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v 1
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and
No TN o

exception: 2D intersection property
does not hold

Which k-hypergraphs can be represented
via axis-aligned point line cover instances?
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Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v’ from
the same group V; where i@ € [k] are separable if there exists
j € |k] with j # ¢ such that every v-v’ path contains a vertex in

V.
J (Informally, removing V; from the vertex set
and from the edges separates v and v'.)

A k-hypergraph is called
verter separable if every two vertices
from the same group are separable.
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Main Result — Construction

vertex separable — there is a representation
Theorem
A k-hypergraph G is representable if and only if it is vertex separable.

For each group V; we use an auxiliary
graph (G; that gives us the i-th coordinate
for the points and the lines.

e and e’ from
hyperedge in G — vertex in ;' have a common v
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