On the Weak Line Cover Numbers

Oksana Firman Alexander Wolff

Julius-Maximilians-Universität Würzburg, Germany
Alexander Ravsky
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Science of Ukraine, Lviv, Ukraine

Visual complexity of a drawing of a graph

Given: graph G

Visual complexity of a drawing of a graph

Given: graph G Use as few objects as possible to draw G

Visual complexity of a drawing of a graph

Given: graph G
Use as few objects as possible to draw G

Visual complexity of a drawing of a graph

Given: graph G
 Use as few objects as possible to draw G

12 segments

[Dujmović et al., CGTA'07]

[Schulz, JGAA'15]

Visual complexity of a drawing of a graph

Given: graph G
 Use as few objects as possible to draw G

12 segments

[Dujmović et al., CGTA'07]

10 straight lines

[Chaplick et al., GD'16]

6 arcs

[Schulz, JGAA'15]

Visual complexity of a drawing of a graph

Given: graph G
 Use as few objects as possible to draw G

12 segments

[Dujmović et al., CGTA'07]

10 straight lines

[Chaplick et al., GD'16]

[Schulz, JGAA'15]

[Kryven et al., CALDAM'18]

Visual complexity of a drawing of a graph

Given: graph G
 Use as few objects as possible to draw G

12 segments

[Dujmović et al., CGTA'07]

10 straight lines

[Chaplick et al., GD'16]

[Schulz, JGAA'15]

Affine cover numbers

Let G be a graph and let $1 \leq m<d$.
All drawings are straight-line and crossing-free.
Def. The m-dimensional affine cover number $\rho_{d}^{m}(G)$ is the minimum number of m-dimensional planes in \mathbb{R}^{d} such that the vertices and the edges of a drawing of G are contained in the union of these planes.
$\rho_{3}^{2}\left(K_{5}\right)=$

Affine cover numbers

Let G be a graph and let $1 \leq m<d$.
All drawings are straight-line and crossing-free.
Def. The m-dimensional affine cover number $\rho_{d}^{m}(G)$ is the minimum number of m-dimensional planes in \mathbb{R}^{d} such that the vertices and the edges of a drawing of G are contained in the union of these planes.
$\rho_{3}^{2}\left(K_{5}\right)=$

0

Affine cover numbers

Let G be a graph and let $1 \leq m<d$.
All drawings are straight-line and crossing-free.
Def. The m-dimensional affine cover number $\rho_{d}^{m}(G)$ is the minimum number of m-dimensional planes in \mathbb{R}^{d} such that the vertices and the edges of a drawing of G are contained in the union of these planes.
$\rho_{3}^{2}\left(K_{5}\right)=$

Affine cover numbers

Let G be a graph and let $1 \leq m<d$.
All drawings are straight-line and crossing-free.
Def. The m-dimensional affine cover number $\rho_{d}^{m}(G)$ is the minimum number of m-dimensional planes in \mathbb{R}^{d} such that the vertices and the edges of a drawing of G are contained in the union of these planes.
$\rho_{3}^{2}\left(K_{5}\right)=3$

Affine cover numbers

Let G be a graph and let $1 \leq m<d$.
All drawings are straight-line and crossing-free.
Def. The m-dimensional affine cover number $\rho_{d}^{m}(G)$ is the minimum number of m-dimensional planes in \mathbb{R}^{d} such that the vertices and the edges of a drawing of G are contained in the union of these planes.
$\rho_{3}^{2}\left(K_{5}\right)=3$

Affine cover numbers

Let G be a graph and let $1 \leq m<d$.
All drawings are straight-line and crossing-free.
Def. The m-dimensional affine cover number $\rho_{d}^{m}(G)$ is the minimum number of m-dimensional planes in \mathbb{R}^{d} such that the vertices and the edges of a drawing of G are contained in the union of these planes.
$\rho_{3}^{2}\left(K_{5}\right)=3$

Each edge needs its own straight line.

Affine cover numbers

Let G be a graph and let $1 \leq m<d$.
All drawings are straight-line and crossing-free.
Def. The m-dimensional affine cover number $\rho_{d}^{m}(G)$ is the minimum number of m-dimensional planes in \mathbb{R}^{d} such that the vertices and the edges of a drawing of G are contained in the union of these planes.

Affine cover numbers

Let G be a graph and let $1 \leq m<d$.
All drawings are straight-line and crossing-free.
Def. The m-dimensional affine cover number $\rho_{d}^{m}(G)$ is the minimum number of m-dimensional planes in \mathbb{R}^{d} such that the vertices and the edges of a drawing of G are contained in the union of these planes.

Affine cover numbers

Let G be a graph and let $1 \leq m<d$.
All drawings are straight-line and crossing-free.
Def. The m-dimensional affine cover number $\rho_{d}^{m}(G)$ is the minimum number of m-dimensional planes in \mathbb{R}^{d} such that the vertices and of a drawing of G are contained in the union of these planes.
$\rho_{3}^{2}\left(K_{5}\right)=3$

$$
\rho_{3}^{1}\left(K_{5}\right)=10
$$

$$
\rho_{2}^{1}\left(K_{4}\right)=6
$$

Affine cover numbers

Let G be a graph and let $1 \leq m<d$.

Def. Them-dimensional affine cover number $\frac{\pi_{d}^{m}(G)}{\text { weak }}$ the minimum number of m-dimensional planes in \mathbb{R}^{d} such that the vertices andges of a drawing of G are contained in the union of these planes.
$\rho_{3}^{2}\left(K_{5}\right)=3$

$$
\rho_{3}^{1}\left(K_{5}\right)=10
$$

$$
\rho_{2}^{1}\left(K_{4}\right)=6
$$

Affine cover numbers

Let G be a graph and let $1 \leq m<d$.

Def. Them-dimensional affine cover number $\frac{\pi_{d}^{m}(G)}{m e a k}$ the minimum number of m-dimensional planes in \mathbb{R}^{d} such that the vertices andges of a drawing of G are contained in the union of these planes.
$\rho_{3}^{2}\left(K_{5}\right)=3$
$\pi_{3}^{2}\left(K_{5}\right)=$
$\rho_{3}^{1}\left(K_{5}\right)=10$
$\rho_{2}^{1}\left(K_{4}\right)=6$

$$
\pi_{2}^{1}\left(K_{4}\right)=
$$

Affine cover numbers

Let G be a graph and let $1 \leq m<d$.

Def. Them-dimensional affine cover number $\frac{\pi_{d}^{m}(G)}{(G)}$ the minimum number of m-dimensional planes in \mathbb{R}^{d} such that the vertices and of a drawing of G are contained in the union of these planes.
$\rho_{3}^{2}\left(K_{5}\right)=3$
$\pi_{3}^{2}\left(K_{5}\right)=2$

$$
\begin{aligned}
& \rho_{3}^{1}\left(K_{5}\right)=10 \\
& \pi_{3}^{1}\left(K_{5}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{2}^{1}\left(K_{4}\right)=6 \\
& \pi_{2}^{1}\left(K_{4}\right)=
\end{aligned}
$$

Affine cover numbers

Let G be a graph and let $1 \leq m<d$.

Def. Them-dimensional affine cover number $\frac{\pi_{d}^{m}(G)}{w_{j}}$ is the minimum number of m-dimensional planes in \mathbb{R}^{d} such that the vertices andges of a drawing of G are contained in the union of these planes.
$\rho_{3}^{2}\left(K_{5}\right)=3$
$\pi_{3}^{2}\left(K_{5}\right)=2$

$$
\begin{aligned}
& \rho_{3}^{1}\left(K_{5}\right)=10 \\
& \pi_{3}^{1}\left(K_{5}\right)=3
\end{aligned}
$$

$$
\rho_{2}^{1}\left(K_{4}\right)=6
$$

$$
\pi_{2}^{1}\left(K_{4}\right)=
$$

Affine cover numbers

Let G be a graph and let $1 \leq m<d$.

Def. Them-dimensional affine cover number $\frac{\pi_{d}^{m}(G)}{\text { weak }}$ the minimum number of m-dimensional planes in \mathbb{R}^{d} such that the vertices and of a drawing of G are contained in the union of these planes.
$\rho_{3}^{2}\left(K_{5}\right)=3$
$\pi_{3}^{2}\left(K_{5}\right)=2$

$$
\begin{aligned}
& \rho_{3}^{1}\left(K_{5}\right)=10 \\
& \pi_{3}^{1}\left(K_{5}\right)=3
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{2}^{1}\left(K_{4}\right)=6 \\
& \pi_{2}^{1}\left(K_{4}\right)=2
\end{aligned}
$$

Affine cover numbers

Let G be a graph and let $1 \leq m<d$.

Def. Therm-dimensional affine cover number $\frac{\pi_{d}^{m}(G)}{\text { weak }}$ All drawings are straight-line and crossing the minimum number of m-dimensional planes in \mathbb{R}^{d} such that the vertices anc of a drawing of G are contained in the union of these planes.

[^0]$$
\rho_{3}^{1}
$$
$$
\rho_{2}^{1}
$$
$$
\pi_{3}^{1} \quad \pi_{2}^{1}
$$

Affine cover numbers

Let G be a graph and let $1 \leq m<d$.

Def. Therm-dimensional affine cover number $\pi_{d}^{\frac{\text { weak }}{n}}$ All drawings are straight-line and crossing the minimum number of m-dimensional planes in \mathbb{R}^{d} such that the vertices and of a drawing of G are contained in the union of these planes.
ρ_{3}^{2}
π_{3}^{2}
ρ_{3}^{1}
π_{3}^{1}
ρ_{2}^{1}
.

Complexity of affine cover numbers

[Chaplick et al., WADS'17]
Let G be a graph and let $1 \leq m<d$.
 the minimum number of m-dimensional planes in \mathbb{R}^{d} such that the vertices and of a drawing of G are contained in the union of these planes.
ρ_{3}^{2}
π_{3}^{2}
$\begin{array}{ll}\rho_{3}^{1} & \rho_{2}^{1} \\ \pi_{3}^{1} & \pi_{2}^{1}\end{array}$

Thm. Collapse of the Multidimensional Affine Hierarchy
For any integers $1 \leq I<3 \leq d$ and for any graph G, it holds that $\pi_{d}^{\prime}(G)=\pi_{3}^{\prime}(G)$ and $\rho_{d}^{\prime}(G)=\rho_{3}^{\prime}(G)$.

Complexity of affine cover numbers

[Chaplick et al., WADS'17]
Let G be a graph and let $1 \leq m<d$.
Def. Therm-dimensional affine cover number $\frac{\pi_{d}^{m}(G)}{\text { weak }}$ All drawings are straight-line and crossing the minimum number of m-dimensional planes in \mathbb{R}^{d} such that the vertices andges a drawing of G are contained in the union of these planes.
$\begin{array}{llllll}\rho_{3}^{2} & \text { NP-hard } & \rho_{3}^{1} & \text { NP-hard } & \rho_{2}^{1} & \text { NP-hard } \\ \pi_{3}^{2} & \text { NP-hard } & \pi_{3}^{1} & \text { NP-hard } & \pi_{2}^{1} & \end{array}$

Thm. Collapse of the Multidimensional Affine Hierarchy For any integers $1 \leq I<3 \leq d$ and for any graph G, it holds that $\pi_{d}^{\prime}(G)=\pi_{3}^{\prime}(G)$ and $\rho_{d}^{\prime}(G)=\rho_{3}^{\prime}(G)$.

Complexity of affine cover numbers

[Chaplick et al., WADS'17]
Let G be a graph and let $1 \leq m<d$.
\quad weak All drawings are straight-line and crossing-free.
Def. The m-dimensional affine cover number is the minimum number of m-dimensional planes in \mathbb{R}^{d} such that the vertices anc of a drawing of G are contained in the union of these planes.
$\begin{array}{lllllll}\rho_{3}^{2} & \text { NP-hard } & \rho_{3}^{1} & \text { NP-hard } & \rho_{2}^{1} & \text { NP-hard } \\ \pi_{3}^{2} & \text { NP-hard } & \pi_{3}^{1} & \text { NP-hard } & \pi_{2}^{1} & ? & \text { OPEN }\end{array}$

Thm. Collapse of the Multidimensional Affine Hierarchy For any integers $1 \leq I<3 \leq d$ and for any graph G, it holds that $\pi_{d}^{\prime}(G)=\pi_{3}^{\prime}(G)$ and $\rho_{d}^{\prime}(G)=\rho_{3}^{\prime}(G)$.

Overview

- Notation
- Platonic solids
π_{2}^{1} - and π_{3}^{1}-values

- Main contribution

Infinite family of planar graphs with unbounded π_{2}^{1}-value

Notation

Linear vertex arboricity $\operatorname{lva}(G)$ of a graph G : smallest size r of a partition of $V(G)=V_{1} \cup \cdots \cup V_{r}$ such that every V_{i} induces a linear forest.

$$
\operatorname{lva}\left(K_{4}\right)=
$$

Notation

Linear vertex arboricity $\operatorname{lva}(G)$ of a graph G : smallest size r of a partition of $V(G)=V_{1} \cup \cdots \cup V_{r}$ such that every V_{i} induces a linear forest.

Notation

Linear vertex arboricity Iva (G) of a graph G : smallest size r of a partition of $V(G)=V_{1} \cup \cdots \cup V_{r}$ such that every V_{i} induces a linear forest.

Notation

Linear vertex arboricity Iva (G) of a graph G : smallest size r of a partition of $V(G)=V_{1} \cup \cdots \cup V_{r}$ such that every V_{i} induces a linear forest.

$$
\operatorname{lva}\left(K_{4}\right)=2
$$

$$
\operatorname{lva}(G)=3
$$

Notation

Linear vertex arboricity Iva (G) of a graph G : smallest size r of a partition of $V(G)=V_{1} \cup \cdots \cup V_{r}$ such that every V_{i} induces a linear forest.

Treewidth $\operatorname{tw}(G)$ of a graph G :
upper bound $\operatorname{tw}(G) \leq k$
if G is a subgraph of a k-tree.

Notation

Linear vertex arboricity Iva (G) of a graph G : smallest size r of a partition of $V(G)=V_{1} \cup \cdots \cup V_{r}$ such that every V_{i} induces a linear forest.

Treewidth $\operatorname{tw}(G)$ of a graph G :
upper bound

$$
\operatorname{tw}(G) \leq k
$$

if G is a subgraph of a k-tree.

Notation

Linear vertex arboricity Iva (G) of a graph G : smallest size r of a partition of $V(G)=V_{1} \cup \cdots \cup V_{r}$ such that every V_{i} induces a linear forest.

Treewidth $\operatorname{tw}(G)$ of a graph G :
upper bound

$$
\operatorname{tw}(G) \leq k
$$

if G is a subgraph of a k-tree.

Notation

Linear vertex arboricity Iva (G) of a graph G : smallest size r of a partition of $V(G)=V_{1} \cup \cdots \cup V_{r}$ such that every V_{i} induces a linear forest.

Treewidth $\operatorname{tw}(G)$ of a graph G :
upper bound

$$
\operatorname{tw}(G) \leq k
$$

if G is a subgraph of a k-tree.

Notation

Linear vertex arboricity Iva (G) of a graph G : smallest size r of a partition of $V(G)=V_{1} \cup \cdots \cup V_{r}$ such that every V_{i} induces a linear forest.

Treewidth $\operatorname{tw}(G)$ of a graph G :
upper bound $\operatorname{tw}(G) \leq k$
if G is a subgraph of a k-tree.

Notation

Linear vertex arboricity Iva (G) of a graph G : smallest size r of a partition of $V(G)=V_{1} \cup \cdots \cup V_{r}$ such that every V_{i} induces a linear forest.

Treewidth $\operatorname{tw}(G)$ of a graph G :
upper bound

$$
\operatorname{tw}(G) \leq k
$$

if G is a subgraph of a k-tree.
lower bound $\operatorname{tw}(G) \geq \operatorname{mindeg}(G)$.

start
with
$K_{4} \ldots$

Platonic solids

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\rho_{3}^{1}(G)$	$\pi_{2}^{1}(G)$	$\pi_{3}^{1}(G)$
tetrahedron	4	6	4				
cube	8	12	6				
octahedron	6	12	8				
dodecahedron	20	30	12				
icosahedron	12	30	20				

Platonic solids

[Kryven et al., CALDAM'18]

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\rho_{3}^{1}(G)$	$\pi_{2}^{1}(G)$	$\pi_{3}^{1}(G)$
tetrahedron	4	6	4				
cube	8	12	6				
octahedron	6	12	8				
dodecahedron	20	30	12				
icosahedron	12	30	20				

Platonic solids

[Kryven et al., CALDAM'18]

Platonic solids

[Kryven et al., CALDAM'18]

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\rho_{3}^{1}(G)$	$\pi_{2}^{1}(G)$	$\pi_{3}^{1}(G)$
tetrahedron	4	6	4	6	6		
cube	8	12	6	7	7		
octahedron	6	12	8	9	9		
dodecahedron	20	30	12	$9 \ldots 10$	$9 \ldots 10$		
icosahedron	12	30	20	$13 \ldots 15$	$13 \ldots 15$		

Platonic solids

[Kryven et al., CALDAM'18]

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\rho_{3}^{1}(G)$	$\pi_{2}^{1}(G)$	$\pi_{3}^{1}(G)$
tetrahedron	4	6	4	6	6		
cube	8	12	6	7	7		
octahedron	6	12	8	9	9		
dodecahedron	20	30	12	$9 \ldots 10$	$9 \ldots 10$		
icosahedron	12	30	20	$13 \ldots 15$	$13 \ldots 15$		

Platonic solids

[Kryven et al., CALDAM'18]

Platonic solids

[Kryven et al., CALDAM'18]

Platonic solids

[Kryven et al., CALDAM'18]

Platonic solids

[Kryven et al., CALDAM'18]

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\rho_{3}^{1}(G)$	$\pi_{2}^{1}(G)$	$\pi_{3}^{1}(G)$
tetrahedron	4	6	4	6	6	2	
cube	8	12	6	7	7	2	
octahedron	6	12	8	9	9	3	
dodecahedron	20	30	12	$9 \ldots 10$	$9 \ldots 10$	2	
icosahedron	12	30	20	$13 \ldots 15$	$13 \ldots 15$	3	
Proof							

Platonic solids

[Kryven et al., CALDAM'18]

Platonic solids

[Kryven et al., CALDAM'18]

Platonic solids

[Kryven et al., CALDAM'18]

Platonic solids

[Kryven et al., CALDAM'18]

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\rho_{3}^{1}(G)$	$\pi_{2}^{1}(G)$	$\pi_{3}^{1}(G)$
tetrahedron	4	6	4	6	6	2	
cube	8	12	6	7	7	2	
octahedron	6	12	8	9	9	3	
dodecahedron	20	30	12	$9 \ldots 10$	$9 \ldots 10$	2	
icosahedron	12	30	20	$13 \ldots 15$	$13 \ldots 15$	3	

Platonic solids

[Kryven et al., CALDAM'18]

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\rho_{3}^{1}(G)$	$\pi_{2}^{1}(G)$	$\pi_{3}^{1}(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	
dodecahedron	20	30	12	$9 \ldots 10$	$9 \ldots 10$	2	2
icosahedron	12	30	20	$13 \ldots 15$	$13 \ldots 15$	3	

Platonic solids

[Kryven et al., CALDAM'18]

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\rho_{3}^{1}(G)$	$\pi_{2}^{1}(G)$	$\pi_{3}^{1}(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	
dodecahedron	20	30	12	$9 \ldots 10$	$9 \ldots 10$	2	2
icosahedron	12	30	20	$13 \ldots 15$	$13 \ldots 15$	3	
$\pi_{3}^{1}(G)=\operatorname{lva}(G)$							

[Chaplick et al., GD'16]

Platonic solids

[Kryven et al., CALDAM'18]

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\rho_{3}^{1}(G)$	$\pi_{2}^{1}(G)$	$\pi_{3}^{1}(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	
dodecahedron	20	30	12	$9 \ldots 10$	$9 \ldots 10$	2	2
icosahedron	12	30	20	$13 \ldots 15$	$13 \ldots 15$	3	
$\pi_{3}^{1}(G)=\operatorname{lva}(G)$							

Platonic solids

[Kryven et al., CALDAM'18]

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\rho_{3}^{1}(G)$	$\pi_{2}^{1}(G)$	$\pi_{3}^{1}(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	2
dodecahedron	20	30	12	$9 \ldots 10$	$9 \ldots 10$	2	2
icosahedron	12	30	20	$13 \ldots 15$	$13 \ldots 15$	3	
$\pi_{3}^{1}(G)=\operatorname{lva}(G)$							

[Chaplick et al., GD'16]

Platonic solids

[Kryven et al., CALDAM'18]

Platonic solids

[Kryven et al., CALDAM'18]

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\rho_{3}^{1}(G)$	$\pi_{2}^{1}(G)$	$\pi_{3}^{1}(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	2
dodecahedron	20	30	12	$9 \ldots 10$	$9 \ldots 10$	2	2
icosahedron	12	30	20	$13 \ldots 15$	$13 \ldots 15$	3	
$\quad \pi_{3}^{1}(G)=\operatorname{lva}(G)$							

[Chaplick et al., GD'16]

Platonic solids

[Kryven et al., CALDAM'18]

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\rho_{3}^{1}(G)$	$\pi_{2}^{1}(G)$	$\pi_{3}^{1}(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	2
dodecahedron	20	30	12	$9 \ldots 10$	$9 \ldots 10$	2	2
icosahedron	12	30	20	$13 \ldots 15$	$13 \ldots 15$	3	2
$\quad \pi_{3}^{1}(G)=\operatorname{lva}(G)$							

[Chaplick et al., GD'16]

Platonic solids

[Kryven et al., CALDAM'18]

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\rho_{3}^{1}(G)$	$\pi_{2}^{1}(G)$	$\pi_{3}^{1}(G)$
tetrahedron	4	6	4	6	6	2	2
cube	8	12	6	7	7	2	2
octahedron	6	12	8	9	9	3	2
dodecahedron	20	30	12	$9 \ldots 10$	$9 \ldots 10$	2	2
icosahedron	12	30	20	$13 \ldots 15$	$13 \ldots 15$	3	2

Motivation

π_{2}^{1}
How large can it be?

Motivation

π_{2}^{1}
How large can it be?
Q: Is the π_{2}^{1}-value unbounded for some graph families?

Motivation

π_{2}^{1}
How large can it be?
Q: Is the π_{2}^{1}-value unbounded for some graph families?
Yes!

Motivation

π_{2}^{1} How large can it be?
Q: Is the π_{2}^{1}-value unbounded for some graph families?

$$
\begin{aligned}
& \text { [Ravsky and Verbitsky, WG'11] } \\
& \text { [Da Lozzo et al., GD'16] }
\end{aligned}
$$

- $\operatorname{tw}\left(G_{i}\right)=5$

Motivation

$\pi_{2}^{1} \quad$ How large can it be?
Q: Is the π_{2}^{1}-value unbounded for some graph families?

$$
\begin{aligned}
& \text { [Ravsky and Verbitsky, WG'11] } \\
& \text { [Da Lozzo et al., GD'16] }
\end{aligned}
$$

- $\operatorname{tw}\left(G_{i}\right)=5$
[Chaplick et al., GD'16]
- $\operatorname{maxdeg}\left(G_{i}\right) \leq 12$

$$
\pi_{2}^{1}\left(G_{i}\right) \geq n^{0.01}
$$

Motivation

π_{2}^{1} How large can it be?
Q: Is the π_{2}^{1}-value unbounded for some graph families?

$$
\begin{aligned}
& \text { [Ravsky and Verbitsky, WG'11] } \\
& \text { [Da Lozzo et al., GD'16] }
\end{aligned}
$$

- $\operatorname{tw}\left(G_{i}\right)=5$
[Chaplick et al., GD'16]
- $\operatorname{maxdeg}\left(G_{i}\right) \leq 12$ $\pi_{2}^{1}\left(G_{i}\right) \geq n^{0.01}$

New!

- $\operatorname{tw}\left(G_{i}\right)=3$
$\operatorname{maxdeg}\left(G_{i}\right)=6$
$\pi_{2}^{1}\left(G_{i}\right) \in \Omega\left(\log n_{i}\right)$

Main contribution

We construct an infinite family of graphs

Main contribution

We construct an infinite family of graphs

Main contribution

We construct an infinite family of graphs

Main contribution

We construct an infinite family of graphs

Main contribution

We construct an infinite family of graphs

Main contribution

We construct an infinite family of graphs

Main contribution

We construct an infinite family of graphs

Main contribution

We construct an infinite family of graphs

Why do we use this graph?

Why do we use this graph?

G_{1} in 3D

Why do we use this graph?

G_{1} in 3D

Why do we use this graph?

G_{1} in 3D
G_{1} in 2D

Why do we use this graph?

G_{1} in 3D

Properties of the family of graphs

Properties of the family of graphs

maximum degree

Properties of the family of graphs

treewidth
3

Properties of the family of graphs

Properties of the family of graphs

treewidth
3

Properties of the family of graphs

2D weak line cover number unbounded

Properties of the family of graphs

Why?
maximum degree
6

2D weak line cover number unbounded

Short proof

Consider the graph $H_{i+1}, i=1,2,3, \ldots$.

Short proof

Consider the graph $H_{i+1}, i=1,2,3, \ldots$.

Short proof

Consider the graph $H_{i+1}, i=1,2,3, \ldots$.

Short proof

Consider the graph $H_{i+1}, i=1,2,3, \ldots$.

Short proof

Consider the graph $H_{i+1}, i=1,2,3, \ldots$.

Short proof

Consider the graph $H_{i+1}, i=1,2,3, \ldots$.

Short proof

Consider the graph $H_{i+1}, i=1,2,3, \ldots$.

Short proof

Consider the graph $H_{i+1}, i=1,2,3, \ldots$.

Open problems

Problem 1

How small can we make the maximum degree in a family of planar graphs such that their π_{2}^{1}-value is still unbounded?

Open problems

Problem 1

How small can we make the maximum degree in a family of planar graphs such that their π_{2}^{1}-value is still unbounded?

Problem 2

Does the class of treewidth-2 graphs have constant π_{2}^{1}-value?

Open problems

Problem 1

How small can we make the maximum degree in a family of planar graphs such that their π_{2}^{1}-value is still unbounded?

Problem 2

Does the class of treewidth-2 graphs have constant π_{2}^{1}-value?

Problem 3

Is it NP-hard to compute $\pi_{2}^{1}(G)$ for a given graph G ?

Open problems

Problem 1

How small can we make the maximum degree in a family of planar graphs such that their π_{2}^{1}-value is still unbounded?

Problem 2

Does the class of treewidth-2 graphs have constant π_{2}^{1}-value?

Problem 3

Is it NP-hard to compute $\pi_{2}^{1}(G)$ for a given graph G ?
Yes, by reduction from (a restricted version of) Level Planarity.
[Biedl, Evans, Felsner, Lazard, Meijer, Valtr, Whitesides, Wismath, Wolff 2018]

[^0]: ρ_{3}^{2}
 π_{3}^{2}

