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[Dujmović et al., CGTA’07]

[Schulz, JGAA’15]

6 arcs

[Chaplick et al., GD’16]

10 straight lines



Visual complexity of a drawing of a graph

Given: graph G Use as few objects as possible to draw G

12 segments
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Platonic solids

G = (V , E ) |V | |E | |F | ρ1
2(G ) ρ1

3(G ) π1
2(G ) π1

3(G )

tetrahedron 4 6 4 6 6 2 2
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octahedron 6 12 8 9 9 3 2
dodecahedron 20 30 12 9. . . 10 9. . . 10 2 2
icosahedron 12 30 20 13. . . 15 13. . . 15 3 2
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dodecahedron 20 30 12 9. . . 10 9. . . 10 2 2
icosahedron 12 30 20 13. . . 15 13. . . 15 3 2

π1
3(G ) = lva(G )

[Chaplick et al., GD’16]

[Kryven et al., CALDAM’18]
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Motivation

π1
2 How large can it be?

Q: Is the π1
2-value unbounded for some graph families?

Yes!

• tw(Gi ) = 5

• maxdeg(Gi ) ≤ 12
π1

2(Gi ) ≥ n0.01

[Ravsky and Verbitsky, WG’11]
[Da Lozzo et al., GD’16]

[Chaplick et al., GD’16]

• tw(Gi ) = 3
maxdeg(Gi ) = 6
π1

2(Gi ) ∈ Ω(log ni )

New!
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G1 in 3D G1 in 2D

H1
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H1 H2

and so on . . .

maximum degree

6

treewidth

3 unbounded

2D weak line
cover number

Why?
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`

in each step
+1 line

π1
2(Gi ) ≥ i + 1

[ni = 20 · 3i−1 − 4]

π1
2(Gi ) ∈ Ω(log ni )
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Open problems

Problem 1

How small can we make the maximum degree in a family of
planar graphs such that their π1

2-value is still unbounded?

Problem 2

Does the class of treewidth-2 graphs have constant π1
2-value?

Problem 3

Is it NP-hard to compute π1
2(G ) for a given graph G ?

Yes, by reduction from (a restricted version of) Level Planarity.
[Biedl, Evans, Felsner, Lazard, Meijer, Valtr, Whitesides, Wismath, Wolff 2018]
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