Hypergraph Representation via

Axis-Aligned Point-Subspace Cover

Oksana Firman
Julius-Maximilians-Universität Würzburg, Germany

Geometric Representation of (Hyper)graphs

Geometric Representation of (Hyper)graphs

contact representation

by discs

Geometric Representation of (Hyper)graphs

contact representation

by discs
intersection representation
by segments

Geometric Representation of (Hyper)graphs

contact representation
[Chalopin, Gonçalves,

intersection representation

by segments

Geometric Representation of (Hyper)graphs

[Chalopin, Gonçalves,

contact representation
intersection representation

covering representation points by rectangles

points \rightarrow vertices
covering objects \rightarrow hyperedges

Geometric Representation of (Hyper)graphs

contact representation

intersection representation

covering representation points by rectangles

by segments
points ${ }^{\text {y }}$ vertices
covering objects hyperedges

Geometric Representation of (Hyper)graphs

contact representation

intersection representation

points by rectangles

by segments
points y vertices
covering objects hyperedges

Point Line Cover

$$
\text { set of points } P \text { in 2D }
$$

Point Line Cover

set of points P in 2D
 set of lines

Point Line Cover

set of points P in 2D
set of lines
Hypergraph representation

Point Line Cover

set of points P in 2D

vertices
 set of lines

Hypergraph representation

Point Line Cover

set of lines
Hypergraph representation

Point Line Cover - Motivation

set of points P in 2D

set of lines

Hypergraph representation

point line cover instances
$\subset \quad$ general hypergraphs

Point Line Cover - Motivation

set of points P in 2D set of lines

Hypergraph representation

intersection property does not hold
point line cover instances

general hypergraphs

Point Line Cover - Motivation

set of points P in 2D set of lines

Hypergraph representation

intersection property does not hold
point line cover instances \subset general hypergraphs
Is there a simple combinatorial characterization?

Axis-Aligned Point Line Cover in 2D

Axis-Aligned Point Line Cover in 3D

Axis-Aligned Point Line Cover in 3D

(every hyperedge has
3-uniform
exactly 3 vertices,
one from each group)
3-partite

Axis-Aligned Point Line Cover in 3D

and so on...
(every hyperedge has
exactly 3 vertices,
one from each group)
3-partite

Axis-Aligned Point Line Cover in 3D

(every hyperedge has exactly 3 vertices,
one from each group)
3-hypergraph

Representable Hypergraphs

axis-aligned point line cover instance

k-partite and k-uniform

Representable Hypergraphs

axis-aligned point line cover instance

$$
\downarrow \uparrow ?
$$

k-hypergraph
k-partite and k-uniform

Representable Hypergraphs

axis-aligned point line cover instance

$$
\downarrow \quad \uparrow ?
$$

k-hypergraph
k-partite and k-uniform

No
exception: 2D intersection property does not hold

Representable Hypergraphs

axis-aligned point line cover instance

$$
\underset{\text { k-hypergraph }}{\downarrow \text { k-partite and } k \text {-uniform }}
$$

No
exception: 2D intersection property does not hold

Which k-hypergraphs can be represented via axis-aligned point line cover instances?

Paths
Notation.

$$
\begin{aligned}
& {[k]=\{1, \ldots, k\} \text { for } k \in \mathbb{N}} \\
& A \text { hypergraph } G=(V, E) \\
& V=V_{1} \cup \ldots \cup V_{k}
\end{aligned}
$$

Paths

$$
\begin{aligned}
& {[k]=\{1, \ldots, k\} \text { for } k \in \mathbb{N}} \\
& \text { A hypergraph } G=(V, E) \\
& V=V_{1} \cup \ldots \cup V_{k}
\end{aligned}
$$

Def.
Let $s, t \in V$. An $s-t$ path is a sequence of vertices $s=v_{1}, \ldots, v_{r}=t$ such that $\forall i \in[r-1] v_{i}$ and v_{i+1} belong to the same edge.

Paths

Notation.

$$
\begin{aligned}
& {[k]=\{1, \ldots, k\} \text { for } k \in \mathbb{N}} \\
& A \text { hypergraph } G=(V, E) \\
& V=V_{1} \cup \ldots \cup V_{k}
\end{aligned}
$$

Def.
Let $s, t \in V$. An $s-t$ path is a sequence of vertices $s=v_{1}, \ldots, v_{r}=t$ such that $\forall i \in[r-1] v_{i}$ and v_{i+1} belong to the same edge.

Paths

Notation.

$$
\begin{aligned}
& {[k]=\{1, \ldots, k\} \text { for } k \in \mathbb{N}} \\
& \text { A hypergraph } G=(V, E) \\
& V=V_{1} \cup \ldots \cup V_{k}
\end{aligned}
$$

Def.
Let $s, t \in V$. An $s-t$ path is a sequence of vertices $s=v_{1}, \ldots, v_{r}=t$ such that $\forall i \in[r-1] v_{i}$ and v_{i+1} belong to the same edge.

Separability - Key Property

Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v^{\prime} from the same group V_{i} where $i \in[k]$ are separable if there exists $j \in[k]$ with $j \neq i$ such that every $v-v^{\prime}$ path contains a vertex in V_{j}.

Separability - Key Property

Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v^{\prime} from the same group V_{i} where $i \in[k]$ are separable if there exists $j \in[k]$ with $j \neq i$ such that every $v-v^{\prime}$ path contains a vertex in V_{j}.
(Informally, removing V_{j} from the vertex set and from the edges separates v and v^{\prime}.)

Separability - Key Property

Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v^{\prime} from the same group V_{i} where $i \in[k]$ are separable if there exists $j \in[k]$ with $j \neq i$ such that every $v-v^{\prime}$ path contains a vertex in V_{j}.
(Informally, removing V_{j} from the vertex set and from the edges separates v and v^{\prime}.)

Separability - Key Property

Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v^{\prime} from the same group V_{i} where $i \in[k]$ are separable if there exists $j \in[k]$ with $j \neq i$ such that every $v-v^{\prime}$ path contains a vertex in V_{j}.
(Informally, removing V_{j} from the vertex set and from the edges separates v and v^{\prime}.)

Separability - Key Property

Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v^{\prime} from the same group V_{i} where $i \in[k]$ are separable if there exists $j \in[k]$ with $j \neq i$ such that every $v-v^{\prime}$ path contains a vertex in V_{j}.
(Informally, removing V_{j} from the vertex set and from the edges separates v and v^{\prime}.)

A k-hypergraph is called vertex separable if every two vertices from the same group are separable.

Main Result

Theorem
A k-hypergraph G is representable if and only if it is vertex separable.

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable. hyperedge $e \rightarrow$ point p^{e} vertex $v_{i} \rightarrow$ line $\ell^{v_{i}}$

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable. hyperedge $e \rightarrow$ point p^{e} vertex $v_{i} \rightarrow$ line $\ell^{v_{i}}$
For each group V_{i} we use an auxiliary graph G_{i} that gives us the i-th coordinate for the points and the lines.

Main Result - Construction

Theorem
A k-hypergraph G is representable if and only if it is vertex separable.
hyperedge $e \rightarrow$ point p^{e} vertex $v_{i} \rightarrow$ line $\ell^{v_{i}}$
For each group V_{i} we use an auxiliary graph G_{i} that gives us the i-th coordinate for the points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}

G_{1}
G_{2}
-
G3

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.
hyperedge $e \rightarrow$ point p^{e} vertex $v_{i} \rightarrow$ line $\ell^{v_{i}}$

For each group V_{i} we use an auxiliary graph G_{i} that gives us the i-th coordinate for the points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}

G_{1}

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.
hyperedge $e \rightarrow$ point p^{e} vertex $v_{i} \rightarrow$ line $\ell^{v_{i}}$

For each group V_{i} we use an auxiliary graph G_{i} that gives us the i-th coordinate for the points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}

G_{1}
G_{2}
G3

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable. hyperedge $e \rightarrow$ point p^{e} vertex $v_{i} \rightarrow$ line $\ell^{v_{i}}$
For each group V_{i} we use an auxiliary graph G_{i} that gives us the i-th coordinate for the
points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}
e and e^{\prime} from G_{i} are adjacent iff they have a common vertex in $V_{j}, j \neq i$

G_{1}
-

G_{2}

G3

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable. hyperedge $e \rightarrow$ point p^{e} vertex $v_{i} \rightarrow$ line $\ell^{v_{i}}$
For each group V_{i} we use an auxiliary graph G_{i} that gives us the i-th coordinate for the
points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}
e and e^{\prime} from G_{i} are adjacent iff they have a common vertex in $V_{j}, j \neq i$

G_{1}

1
G_{2}

G_{3}

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable. hyperedge $e \rightarrow$ point p^{e} vertex $v_{i} \rightarrow$ line $\ell^{v_{i}}$
For each group V_{i} we use an auxiliary graph G_{i} that gives us the i-th coordinate for the
points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}
e and e^{\prime} from G_{i} are adjacent iff they have a common vertex in $V_{j}, j \neq i$

G_{2}

G3
;

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.
hyperedge $e \rightarrow$ point p^{e} vertex $v_{i} \rightarrow$ line $\ell^{v_{i}}$

For each group V_{i} we use an auxiliary graph G_{i} that gives us the i-th coordinate for the
points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}
e and e^{\prime} from G_{i} are adjacent iff they have a common vertex in $V_{j}, j \neq i$

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.
hyperedge $e \rightarrow$ point p^{e} vertex $v_{i} \rightarrow$ line $\ell^{v_{i}}$

For each group V_{i} we use an auxiliary graph G_{i} that gives us the i-th coordinate for the
points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}
e and e^{\prime} from G_{i} are adjacent iff they have a common vertex in $V_{j}, j \neq i$

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.
hyperedge $e \rightarrow$ point p^{e} vertex $v_{i} \rightarrow$ line $\ell^{v_{i}}$

For each group V_{i} we use an auxiliary graph G_{i} that gives us the i-th coordinate for the
points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}
e and e^{\prime} from G_{i} are adjacent iff they have a common vertex in $V_{j}, j \neq i$

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.
hyperedge $e \rightarrow$ point p^{e} vertex $v_{i} \rightarrow$ line $\ell^{v_{i}}$

For each group V_{i} we use an auxiliary graph G_{i} that gives us the i-th coordinate for the
points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}
e and e^{\prime} from G_{i} are adjacent iff they have a common vertex in $V_{j}, j \neq i$

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.
hyperedge $e \rightarrow$ point p^{e} vertex $v_{i} \rightarrow$ line $\ell^{v_{i}}$

For each group V_{i} we use an auxiliary graph G_{i} that gives us the i-th coordinate for the
points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}
e and e^{\prime} from G_{i} are adjacent iff they have a common vertex in $V_{j}, j \neq i$

G_{3}
$\bullet 2$

$$
p^{e_{1}}=(1,1,1) \quad p^{e_{2}}=(2,1,1) \quad p^{e_{3}}=(2,1,2)
$$

$$
\begin{array}{ll}
\ell^{v_{1}^{1}}=(\cdot, 1,1) \\
\ell^{v_{2}^{1}}=(1, \cdot, 1) & \ell^{v_{2}^{2}}=(2, \cdot, 1) \\
\ell^{v_{3}^{1}}=(1,1, \cdot) & \ell^{v_{3}^{2}}=(2,1, \cdot)
\end{array}
$$

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.
hyperedge $e \rightarrow$ point p^{e} vertex $v_{i} \rightarrow$ line $\ell^{v_{i}}$
For each group V_{i} we use an auxiliary graph G_{i} that gives us the i-th coordinate for the
points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}
e and e^{\prime} from G_{i} are adjacent iff they have a common vertex in $V_{j}, j \neq i$

G1

$$
p^{e_{1}}=(1,1,1) \quad p^{e_{2}}=(2,1,1) \quad p^{e_{3}}=(2,1,2)
$$

$$
\begin{array}{ll}
e^{v_{1}^{1}}=(\cdot, 1,1) \\
e^{v_{2}^{1}}=(1, \cdot, 1) \\
e^{v_{3}^{1}}=(1,1, \cdot) & e^{v_{2}^{2}}=(2, \cdot, 1)
\end{array} \quad \begin{aligned}
& e^{v_{3}^{2}}=(2,1, \cdot)
\end{aligned} \quad \begin{aligned}
& e_{1}^{v_{2}^{3}}=(\cdot, 1,2)
\end{aligned}
$$

Main Result - Construction

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

For each group V_{i} we use an auxiliary gra G_{i} that gives us the i-th coordinate for th points and the lines.
hyperedge in $G \rightarrow$ vertex in G_{i}

Assume that G is not vertex separable but it has a point line cover representation.

Proof - Part 2

Assume that G is not vertex separable but it has a point line cover representation.

- it contains at least two distinct vertices v and v^{\prime} from the same group V_{i} that are not separable;

Proof - Part 2

Assume that G is not vertex separable but it has a point line cover representation.

- it contains at least two distinct vertices v and v^{\prime} from the same group V_{i} that are not separable;
- for each group V_{j} with $j \neq i$, there exists a $v-v^{\prime}$ path $v=v_{1}, \ldots, v_{r}=v^{\prime}$ such that $v_{t} \notin V_{j}$ for each $t \in[r]$;

Proof - Part 2

Assume that G is not vertex separable but it has a point line cover representation.

- it contains at least two distinct vertices v and v^{\prime} from the same group V_{i} that are not separable;
- for each group V_{j} with $j \neq i$, there exists a $v-v^{\prime}$ path $v=v_{1}, \ldots, v_{r}=v^{\prime}$ such that $v_{t} \notin V_{j}$ for each $t \in[r]$;
- all lines $\ell^{v_{t}}$ with $t \in[r]$ that represent the vertices v_{1}, \ldots, v_{r} lie on the same hyperplane H_{j} perpendicular to the x_{j}-axis;

Proof - Part 2

Assume that G is not vertex separable but it has a point line cover representation.

- it contains at least two distinct vertices v and v^{\prime} from the same group V_{i} that are not separable;
- for each group V_{j} with $j \neq i$, there exists a $v-v^{\prime}$ path $v=v_{1}, \ldots, v_{r}=v^{\prime}$ such that $v_{t} \notin V_{j}$ for each $t \in[r]$;
- all lines $\ell^{v_{t}}$ with $t \in[r]$ that represent the vertices v_{1}, \ldots, v_{r} lie on the same hyperplane H_{j} perpendicular to the x_{j}-axis;

Proof - Part 2

Assume that G is not vertex separable but it has a point line cover representation.

- it contains at least two distinct vertices v and v^{\prime} from the same group V_{i} that are not separable;
- for each group V_{j} with $j \neq i$, there exists a $v-v^{\prime}$ path $v=v_{1}, \ldots, v_{r}=v^{\prime}$ such that $v_{t} \notin V_{j}$ for each $t \in[r]$;
- all lines $\ell^{v_{t}}$ with $t \in[r]$ that represent the vertices v_{1}, \ldots, v_{r} lie on the same hyperplane H_{j} perpendicular to the x_{j}-axis;

Proof - Part 2

Assume that G is not vertex separable but it has a point line cover representation.

- it contains at least two distinct vertices v and v^{\prime} from the same group V_{i} that are not separable;
- for each group V_{j} with $j \neq i$, there exists a $v-v^{\prime}$ path $v=v_{1}, \ldots, v_{r}=v^{\prime}$ such that $v_{t} \notin V_{j}$ for each $t \in[r]$;
- all lines $\ell^{v_{t}}$ with $t \in[r]$ that represent the vertices v_{1}, \ldots, v_{r} lie on the same hyperplane H_{j} perpendicular to the x_{j}-axis;
- the lines ℓ^{v} and $\ell^{v^{\prime}}$ lie in the intersection $\bigcap_{j \neq i} H_{j}$.

Proof - Part 2

Assume that G is not vertex separable but it has a point line cover representation.

- it contains at least two distinct vertices v and v^{\prime} from the same group V_{i} that are not separable;
- for each group V_{j} with $j \neq i$, there exists a $v-v^{\prime}$ path $v=v_{1}, \ldots, v_{r}=v^{\prime}$ such that $v_{t} \notin V_{j}$ for each $t \in[r]$;
- all lines $\ell^{v_{t}}$ with $t \in[r]$ that represent the vertices v_{1}, \ldots, v_{r} lie on the same hyperplane H_{j} perpendicular to the x_{j}-axis;
- the lines ℓ^{v} and $\ell^{v^{\prime}}$ lie in the intersection $\bigcap_{j \neq i} H_{j}$.

Further Results \& Open Questions

- Generalization to ℓ-dimensional subspace, $\ell<d$

Further Results \& Open Questions

- Generalization to ℓ-dimensional subspace, $\ell<d$

Space	lines	d-dimensional
Covering objects	vertex separable	
Representable hypergraphs		

Further Results \& Open Questions

- Generalization to ℓ-dimensional subspace, $\ell<d$

Space	lines
Covering objects	vertex separable
Representablensional hypergraphs	polynomial recognition algorithm

Further Results \& Open Questions

- Generalization to ℓ-dimensional subspace, $\ell<d$

Space	lines	d-dimensional
Covering objects	vertex separable	dimensional subspaces
Representable hypergraphs	all	
	polynomial recognition algorithm	

Further Results \& Open Questions

- Generalization to ℓ-dimensional subspace, $\ell<d$

Space	lines	d-dimensional
Covering objects	$(d-1)-$ Representable hypergraphs	vertex separable
	polynomial recognition algorithm	all

Further Results \& Open Questions

- Generalization to ℓ-dimensional subspace, $\ell<d$

Space	d-dimensional		
Covering objects	lines	ℓ-dimension subspaces $2 \leq \ell \leq(d-2)$	$(d-1)-$ dimensional subspaces
Representable hypergraphs	vertex separable	generalized vertex separable	all
	polynomial recognition algorithm		

Further Results \& Open Questions

- Generalization to ℓ-dimensional subspace, $\ell<d$

Space	d-dimensional		
Covering	lines	ℓ-dimension subspaces objects	$(d-1)$ - dimensional subspaces
Representable hypergraphs	vertex separable	generalized vertex separable	all
	polynomial recognition algorithm	polynomial for a fixed d	

Further Results \& Open Questions

- Generalization to ℓ-dimensional subspace, $\ell<d$

Space	d-dimensional		
Covering objects	lines	ℓ-dimension subspaces $2 \leq \ell \leq(d-2)$	$(d-1)$ dimensional subspaces
Representable hypergraphs	vertex separable	generalized vertex separable	all
	polynomial recognition algorithm	polynomial for a fixed d	
		What about non-constant d ?	

Further Results \& Open Questions

- Generalization to ℓ-dimensional subspace, $\ell<d$

Space	d-dimensional		
Covering objects	lines	ℓ-dimension subspaces $2 \leq \ell \leq(d-2)$	$(d-1)$ - dimensional subspaces
Representable hypergraphs	vertex separable	generalized vertex separable	all
	polynomial recognition algorithm	polynomial for a fixed d	
		What about non-constant d ?	

- Design improved algorithms for vertex separable hypergraphs (e.g vertex cover, matching) parameterized by ℓ and d

Further Results \& Open Questions

- Generalization to ℓ-dimensional subspace, $\ell<d$

Space	d-dimensional		
Covering objects	lines	-dimension subspaces $2 \leq \ell \leq(d-2)$	$(d-1)$ - dimensional subspaces
Representable hypergraphs	vertex separable	generalized vertex separable	all
	polynomial recognition algorithm	polynomial for a fixed d	
		What about non-constant d ?	

- Design improved algorithms for vertex separable hypergraphs (e.g vertex cover, matching) parameterized by ℓ and d
- Relation to other graph classes

Further Results \& Open Questions $T_{h^{\prime} n_{k}}$

- Generalization to ℓ-dimensional subspace, $\ell<d$

- Design improved algorithms for vertex separable hypergraphs (e.g vertex cover, matching) parameterized by ℓ and d
- Relation to other graph classes

