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Point Line Cover – Motivation

Hypergraph representation

point line cover instances general hypergraphs⊂

intersection property
does not hold

Is there a simple combinatorial characterization?

set of linesset of points P in 2D

Open Q.
[Kumar, Ramesh,

ICALP 2000]
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Representable Hypergraphs

axis-aligned point line cover instance

k-hypergraph

k-partite and k-uniform

?

No

Which k-hypergraphs can be represented
via axis-aligned point line cover instances?

exception: 2D intersection property
does not hold
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Def. Vertex separability

For a given k-hypergraph G two distinct vertices v and v ′ from
the same group Vi where i ∈ [k] are separable if there exists
j ∈ [k] with j 6= i such that every v -v ′ path contains a vertex
in Vj .

v

v ′

Vi A k-hypergraph is called
vertex separable if every two
vertices from the same group are
separable.

(Informally, removing Vj from the vertex set
and from the edges separates v and v ′.)
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Thank you!


