}.)

Separability - Key Property

Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v^{\prime} from the same group V_{i} where $i \in[k]$ are separable if there exists $j \in[k]$ with $j \neq i$ such that every $v-v^{\prime}$ path contains a vertex in V_{j}.
(Informally, removing V_{j} from the vertex set and from the edges separates v and v^{\prime}.)

Separability - Key Property

Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v^{\prime} from the same group V_{i} where $i \in[k]$ are separable if there exists $j \in[k]$ with $j \neq i$ such that every $v-v^{\prime}$ path contains a vertex in V_{j}.
(Informally, removing V_{j} from the vertex set and from the edges separates v and v^{\prime}.)

A k-hypergraph is called vertex separable if every two vertices from the same group are separable.

Main Result

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

$$
\text { hyperedge } e \rightarrow \text { point } p^{e}
$$

vertex $v_{i} \rightarrow$ line $\ell^{v_{i}}$

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.
For each group V_{i} we use an auxiliary
hyperedge $e \rightarrow$ point p^{e}
vertex $v_{i} \rightarrow$ line $\ell^{v_{i}}$
graph G_{i} that gives us the i-th coordinate for the points and the lines.

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

For each group V_{i} we use an auxiliary
hyperedge $e \rightarrow$ point p^{e}
vertex $v_{i} \rightarrow$ line $\ell^{v_{i}}$
graph G_{i} that gives us the i-th coordinate for the points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

For each group V_{i} we use an auxiliary graph G_{i} that gives us the i-th coordinate for the points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}

e and e^{\prime} from G_{i} are adjacent iff they have a common vertex in $V_{j}, j \neq i$
$\begin{aligned} \text { hyperedge } e & \rightarrow \text { point } p^{e} \\ \text { vertex } v_{i} & \rightarrow \text { line } \ell^{v_{i}}\end{aligned}$
G_{2}
${ }^{G_{1}}$ 。
G_{3}
-

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

For each group V_{i} we use an auxiliary graph G_{i} that gives us the i-th coordinate for the points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}

$\begin{aligned} \text { hyperedge } e & \rightarrow \text { point } p^{e} \\ \text { vertex } v_{i} & \rightarrow \text { line } \ell^{v_{i}}\end{aligned}$
vertex $v_{i} \rightarrow$ line $\ell^{v_{i}}$

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

For each group V_{i} we use an auxiliary graph G_{i} that gives us the i-th coordinate for the points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}

$\begin{aligned} \text { hyperedge } e & \rightarrow \text { point } p^{e} \\ \text { vertex } v_{i} & \rightarrow \text { line } \ell^{v_{i}}\end{aligned}$
vertex $v_{i} \rightarrow$ line $\ell^{v_{i}}$

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

For each group V_{i} we use an auxiliary graph G_{i} that gives us the i-th coordinate for the points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}

e and e^{\prime} from G_{i} are adjacent iff they have a common vertex in $V_{j}, j \neq i$
$\begin{aligned} \text { hyperedge } e & \rightarrow \text { point } p^{e} \\ \text { vertex } v_{i} & \rightarrow \text { line } \ell^{v_{i}}\end{aligned}$
vertex $v_{i} \rightarrow$ line $\ell^{v_{i}}$

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

For each group V_{i} we use an auxiliary graph G_{i} that gives us the i-th coordinate for the points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}

e and e^{\prime} from G_{i} are adjacent iff they have a common vertex in $V_{j}, j \neq i$
$\begin{aligned} \text { hyperedge } e & \rightarrow \text { point } p^{e} \\ \text { vertex } v_{i} & \rightarrow \text { line } \ell^{v_{i}}\end{aligned}$

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.
For each group V_{i} we use an auxiliary graph G_{i} that gives us the i-th coordinate for the points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}

e and e^{\prime} from G_{i} are adjacent iff they have a common vertex in $V_{j}, j \neq i$

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.
For each group V_{i} we use an auxiliary $\begin{aligned} \text { hyperedge } e & \rightarrow \text { point } p^{e} \\ \text { vertex } v_{i} & \rightarrow \text { line } \ell^{v_{i}}\end{aligned}$ graph G_{i} that gives us the i-th coordinate for the points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}
e and e^{\prime} from G_{i} are adjacent iff they have a common vertex in $V_{j}, j \neq i$

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.
For each group V_{i} we use an auxiliary $\begin{aligned} \text { hyperedge } e & \rightarrow \text { point } p^{e} \\ \text { vertex } v_{i} & \rightarrow \text { line } \ell^{v_{i}}\end{aligned}$ graph G_{i} that gives us the i-th coordinate for the points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}
e and e^{\prime} from G_{i} are adjacent iff they have a common vertex in $V_{j}, j \neq i$

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.
For each group V_{i} we use an auxiliary $\begin{aligned} \text { hyperedge } e & \rightarrow \text { point } p^{e} \\ \text { vertex } v_{i} & \rightarrow \text { line } \ell^{v_{i}}\end{aligned}$ graph G_{i} that gives us the i-th coordinate for the points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}
e and e^{\prime} from G_{i} are adjacent iff they have a common vertex in $V_{j}, j \neq i$

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.
For each group V_{i} we use an auxiliary $\begin{aligned} \text { hyperedge } e & \rightarrow \text { point } p^{e} \\ \text { vertex } v_{i} & \rightarrow \text { line } \ell^{v_{i}}\end{aligned}$ graph G_{i} that gives us the i-th coordinate for the points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}
e and e^{\prime} from G_{i} are adjacent iff they have a common vertex in $V_{j}, j \neq i$

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.
For each group V_{i} we use an auxiliary $\begin{aligned} \text { hyperedge } e & \rightarrow \text { point } p^{e} \\ \text { vertex } v_{i} & \rightarrow \text { line } \ell^{v_{i}}\end{aligned}$ graph G_{i} that gives us the i-th coordinate for the points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}
e and e^{\prime} from G_{i} are adjacent iff they have a common vertex in $V_{j}, j \neq i$

Main Result - Construction

vertex separable $\quad \Rightarrow \quad$ there is a representation

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.
For each group V_{i} we use an auxiliary graph G_{i} that gives us the i-th coordinate for the points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}
e and e^{\prime} from G_{i} have a common v

Proof - Part 2 vertex separable \leftarrow there is a representation

Assume that G is not vertex separable but it has a point line cover representation.

Proof - Part 2 vertex separable \Leftarrow there is a representation

Assume that G is not vertex separable but it has a point line cover representation.

- it contains at least two distinct vertices v and v^{\prime} from the same group V_{i} that are not separable;

Proof - Part 2 vertex separable \Leftarrow there is a representation

Assume that G is not vertex separable but it has a point line cover representation.

- it contains at least two distinct vertices v and v^{\prime} from the same group V_{i} that are not separable;
- for each group V_{j} with $j \neq i$, there exists a $v-v^{\prime}$ path $v=v_{1}, \ldots, v_{r}=v^{\prime}$ such that $v_{t} \notin V_{j}$ for each $t \in[r]$;

Proof - Part 2 vertex separable \Leftarrow there is a representation

Assume that G is not vertex separable but it has a point line cover representation.

- it contains at least two distinct vertices v and v^{\prime} from the same group V_{i} that are not separable;
- for each group V_{j} with $j \neq i$, there exists a $v-v^{\prime}$ path $v=v_{1}, \ldots, v_{r}=v^{\prime}$ such that $v_{t} \notin V_{j}$ for each $t \in[r]$;
- all lines $\ell^{v_{t}}$ with $t \in[r]$ that represent the vertices v_{1}, \ldots, v_{r} lie on the same hyperplane H_{j} perpendicular to the x_{j}-axis;

Proof - Part 2 vertex separable \Leftarrow there is a representation

Assume that G is not vertex separable but it has a point line cover representation.

- it contains at least two distinct vertices v and v^{\prime} from the same group V_{i} that are not separable;
- for each group V_{j} with $j \neq i$, there exists a $v-v^{\prime}$ path $v=v_{1}, \ldots, v_{r}=v^{\prime}$ such that $v_{t} \notin V_{j}$ for each $t \in[r]$;
- all lines $\ell^{v_{t}}$ with $t \in[r]$ that represent the vertices v_{1}, \ldots, v_{r} lie on the same hyperplane H_{j} perpendicular to the x_{j}-axis;

Proof - Part 2 vertex separable \Leftarrow there is a representation

Assume that G is not vertex separable but it has a point line cover representation.

- it contains at least two distinct vertices v and v^{\prime} from the same group V_{i} that are not separable;
- for each group V_{j} with $j \neq i$, there exists a $v-v^{\prime}$ path $v=v_{1}, \ldots, v_{r}=v^{\prime}$ such that $v_{t} \notin V_{j}$ for each $t \in[r]$;
- all lines $\ell^{v_{t}}$ with $t \in[r]$ that represent the vertices v_{1}, \ldots, v_{r} lie on the same hyperplane H_{j} perpendicular to the x_{j}-axis;

Proof - Part 2 vertex separable \Leftarrow there is a representation

Assume that G is not vertex separable but it has a point line cover representation.

- it contains at least two distinct vertices v and v^{\prime} from the same group V_{i} that are not separable;
- for each group V_{j} with $j \neq i$, there exists a $v-v^{\prime}$ path $v=v_{1}, \ldots, v_{r}=v^{\prime}$ such that $v_{t} \notin V_{j}$ for each $t \in[r]$;
- all lines $\ell^{v_{t}}$ with $t \in[r]$ that represent the vertices v_{1}, \ldots, v_{r} lie on the same hyperplane H_{j} perpendicular to the x_{j}-axis;
- the lines ℓ^{v} and $\ell^{v^{\prime}}$ lie in the intersection $\bigcap_{j \neq i} H_{j}$.

Proof - Part 2 vertex separable \Leftarrow there is a representation

Assume that G is not vertex separable but it has a point line cover representation.

- it contains at least two distinct vertices v and v^{\prime} from the same group V_{i} that are not separable;
- for each group V_{j} with $j \neq i$, there exists a $v-v^{\prime}$ path $v=v_{1}, \ldots, v_{r}=v^{\prime}$ such that $v_{t} \notin V_{j}$ for each $t \in[r]$;
- all lines $\ell^{v_{t}}$ with $t \in[r]$ that represent the vertices v_{1}, \ldots, v_{r} lie on the same hyperplane H_{j} perpendicular to the x_{j}-axis;
- the lines ℓ^{v} and $\ell^{v^{\prime}}$ lie in the intersection $\bigcap_{j \neq i} H_{j}$.

Further Results \& Open Questions

- Generalization to ℓ-dimensional subspace, $\ell<d$

Further Results \& Open Questions

- Generalization to ℓ-dimensional subspace, $\ell<d$

Space		d-dimensional
Covering objects	lines	
Representable hypergraphs	vertex separable	

Further Results \& Open Questions

- Generalization to ℓ-dimensional subspace, $\ell<d$

Space	lines	
Covering objects	d-dimensional	
Representable hypergraphs	vertex separable	
polynomial recognition algorithm		

Further Results \& Open Questions

- Generalization to ℓ-dimensional subspace, $\ell<d$

Space	d-dimensional		
Covering objects	lines	$(d-1)$ - dimensional subspaces	
Representable hypergraphs	vertex separable	all	
polynomial recognition algorithm			

Further Results \& Open Questions

- Generalization to ℓ-dimensional subspace, $\ell<d$

Space	lines	d-dimensional
Covering objects	$(d-1)-$ dimensional subspaces	
Representable hypergraphs	vertex separable	all
	polynomial recognition algorithm	similar to representation of bipartite graphs in 2D

Further Results \& Open Questions

- Generalization to ℓ-dimensional subspace, $\ell<d$

Space	d-dimensional		
Covering	lines	ℓ-dimension	$\begin{array}{c}(d-1)- \\ \text { objects }\end{array}$
$\begin{array}{l}\text { Representable } \\ \text { hypergraphs }\end{array}$	$\begin{array}{c}\text { vertex } \\ \text { separable }\end{array}$	$\begin{array}{c}\text { generalized } \\ \text { vertex separable }\end{array}$	all
$\begin{array}{l}\text { polynomial } \\ \text { recognition } \\ \text { algorithm }\end{array}$			
	subspaces		

Further Results \& Open Questions

- Generalization to ℓ-dimensional subspace, $\ell<d$

Space	d-dimensional		
Covering objects	lines	$\begin{gathered} \hline \ell \text {-dimension } \\ \text { subspaces } \\ 2 \leq \ell \leq(d-2) \end{gathered}$	$(d-1)-$ dimensional subspaces
Representable hypergraphs	vertex separable	generalized vertex separable	all
	polynomial recognition algorithm	polynomial for a fixed d	

Further Results \& Open Questions

- Generalization to ℓ-dimensional subspace, $\ell<d$

Space	d-dimensional		
Covering objects	lines	ℓ-dimension	$(d-1)$ -
subspaces			
$2 \leq \ell \leq(d-2)$	dimensional subspaces		
Representable hypergraphs	vertex separable	generalized vertex separable	all
	polynomial recognition algorithm	polynomial for a fixed d	
		What about non-constant $d ?$	

Further Results \& Open Questions

- Generalization to ℓ-dimensional subspace, $\ell<d$

Space	d-dimensional		

- Design improved algorithms for vertex separable hypergraphs (e.g vertex cover, matching) parameterized by ℓ and d

Further Results \& Open Questions

- Generalization to ℓ-dimensional subspace, $\ell<d$

Space	d-dimensional		
Covering objects	lines	ℓ-dimension subspaces $2 \leq \ell \leq(d-2)$	$(d-1)-$ dimensional subspaces
Representable hypergraphs	vertex separable	generalized vertex separable	all
	polynomial recognition algorithm	polynomial for a fixed d What about	on-constant d ?

- Design improved algorithms for vertex separable hypergraphs (e.g vertex cover, matching) parameterized by ℓ and d
- Relation to other graph classes

Further Results \& Open Questions

- Generalization to ℓ-dimensional subspace, $\ell<d$

Space		d-dimensional	
Covering objects	lines	ℓ-dimension subspaces $2 \leq \ell \leq(d-2)$	(d-1)dimensional subspaces
Representable hypergraphs	$\begin{gathered} \text { vertex } \\ \text { separable } \end{gathered}$	generalized vertex separable	all
polynomial recognition algorithm polynomial for a fixed d What about non-constant d ? - Design improved algorithms for vertex separable hypergraphs (e.g vertex cover, matching) parameterized by ℓ and d			
- Design improved algorithms for vertex separable hypergraphs (e.g vertex cover, matching) parameterized by ℓ and d			

- Relation to other graph classes

