

Hypergraph Representation via Axis-Aligned Point-Subspace Cover

Oksana Firman Joachim Spoerhase

Julius-Maximilians-Universität Würzburg, Germany

intersection representation by segments

covering representation

points by rectangles

contact representation

by discs

intersection representation

by segments

covering representation

points by rectangles

points \rightarrow vertices

covering objects \rightarrow hyperedges

by discs

intersection representation

covering representation

points by rectangles

set of points P in 2D

• •

set of points P in 2D

set of lines

set of points P in 2D

set of lines

Hypergraph representation

set of points P in 2D

vertices set of lines

Hypergraph representation

hyperedges

set of points P in 2D

set of lines

Hypergraph representation

Point Line Cover – Motivation

set of points *P* in 2D

set of lines

Hypergraph representation

Point Line Cover – Motivation

set of points P in 2D

set of lines

Hypergraph representation

Point Line Cover – Motivation

set of points P in 2D

set of lines

Hypergraph representation

point line cover instances \subset general hypergraphs

Is there a simple combinatorial characterization?

Open Q. [Kumar, Ramesh, ICALP 2000]

(every hyperedge has exactly 3 vertices, one from each group)

3-uniform
3-partite

(every hyperedge has exactly 3 vertices, one from each group)

3-uniform

3-partite

easy to check

NP-hard

(every hyperedge has exactly 3 vertices, one from each group)

3-uniform

3-partite

3-hypergraph

easy to check

NP-hard

axis-aligned point line cover instance

k-hypergraph

k-partite and *k*-uniform

axis-aligned point line cover instance

k-partite and *k*-uniform

axis-aligned point line cover instance

k-hypergraph

k-partite and *k*-uniform

No

exception: 2D

axis-aligned point line cover instance

k-partite and *k*-uniform

No

exception: 2D

Which *k*-hypergraphs can be *represented* via axis-aligned point line cover instances?

Paths

Notation.

$$[k] = \{1, \ldots, k\}$$
 for $k \in \mathbb{N}$
A hypergraph $G = (V, E)$
 $V = V_1 \cup \ldots \cup V_k$

Paths

Notation.

$$[k] = \{1, \ldots, k\}$$
 for $k \in \mathbb{N}$
A hypergraph $G = (V, E)$
 $V = V_1 \cup \ldots \cup V_k$

Def.

Let $s, t \in V$. An s-t path is a sequence of vertices $s = v_1, \ldots, v_r = t$ such that $\forall i \in [r-1]$ v_i and v_{i+1} belong to the same edge.

Paths

Notation.

$$[k] = \{1, \ldots, k\}$$
 for $k \in \mathbb{N}$
A hypergraph $G = (V, E)$
 $V = V_1 \cup \ldots \cup V_k$

Def.

Let $s, t \in V$. An s-t path is a sequence of vertices $s = v_1, \ldots, v_r = t$ such that $\forall i \in [r-1]$ v_i and v_{i+1} belong to the same edge.

Paths

Notation.

$$[k] = \{1, \ldots, k\} \text{ for } k \in \mathbb{N}$$

A hypergraph $G = (V, E)$
 $V = V_1 \cup \ldots \cup V_k$

Def.

Let $s, t \in V$. An s-t path is a sequence of vertices $s = v_1, \ldots, v_r = t$ such that $\forall i \in [r-1]$ v_i and v_{i+1} belong to the same edge.

Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v' from the same group V_i where $i \in [k]$ are separable if there exists $j \in [k]$ with $j \neq i$ such that every v-v' path contains a vertex in V_j .

Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v' from the same group V_i where $i \in [k]$ are separable if there exists $j \in [k]$ with $j \neq i$ such that every v-v' path contains a vertex in V_j .

(Informally, removing V_j from the vertex set and from the edges separates v and v'.)

Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v' from the same group V_i where $i \in [k]$ are separable if there exists $j \in [k]$ with $j \neq i$ such that every v-v' path contains a vertex in V_j .

(Informally, removing V_j from the vertex set and from the edges separates v and v'.)

Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v' from the same group V_i where $i \in [k]$ are separable if there exists $j \in [k]$ with $j \neq i$ such that every v-v' path contains a vertex in V_j .

(Informally, removing V_j from the vertex set and from the edges separates v and v'.)

Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v' from the same group V_i where $i \in [k]$ are *separable* if there exists $j \in [k]$ with $j \neq i$ such that every v-v' path contains a vertex in V_j .

(Informally, removing V_j from the vertex set and from the edges separates v and v'.)

A *k*-hypergraph is called *vertex separable* if every two vertices from the same group are separable.

Main Result

Theorem

A k-hypergraph G is representable if and only if it is vertex separable.

Theorem

A k-hypergraph G is representable if and only if it is vertex separable. hyperedge $e \to \text{point } p^e$ vertex $v_i \to \text{line } \ell^{v_i}$

Theorem

A k-hypergraph G is representable if and only if it is vertex separable. hyperedge $e \to \text{point } p^e$ vertex $v_i \to \text{line } \ell^{v_i}$

For each group V_i we use an auxiliary graph G_i that gives us the i-th coordinate for the points and the lines.

Theorem

A k-hypergraph G is representable if and only if it is vertex separable. hyperedge $e \to \text{point } p^e$ vertex $v_i \to \text{line } \ell^{v_i}$

For each group V_i we use an auxiliary graph G_i that gives us the i-th coordinate for the points and the lines.

hyperedge in $G \rightarrow \text{vertex}$ in G_i

Theorem

A k-hypergraph G is representable if and only if it is vertex separable. hyperedge $e \rightarrow \text{point } p^e$

For each group V_i we use an auxiliary graph G_i that gives us the i-th coordinate for the points and the lines.

hyperedge in $G \rightarrow \text{vertex in } G_i$

e and e' from G_i are adjacent iff they have a common vertex in V_j , $j \neq i$

vertex $v_i \rightarrow \text{line } \ell^{v_i}$

 G_2 G_3

Theorem

A k-hypergraph G is representable if and only if it is vertex separable. hyperedge $e \rightarrow \text{point } p^e$

For each group V_i we use an auxiliary graph G_i that gives us the i-th coordinate for the points and the lines.

hyperedge in $G \rightarrow \text{vertex in } G_i$

vertex $v_i \rightarrow \text{line } \ell^{v_i}$

e and e' from G_i are adjacent iff they have a common vertex in V_j , $j \neq i$ G_2

Theorem

A k-hypergraph G is representable if and only if it is vertex separable. hyperedge e

For each group V_i we use an auxiliary graph G_i that gives us the i-th coordinate for the points and the lines.

hyperedge in $G \rightarrow \text{vertex in } G_i$

e and e' from G_i are adjacent iff they have a common vertex in V_j , $j \neq i$

Theorem

A k-hypergraph G is representable if and only if it is vertex separable. hyperedge $e \to \text{point } p^e$ vertex $v_i \to \text{line } \ell^{v_i}$

For each group V_i we use an auxiliary graph G_i that gives us the i-th coordinate for the points and the lines.

hyperedge in $G \rightarrow \text{vertex in } G_i$

Theorem

A k-hypergraph G is representable if and only if it is vertex separable. hyperedge e

For each group V_i we use an auxiliary graph G_i that gives us the i-th coordinate for the points and the lines.

hyperedge in $G \rightarrow \text{vertex in } G_i$

hyperedge $e \rightarrow \text{point } p^e$ vertex $v_i \rightarrow \text{line } \ell^{v_i}$

e and e' from G_i are adjacent iff they have a common vertex in V_j , $j \neq i$

Theorem

A k-hypergraph G is representable if and only if it is vertex separable. hyperedge $e \rightarrow \text{point } p^e$

For each group V_i we use an auxiliary graph G_i that gives us the i-th coordinate for the points and the lines.

hyperedge in $G \rightarrow \text{vertex in } G_i$

Theorem

A k-hypergraph G is representable if and only if it is vertex separable. hyperedge $e \rightarrow point p^e$

For each group V_i we use an auxiliary graph G_i that gives us the i-th coordinate for the points and the lines.

hyperedge in $G \rightarrow \text{vertex}$ in G_i

e and e' from G_i are adjacent iff they have a common vertex in V_i , $j \neq i$

$$G_1$$
 $1 \bullet 2$

$$p^{e_1} = (1, 1, 1)$$
 $p^{e_2} = (2, 1, 1)$ $p^{e_3} = (2, 1, 2)$

$$p^{e_2} = (2, 1, 1)$$

$$p^{e_3}=(2,1,2)$$

Theorem

A k-hypergraph G is representable if and only if it is vertex separable. hyperedge $e \rightarrow \text{point } p^e$

For each group V_i we use an auxiliary graph G_i that gives us the i-th coordinate for the points and the lines.

hyperedge in $G \rightarrow \text{vertex in } G_i$

e and e' from G_i are adjacent iff they have a common vertex in V_i , $j \neq i$

Theorem

A k-hypergraph G is representable if and only if it is vertex separable. hyperedge $e \rightarrow \text{point } p^e$

For each group V_i we use an auxiliary graph G_i that gives us the i-th coordinate for the points and the lines.

hyperedge in $G \rightarrow \text{vertex in } G_i$

e and e' from G_i are adjacent iff they have a common vertex in V_i , $j \neq i$

Theorem

A k-hypergraph G is representable if and only if it is vertex separable. hyperedge $e \rightarrow \text{point } p^e$

For each group V_i we use an auxiliary graph G_i that gives us the i-th coordinate for the points and the lines.

hyperedge in $G \rightarrow \text{vertex in } G_i$

e and e' from G_i are adjacent iff they have a

Theorem

A k-hypergraph G is representable if and only if it is vertex separable. hyperedge $e \rightarrow point p^e$

For each group V_i we use an auxiliary graph G_i that gives us the i-th coordinate for the points and the lines.

hyperedge in $G \rightarrow \text{vertex in } G_i$

e and e' from G_i are adjacent iff they have a common vertex in V_i , $j \neq i$

vertex separable

there is a representation

Theorem

A k-hypergraph G is representable if and only if it is

vertex separable.

For each group V_i we use an auxiliary graph G_i that gives us the i-th coordinate for the points and the lines.

hyperedge in $G \rightarrow \text{vertex}$ in G_i

$$p^{e_2} = (2, 1, 1)$$

$$\ell_{1}^{v_{1}^{1}} = (\cdot, 1, 1)$$

$$\ell_{2}^{v_{2}^{1}} = (1, \cdot, 1)$$

$$\ell_{2}^{v_{2}^{2}} = (2, \cdot, 1)$$

$$\ell^{\frac{v_2^2}{2}} = (2, \cdot, 1)$$

$$(1, 1, \cdot)$$
 $\ell^{\sqrt{3}} = (2, 1, \cdot)$

vertex separable

there is a representation

vertex separable

there is a representation

Assume that G is not vertex separable but it has a point line cover representation.

• it contains at least two distinct vertices v and v' from the same group V_i that are not separable;

vertex separable

there is a representation

- it contains at least two distinct vertices v and v' from the same group V_i that are not separable;
- for each group V_j with $j \neq i$, there exists a v-v' path $v = v_1, \ldots, v_r = v'$ such that $v_t \notin V_j$ for each $t \in [r]$;

vertex separable

there is a representation

- it contains at least two distinct vertices v and v' from the same group V_i that are not separable;
- for each group V_j with $j \neq i$, there exists a v-v' path $v = v_1, \ldots, v_r = v'$ such that $v_t \notin V_j$ for each $t \in [r]$;
- all lines ℓ^{v_t} with $t \in [r]$ that represent the vertices v_1, \ldots, v_r lie on the same hyperplane H_i perpendicular to the x_i -axis;

vertex separable

there is a representation

- it contains at least two distinct vertices v and v' from the same group V_i that are not separable;
- for each group V_j with $j \neq i$, there exists a v-v' path $v = v_1, \ldots, v_r = v'$ such that $v_t \notin V_j$ for each $t \in [r]$;
- all lines ℓ^{v_t} with $t \in [r]$ that represent the vertices v_1, \ldots, v_r lie on the same hyperplane H_i perpendicular to the x_i -axis;

vertex separable

there is a representation

- it contains at least two distinct vertices v and v' from the same group V_i that are not separable;
- for each group V_j with $j \neq i$, there exists a v-v' path $v = v_1, \ldots, v_r = v'$ such that $v_t \notin V_j$ for each $t \in [r]$;
- all lines ℓ^{v_t} with $t \in [r]$ that represent the vertices v_1, \ldots, v_r lie on the same hyperplane H_i perpendicular to the x_i -axis;

vertex separable

there is a representation

Assume that G is not vertex separable but it has a point line cover representation.

- it contains at least two distinct vertices v and v' from the same group V_i that are not separable;
- for each group V_j with $j \neq i$, there exists a v-v' path $v = v_1, \ldots, v_r = v'$ such that $v_t \notin V_j$ for each $t \in [r]$;
- all lines ℓ^{v_t} with $t \in [r]$ that represent the vertices v_1, \ldots, v_r lie on the same hyperplane H_j perpendicular to the x_j -axis;

• the lines ℓ^{ν} and $\ell^{\nu'}$ lie in the intersection $\bigcap_{i \in I} H_j$.

there is a representation

- it contains at least two distinct vertices v and v' from the same group V_i that are not separable;
- for each group V_j with $j \neq i$, there exists a v-v' path $v = v_1, \ldots, v_r = v'$ such that $v_t \notin V_j$ for each $t \in [r]$;
- all lines ℓ^{v_t} with $t \in [r]$ that represent the vertices v_1, \ldots, v_r lie on the same hyperplane H_i perpendicular to the x_i -axis;
- the lines ℓ^{ν} and $\ell^{\nu'}$ lie in the intersection $\bigcap_{i \neq j} H_j$.

Space		<i>d</i> -dimensional
Covering objects	lines	
Representable hypergraphs	vertex separable	

Space		<i>d</i> -dimensional
Covering objects	lines	
Representable	vertex	
hypergraphs	separable	
	polynomial	
	recognition	
	algorithm	

		•	
Space		d-dimensional	
Covering objects	lines		(d — 1)- dimensional subspaces
Representable hypergraphs	vertex separable		all
	polynomial recognition algorithm		

Space	<i>d</i> -dimensional	
Covering objects	lines	(d-1)- dimensional subspaces
Representable hypergraphs	vertex separable	all
	polynomial recognition algorithm	similar to representation of bipartite graphs in 2D

		<u> </u>	
Space		d-dimensional	
Covering objects	lines	ℓ -dimension subspaces $2 \le \ell \le (d-2)$	(d-1)- dimensional subspaces
Representable hypergraphs	vertex separable	generalized vertex separable	all
	polynomial recognition algorithm		

Space		<i>d</i> -dimensional	
Covering objects	lines	ℓ -dimension subspaces $2 \le \ell \le (d-2)$	(d-1)- dimensional subspaces
Representable hypergraphs	vertex separable	generalized vertex separable	all
	polynomial recognition algorithm	polynomial for a fixed <i>d</i>	

Space		<i>d</i> -dimensional	
Covering objects	lines	ℓ -dimension subspaces $2 \le \ell \le (d-2)$	(d-1)- dimensional subspaces
Representable hypergraphs	vertex separable	generalized vertex separable	all
	polynomial recognition algorithm	polynomial for a fixed <i>d</i> What about i	non-constant d?

• Generalization to ℓ -dimensional subspace, $\ell < d$

Space		<i>d</i> -dimensional	
Covering objects	lines	ℓ -dimension subspaces $2 \le \ell \le (d-2)$	(d-1)- dimensional subspaces
Representable hypergraphs	vertex separable	generalized vertex separable	all
	polynomial recognition algorithm	polynomial for a fixed <i>d</i> What about r	non-constant d?

• Design improved algorithms for vertex separable hypergraphs (e.g vertex cover, matching) parameterized by ℓ and d

Space		<i>d</i> -dimensional	
Covering objects	lines	ℓ -dimension subspaces $2 \le \ell \le (d-2)$	(d-1)- dimensional subspaces
Representable hypergraphs	vertex separable	generalized vertex separable	all
	polynomial recognition algorithm	polynomial for a fixed <i>d</i> What about r	non-constant d?

- Design *improved* algorithms for vertex separable hypergraphs (e.g vertex cover, matching) parameterized by ℓ and d
- Relation to other graph classes

Further Results & Open Questions Thank You!

Space		<i>d</i> -dimensional	
Covering objects	lines	ℓ -dimension subspaces $2 \le \ell \le (d-2)$	(d-1)- dimensional subspaces
Representable hypergraphs	vertex separable	generalized vertex separable	all
	polynomial recognition algorithm	polynomial for a fixed <i>d</i> What about r	non-constant d?

- Design improved algorithms for vertex separable hypergraphs (e.g vertex cover, matching) parameterized by ℓ and d
- Relation to other graph classes