

Chair for **INFORMATICS I** Efficient Algorithms and Knowledge-Based Systems

On the Weak Line Cover Numbers

Oksana Firman

Alexander Wolff

Julius-Maximilians-Universität Würzburg, Germany

Alexander Ravsky

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Science of Ukraine, Lviv, Ukraine

Given: graph G

Given: graph G Use as few objects as possible to draw G

Given: graph G Use as few objects as possible to draw G

12 segments

[Dujmović et al., CGTA'07]

Given: graph G Use as few objects as possible to draw G

12 segments

[Dujmović et al., CGTA'07]

6 arcs

Given: graph G Use as few objects as possible to draw G

12 segments

10 straight lines

[Dujmović et al., CGTA'07] [Chaplick et al., GD'16]

6 arcs

Given: graph G Use as few objects as possible to draw G

12 segments

10 straight lines

[Dujmović et al., CGTA'07] [Chaplick et al., GD'16]

6 arcs

4 circles

[Kryven et al., CALDAM'18]

Given: graph G Use as few objects as possible to draw G

[Schulz, JGAA'15]

[Kryven et al., CALDAM'18]

[Chaplick et al., GD'16]

Let G be a graph and let $1 \le m < d$. All drawings are straight-line and crossing-free.

 $\rho_3^2(K_5) =$

[Chaplick et al., GD'16]

Let G be a graph and let $1 \le m < d$. All drawings are straight-line and crossing-free.

[Chaplick et al., GD'16]

Let G be a graph and let $1 \le m < d$. All drawings are straight-line and crossing-free.

[Chaplick et al., GD'16]

Let G be a graph and let $1 \le m < d$. All drawings are straight-line and crossing-free.

[Chaplick et al., GD'16]

Let G be a graph and let $1 \le m < d$. All drawings are straight-line and crossing-free.

[Chaplick et al., GD'16]

Let G be a graph and let $1 \le m < d$. All drawings are straight-line and crossing-free.

[Chaplick et al., GD'16]

Let G be a graph and let $1 \le m < d$. All drawings are straight-line and crossing-free.

[Chaplick et al., GD'16]

Let G be a graph and let $1 \le m < d$. All drawings are straight-line and crossing-free.

[Chaplick et al., GD'16]

Let G be a graph and let $1 \le m < d$. All drawings are straight-line and crossing-free.

$$\rho_3^2(K_5) = 3$$
 $\rho_3^1(K_5) = 10$
 $\rho_2^1(K_4) = 6$

[Chaplick et al., GD'16]

$$\rho_3^2(K_5) = 3$$
 $\rho_3^1(K_5) = 10$
 $\rho_2^1(K_4) = 6$

[Chaplick et al., GD'16]

[Chaplick et al., GD'16]

Let G be a graph and let $1 \le m < d$. All drawings are straight-line and crossing-free. weak **Def.** The *m*-dimensional affine cover number $\mathcal{P}_{d}^{m}(G)$ is the minimum number of *m*-dimensional planes in \mathbb{R}^{d} such that the vertices and the edges of a drawing of G are contained in the union of these planes.

 $\rho_3^2(K_5) = 3$ $\pi_3^2(K_5) = 2$

 $ho_2^1(K_4) = 6$ $\pi_2^1(K_4) =$

[Chaplick et al., GD'16]

[Chaplick et al., GD'16]

[Chaplick et al., GD'16]

 ρ_2^{I}

 π^1_2

$ ho_3^2$	
π_3^2	

Let G be a graph and let $1 \le m < d$. All drawings are straight-line and crossing-free. $\pi^{m}(G)$ weak The *m*-dimensional affine cover number $\mathcal{D}^{m}(G)$ is Def. the minimum number of *m*-dimensional planes in \mathbb{R}^d such that the vertices and the edges of a drawing of Gare contained in the union of these planes. $\rho_3^2 \\ \pi_3^2$

$$\begin{array}{c} \rho_3^1 & & \rho_2^1 \\ \pi_3^1 & & \pi_2^1 \end{array}$$

Thm. Collapse of the Multidimensional Affine Hierarchy For any integers $1 \leq l < 3 \leq d$ and for any graph G, it holds that $\pi'_d(G) = \pi'_3(G)$ and $\rho'_d(G) = \rho'_3(G)$.

Complexity of affine cover numbers

[Chaplick et al., WADS'17]

Let G be a graph and let $1 \le m < d$.

 $\rho_3^2 \\ \pi_3^2$

All drawings are straight-line and crossing-free. weak **Def.** The *m*-dimensional affine cover number $\mathcal{D}_{d}^{m}(\mathcal{G})$ is the minimum number of *m*-dimensional planes in \mathbb{R}^{d} such that the vertices and the edges of a drawing of *G* are contained in the union of these planes.

$$\begin{array}{c} \rho_{3}^{1} & & \rho_{2}^{1} \\ \pi_{3}^{1} & & \pi_{2}^{1} \end{array}$$

Thm. Collapse of the Multidimensional Affine Hierarchy For any integers $1 \le l < 3 \le d$ and for any graph G, it holds that $\pi'_d(G) = \pi'_3(G)$ and $\rho'_d(G) = \rho'_3(G)$.

Complexity of affine cover numbers

[Chaplick et al., WADS'17]

- Let G be a graph and let $1 \le m < d$.
- All drawings are straight-line and crossing-free. weak **Def.** The *m*-dimensional affine cover number $\mathcal{D}_{d}^{m}(\mathcal{G})$ is the minimum number of *m*-dimensional planes in \mathbb{R}^{d} such that the vertices and the edges of a drawing of *G* are contained in the union of these planes.

$ ho_3^2$	NP-hard	$ ho_3^1$	NP-hard	$ ho_2^1$	NP-hard
π_{3}^{2}	NP-hard	π_3^1	NP-hard	π_2^1	

Thm. Collapse of the Multidimensional Affine Hierarchy For any integers $1 \le l < 3 \le d$ and for any graph G, it holds that $\pi'_d(G) = \pi'_3(G)$ and $\rho'_d(G) = \rho'_3(G)$.

Complexity of affine cover numbers

[Chaplick et al., WADS'17]

Let G be a graph and let $1 \le m < d$. All drawings are straight-line and crossing-free. weak Def. The *m*-dimensional affine cover number $\mathcal{P}_{d}^{m}(G)$ is the minimum number of *m*-dimensional planes in \mathbb{R}^{d} such that the vertices and the edges of a drawing of G are contained in the union of these planes.

$ ho_3^2$	NP-hard	$ ho_3^1$	NP-hard	$ ho_2^1$	NP-hard
π_{3}^{2}	NP-hard	π_3^1	NP-hard	π_2^1	? OPEN

Thm. Collapse of the Multidimensional Affine Hierarchy For any integers $1 \le l < 3 \le d$ and for any graph G, it holds that $\pi'_d(G) = \pi'_3(G)$ and $\rho'_d(G) = \rho'_3(G)$.

Overview

• Notation

• Main contribution Infinite family of planar graphs with unbounded π_2^1 -value

$$Va(K_4) = K_4$$

$$Va(K_4) = 2$$
 K_4

Linear vertex arboricity Va(G) of a graph G: smallest size r of a partition of $V(G) = V_1 \cup \cdots \cup V_r$ such that every V_i induces a linear forest.

$$Va(K_4) = 2$$
 $K_4 \qquad Va(G) = 3$ $Va(G) = 3$

Treewidth tw(G) of a graph G:

upper bound

```
tw(G) \le k
if G is a subgraph of a k-tree.
```

Linear vertex arboricity Va(G) of a graph G: smallest size r of a partition of $V(G) = V_1 \cup \cdots \cup V_r$ such that every V_i induces a linear forest.

Treewidth tw(G) of a graph G:

upper bound $tw(G) \le k$ if G is a subgraph of a k-tree.

Linear vertex arboricity Va(G) of a graph G: smallest size r of a partition of $V(G) = V_1 \cup \cdots \cup V_r$ such that every V_i induces a linear forest.

Treewidth tw(G) of a graph G:

upper bound $tw(G) \le k$ if G is a subgraph of a k-tree.

Linear vertex arboricity Va(G) of a graph G: smallest size r of a partition of $V(G) = V_1 \cup \cdots \cup V_r$ such that every V_i induces a linear forest.

$$lva(K_4) = 2 \qquad K_4 \qquad lva(G) = 3 \qquad G \qquad for all otherwise of the second second$$

Treewidth tw(G) of a graph G:

upper bound $tw(G) \le k$ if G is a subgraph of a k-tree.

Notation

Linear vertex arboricity Va(G) of a graph G: smallest size r of a partition of $V(G) = V_1 \cup \cdots \cup V_r$ such that every V_i induces a linear forest.

Treewidth tw(G) of a graph G:

upper bound $tw(G) \le k$ if G is a subgraph of a k-tree.

Notation

Linear vertex arboricity Va(G) of a graph G: smallest size r of a partition of $V(G) = V_1 \cup \cdots \cup V_r$ such that every V_i induces a linear forest.

$$lva(K_4) = 2 \qquad K_4 \qquad lva(G) = 3 \qquad G \qquad for all otherwise of the second second$$

Treewidth tw(G) of a graph G:

upper bound $tw(G) \le k$ if G is a subgraph of a k-tree. lower bound $tw(G) \ge mindeg(G)$.

G = (V, E)	V	E	F	$\rho_2^1(G)$	$ ho_3^1(G)$	$\pi_2^1(G)$	$\pi^1_3(G)$
tetrahedron	4	6	4				
cube	8	12	6				
octahedron	6	12	8				
dodecahedron	20	30	12				
icosahedron	12	30	20				

[Kryven et al., CALDAM'18]

G = (V, E)	V	E	F	$ ho_2^1(G)$	$ ho_3^1(G)$	$\pi_2^1(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4				
cube	8	12	6				
octahedron	6	12	8				
dodecahedron	20	30	12				
icosahedron	12	30	20				

[Kryven et al., CALDAM'18]

G = (V, E)	V	E	F	$ ho_2^1(G)$	$\rho_3^1(G)$	$\pi_2^1(G)$	$\pi^1_3(G)$
tetrahedron	4	6	4	6	6		
cube	8	12	6	7	7		
octahedron	6	12	8	9	9		
dodecahedron	20	30	12	910	910		
icosahedron	12	30	20	1315	13 15		

[Kryven et al., CALDAM'18]

G = (V, E)	V	E	F	$\rho_2^1(G)$	$ ho_3^1(G)$	$\pi_2^1(G)$ $\pi_3^1(G)$
tetrahedron	4	6	4	6	6	
cube	8	12	6	7	7	
octahedron	6	12	8	9	9	
dodecahedron	20	30	12	910	910	
icosahedron	12	30	20	1315	1315	

[Kryven et al., CALDAM'18]

G = (V, E)	V	E	F	$\rho_2^1(G)$	$ ho_3^1(G)$	$\pi_2^1(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6		
cube	8	12	6	7	7		
octahedron	6	12	8	9	9		
dodecahedron	20	30	12	910	910		
icosahedron	12	30	20	1315	13 15		

[Kryven et al., CALDAM'18]

G = (V, E)	V	E	F	$ ho_2^1(G)$	$ ho_3^1(G)$	$\pi_2^1(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6	2	
cube	8	12	6	7	7	2	
octahedron	6	12	8	9	9		
dodecahedron	20	30	12	910	910	2	
icosahedron	12	30	20	1315	1315		

[Kryven et al., CALDAM'18]

G = (V, E)	V	E	F	$ ho_2^1(G)$	$\rho_3^1(G)$	$\pi_2^1(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6	2	
cube	8	12	6	7	7	2	
octahedron	6	12	8	9	9	3	
dodecahedron	20	30	12	910	910	2	
icosahedron	12	30	20	1315	1315	3	

[Kryven et al., CALDAM'18]

G = (V, E)	V	E	F	$ ho_2^1(G)$	$ ho_3^1(G)$	$\pi_2^1(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6	2	
cube	8	12	6	7	7	2	
octahedron	6	12	8	9	9	3	
dodecahedron	20	30	12	910	910	2	
icosahedron	12	30	20	1315	1315	3	

[Kryven et al., CALDAM'18]

G = (V, E)	V	E	F	$ ho_2^1(G)$	$ ho_3^1(G)$	$\pi_2^1(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6	2	
cube	8	12	6	7	7	2	
octahedron	6	12	8	9	9	3	
dodecahedron	20	30	12	910	910	2	
icosahedron	12	30	20	1315	1315	3	

[Kryven et al., CALDAM'18]

G = (V, E)	V	E	F	$ ho_2^1(G)$	$ ho_3^1(G)$	$\pi_2^1(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6	2	
cube	8	12	6	7	7	2	
octahedron	6	12	8	9	9	3	
dodecahedron	20	30	12	910	910	2	
icosahedron	12	30	20	1315	1315	3	

[Kryven et al., CALDAM'18]

G = (V, E)	V	E	F	$\rho_2^1(G)$	$ ho_3^1(G)$	$\pi_2^1(G) = \pi_3^1(G)$
tetrahedron	4	6	4	6	6	2
cube	8	12	6	7	7	2
octahedron	6	12	8	9	9	3
dodecahedron	20	30	12	910	910	2
icosahedron	12	30	20	1315	13 15	3

[Kryven et al., CALDAM'18]

G = (V, E)	V	E	F	$\rho_2^1(G)$	$ ho_3^1(G)$	$\pi_2^1(G) = \pi_3^1(G)$
tetrahedron	4	6	4	6	6	2
cube	8	12	6	7	7	2
octahedron	6	12	8	9	9	3
dodecahedron	20	30	12	910	910	2
icosahedron	12	30	20	1315	13 15	3

[Kryven et al., CALDAM'18]

G = (V, E)	V	E	F	$\rho_2^1(G)$	$ ho_3^1(G)$	$\pi_2^1(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6	2	
cube	8	12	6	7	7	2	
octahedron	6	12	8	9	9	3	
dodecahedron	20	30	12	910	910	2	
icosahedron	12	30	20	1315	1315	3	

[Kryven et al., CALDAM'18]

G = (V, E)	V	E	F	$ ho_2^1(G)$	$ ho_3^1(G)$	$\pi_2^1(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	
dodecahedron	20	30	12	910	910	2	2
icosahedron	12	30	20	1315	1315	3	

[Kryven et al., CALDAM'18]

G = (V, E)	V	E	F	$ ho_2^1(G)$	$ ho_3^1(G)$	$\pi_2^1(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	
dodecahedron	20	30	12	910	910	2	2
icosahedron	12	30	20	1315	1315	3	

 $\pi_3^1(G) = \operatorname{lva}(G)$ [Chaplick et al., GD'16]

[Kryven et al., CALDAM'18]

G = (V, E)	V	E	F	$\rho_2^1(G)$	$ ho_3^1(G)$	$\pi_2^1(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	
dodecahedron	20	30	12	910	910	2	2
icosahedron	12	30	20	1315	1315	3	

 $\pi_3^1(G) = \mathsf{Iva}(G)$ [Chaplick et al., GD'16]

[Kryven et al., CALDAM'18]

G = (V, E)	V	E	F	$\rho_2^1(G)$	$ ho_3^1(G)$	$\pi_2^1(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	2
dodecahedron	20	30	12	910	910	2	2
icosahedron	12	30	20	1315	1315	3	

 $\pi_3^1(G) = \mathsf{Iva}(G)$

[Chaplick et al., GD'16]

[Kryven et al., CALDAM'18]

G = (V, E)	V	E	F	$\rho_2^1(G)$	$\rho_3^1(G)$	$\pi_2^1(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	2
dodecahedron	20	30	12	910	910	2	2
icosahedron	12	30	20	1315	1315	3	

 $\pi_3^1(G) = \mathsf{Iva}(G)$

[Chaplick et al., GD'16]

[Kryven et al., CALDAM'18]

G = (V, E)	V	E	F	$\rho_2^1(G)$	$ ho_3^1(G)$	$\pi_2^1(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	2
dodecahedron	20	30	12	910	910	2	2
icosahedron	12	30	20	1315	1315	3	

 $\pi_3^1(G) = \mathsf{Iva}(G)$

[Chaplick et al., GD'16]

[Kryven et al., CALDAM'18]

G = (V, E)	V	E	F	$ ho_2^1(G)$	$ ho_3^1(G)$	$\pi_2^1(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	2
dodecahedron	20	30	12	910	910	2	2
icosahedron	12	30	20	1315	1315	3	2

 $\pi_3^1(G) = \mathsf{Iva}(G)$ [Chaplick et al., GD'16]

[Kryven et al., CALDAM'18]

G = (V, E)	V	E	F	$\rho_2^1(G)$	$\rho_3^1(G)$	$\pi_2^1(G)$	$\pi_3^1(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	2
dodecahedron	20	30	12	910	910	2	2
icosahedron	12	30	20	1315	13 15	3	2

How large can it be?

Q: Is the π_2^1 -value unbounded for some graph families?

How large can it be?

Q: Is the π_2^1 -value unbounded for some graph families?

Yes!

How large can it be?

Q: Is the π_2^1 -value unbounded for some graph families?

[Ravsky and Verbitsky, WG'11] [Da Lozzo et al., GD'16]

•
$$\operatorname{tw}(G_i) = 5$$

How large can it be?

Q: Is the π_2^1 -value unbounded for some graph families?

How large can it be?

Q: Is the π_2^1 -value unbounded for some graph families?

Main contribution

We construct an infinite family of graphs

?

maximum degree 6

treewidth *3*

treewidth *3*

maximum degree *6*

treewidth *3* 2D weak line cover number *unbounded*

Why?

maximum degree 6

treewidth *3* 2D weak line cover number *unbounded*

Problem 1

How small can we make the maximum degree in a family of planar graphs such that their π_2^1 -value is still unbounded?

Problem 1

How small can we make the maximum degree in a family of planar graphs such that their π_2^1 -value is still unbounded?

Problem 2

Does the class of treewidth-2 graphs have constant π_2^1 -value?

Problem 1

How small can we make the maximum degree in a family of planar graphs such that their π_2^1 -value is still unbounded?

Problem 2

Does the class of treewidth-2 graphs have constant π_2^1 -value?

Problem 3

Is it NP-hard to compute $\pi_2^1(G)$ for a given graph G?

Problem 1

How small can we make the maximum degree in a family of planar graphs such that their π_2^1 -value is still unbounded?

Problem 2

Does the class of treewidth-2 graphs have constant π_2^1 -value?

Problem 3

Is it NP-hard to compute $\pi_2^1(G)$ for a given graph G? Yes, by reduction from (a restricted version of) Level Planarity. [Biedl, Evans, Felsner, Lazard, Meijer, Valtr, Whitesides, Wismath, Wolff 2018]