Julius-Maximilians- Chair for X .
I UNIVERSITAT INFORMATICS | ||||I | fl
WURZBURG Efficient Algorithms and

Knowledge- Based Systems Institute for Informatics

Computing Optimal Tangles Faster
PKL

Oksana Firman Alexander Wolff

Philipp Kindermann Johannes Zink

0 AR Lviv

Alexander Ravsky

Introduction

Given a set of
y-monotone wires

Introduction
1<ij<n

Given a set of -
swap iJ

y-monotone wires
[

{

Introduction
1<ij<n

Given a set of -
swap iJ

y-monotone wires

{

disjoint swaps

Introduction

1<i,j<n

Given a set of -
swap iJ

y-monotone wires
disjoint swaps

adjacent
permutations

N

Introduction

1<i,j<n

Given a set of -
swap iJ

y-monotone wires
disjoint swaps

k adjacent
permutations

\ multiple swaps

Introduction

Given a set of

y-monotone wires

al U
7'('2‘k \“
2R (%
2| X
S
L

1<ij<n
swap IJ

disjoint swaps

adjacent
permutations

multiple swaps

tangle T of
height h(T)

Introduction

Given a set of

y-monotone wires

U
‘k <
BNES
21X
S
1

1<ij<n
swap IJ

disjoint swaps

adjacent
permutations

multiple swaps

tangle T of
height h(T)

—

N\
V —

—/

— X

AKX

Introduction

Given a set of

y-monotone wires

2
.]
WZ‘L <
"IN (Y
2 I
S
T

1<i,j<n
swap I/

disjoint swaps

adjacent
permutations

multiple swaps

tangle T of
height h(T)

...and given a list of
swaps L

Introduction

Given a set of

y-monotone wires

2

n
_ L]
X

1<i,j<n
swap I/

disjoint swaps

adjacent
permutations

multiple swaps

tangle T of
height h(T)

...and given a list of

swaps L
1<i<j<n

e as a multiset (¢;;)

Introduction

Given a set of

y-monotone wires

2
.]
7T2‘ \“
7T3k\ %‘
X 1 X
2 I
S
L1

1<i,j<n
swap I/

disjoint swaps

adjacent
permutations

multiple swaps

tangle T of
height h(T)

/
Tangle T(L) realizes list L

...and given a list of

swaps L
1<i<j<n

e as a multiset (¢;;)

Introduction

Given a set of

y—monotone wires

2
T

In
X |
|

1<i,j<n
swap I/

disjoint swaps

adjacent
permutations

multiple swaps

tangle T of
height h(T)

..and given a list of

swaps L
1<i<j<n

e as a multiset (¢;;)

/

Tangle T(L) realizes list L

Introduction

Given a set of

y—monotone wires

2
T

In
X |
|

1<i,j<n
swap I/

disjoint swaps

adjacent
permutations

multiple swaps

tangle T of
height h(T)

..and given a list of

swaps L
1<i<j<n

e as a multiset (¢;;)

/

not feasible

Tangle T(L) realizes list L

Introduction

Given a set of

y-monotone wires

2
.]
7T2‘ \“
7T3k\ %‘
X 1 X
2 I
S
L1

1<i,j<n
swap I/

disjoint swaps

adjacent
permutations

multiple swaps

tangle T of
height h(T)

/
Tangle T(L) realizes list L

...and given a list of

swaps L
1<i<j<n

e as a multiset (¢;;)

A tangle T(L) is optimal if it has the minimum height among
all tangles realizing the list L.

Related work
o (Olszewski et al. Visualizing the template '

of a chaotic attractor.
GD 2018

4

Related work

o (QOlszewski et al. Visualizing the template
of a chaotic attractor. ()

GD 2018 o list

Related work

o (Olszewski et al. Visualizing the template
of a chaotic attractor. () .~
GD 2018 list

Algorithm to find

the optimal tangle ‘

Related work

o (Olszewski et al. Visualizing the template
of a chaotic attractor. () .~
GD 2018 list

Algorithm to find Complexity ?

the optimal tangle ‘

Related work

o Olszewski et al. Visualizing the template
of a chaotic attractor. () .~
GD 2018 list

Algorithm to find
the optimal tangle

e Wang. Novel routing schemes for IC .‘

layout part |: Two-layer channel routing.
DAC 1991

Complexity ?

Gi _Initial and
IVEN: final permutations

Related work

o Olszewski et al. Visualizing the template

of a chaotic attractor. ()
GD 2018 list

Algorithm to find
the optimal tangle

Complexity ?

e Wang. Novel routing schemes for IC

layout part |: Two-layer channel routing.
DAC 1991

Gi _Initial and
IVEN: final permutations

e Bereg et al. Drawing Permutations with Few Corners.
GD 2013

minimize

Ob_jeCtIVEZ the number of bends

=
v
2
O
>
O

Complexity

Theorem
TANGLE-HEIGHT MINIMIZATION Is NP-hard.

Complexity

Theorem

TANGLE-HEIGHT MINIMIZATION i1s NP-hard.

Proof
Reduction from 3-PARTITION

Complexity

Theorem

TANGLE-HEIGHT MINIMIZATION i1s NP-hard.

Proof
Reduction from 3-PARTITION
Given: a multiset A of 3m positive integers

di dan d3 te d3m—2 d3m—1 d3m

Complexity

Theorem

TANGLE-HEIGHT MINIMIZATION Is NP-hard.

Proof

Reduction from 3-PARTITION

Given: a multiset A of 3m positive integers

Objective: decide whether A can be partitioned into
m groups of three elements each that all

sum up to the same value B
d3m—2 d3m—1 d3m

\/\/)ﬁ —
ZlZB . Zm:B

Complexity

Theorem

TANGLE-HEIGHT MINIMIZATION Is NP-hard.

PfOOf E < a; < E
Reduction from 3-PARTITION B is poly in m
Given: a multiset A of 3m positive integers

Objective: decide whether A can be partitioned into
m groups of three elements each that all
sum up to the same value B

di dan d3 Tt 83m—2 d3m—1 d3m

N — — —
ZlZB 22_8 Zm:B

Complexity

Theorem
TANGLE-HEIGHT MINIMIZATION Is NP-hard.
Proof B < a < B

: 4 i 2
Reduction from 3-PARTITION B is poly in m
Given: a multiset A of 3m positive integers

Objective: decide whether A can be partitioned into
m groups of three elements each that all
sum up to the same value B

d1 32\ d3 o d3m—2 d3m—1 d3m
S, =B S, =B S =B

Given: an instance A of 3-PARTITION

Complexity

Theorem
TANGLE-HEIGHT MINIMIZATION Is NP-hard.
Proof B < a < B

: 4 i 2
Reduction from 3-PARTITION B is poly in m
Given: a multiset A of 3m positive integers

Objective: decide whether A can be partitioned into
m groups of three elements each that all
sum up to the same value B
d1 d2 a3 o d3m-—2 d3m—1 d3m
=6 Si=8 S, -b

Given: an instance A of 3-PARTITION
Task: construct L s.t. there is T realizing L with height at
most H = 2m>(>_ A)+7m” iff A is a yes-instance

Complexity

Theorem
TANGLE-HEIGHT MINIMIZATION is NP-hard.
Proof
Reduction from 3-PARTITION
d1 a2 d3 o d3m—2 d3m—1 d3m
Ne———— —— —
Zl p— B 22 — o o e Zm — B
« .
> A

Given: an instance A of 3-PARTITION
Task: construct L s.t. there is T realizing L with height at
most H = 2m>(>_ A)+7m” iff A is a yes-instance

Complexity

Theorem
TANGLE-HEIGHT MINIMIZATION is NP-hard.
Proof
Reduction from 3-PARTITION
d1 a2 d3 o d3m—2 d3m—1 d3m
Ne———— —— —
>, =B >o,=B+1 >.m =B
« .
> A

Given: an instance A of 3-PARTITION
Task: construct L s.t. there is T realizing L with height at
most H = 2m>(>_ A)+7m” iff A is a yes-instance

Complexity

Theorem
TANGLE-HEIGHT MINIMIZATION is NP-hard.
Proof
Reduction from 3-PARTITION
d1 a2 d3 o d3m—2 d3m—1 d3m
Ne———— —— —
>, =B >o,=B+1 >.m =B
« .
Y A +1

Given: an instance A of 3-PARTITION
Task: construct L s.t. there is T realizing L with height at
most H = 2m>(>_ A)+7m” iff A is a yes-instance

Complexity

Theorem
TANGLE-HEIGHT MINIMIZATION is NP-hard.
Proof
Reduction from 3-PARTITION
d1 a2 d3 o d3m—2 d3m—1 d3m
N —— —
>, =B >o,=B+1 >.m =B
« .
Y A +1

Given: an instance A of 3-PARTITION
Task:
H=2m’ A+1)+7m’

Constructing the list L

Constructing the list L

2m swaps

Constructing the list L

&1

3
E\

Constructing the list L

M =2m?3

3
E\

Constructing the list L

M =2m?3

&1

3
E\

Constructing the list L

M =2m?3

&1

3
E\

Constructing the list L

M =2m?3

&1

3
E\

Constructing the list L

M =2m?3

What is not allowed?

split

&1

3
E\

Constructing the list L

SRS w w!

M =2m?3 7=

Constructing the list L

M =2m?3

What is not allowed?

put it on the same level
with other a-a’ swaps

2]

Constructing the list L

M =2m?3

Constructing the list L

698261 81
%]L/

—x

l—

B161

Constructing the list L

698261 81
%]L/

—x

l—x

B161

Constructing the list L

698261 81
%]L/

—x

l—x

B161

Constructing the list L

698261 81
%]L/

—x

l—x

B161

Constructing the list L

698261 81
%]L/

—x

l—x

B161

Constructing the list L

698261 81
%]L/

—x

l—x

B161

Constructing the list L

698261 81
%]L/

—x

1 ---n2n1 n

n2---1 nl1n

Jl—
207

B161

g

i

I”””””””””’

0‘((((((‘(((((((((“a

-

Y1772 5§52 3181

Constructing the list L

A AA 44 40 44 A 4 44 a4 4d 44 44 4 d 4d 44 44 44 44 44 44 44 4 4

BAAAAAAANAANAAAANAAANAAAAANAANAANANI

v"""""""""""""""""""‘.

an

/

v¥1B161728292

qine

ks
@\

]
=

2MB

MB

PUrOTETITITVITITITYTTITVIVIVIVIVIvIvIvIvYY

/ !/ /! c/ / /
618171928272

N

BAAAAANAAAAAAANAAANAAAANANAN ’v"""""""""""""""""""""’4

/

/

617172

/
1

BAAAAANAAAAAAANAAANAAAAANANAN

.(((““““(((((“‘I

i

-

v

I””””’

—
2038

B

”””””A
A AA Ah A4 A 44 4 4 4l 4 A 4 A 4 4 4 4d 4 44 4

71725§5251B1

" “ g " " " " " " " " " " " " " " " " " " " ‘.

/

a
v¥1B161728292

an

Constructing the list L

qine

ks
@\

]
=

Constructing the list L

M

2m

3

Y

1725<

B261 81
| &

- o1 w w!

2MB

MB

‘L*I/
M di

an

qN¢

v1B19

3

6..
1728202

oL AN

(8
YN ACY Y N
520581017172

Proof of correctness

2MB

MB

v"""""""""""""""""""’.

BAAAAAAAAAAANAANAANAANAAAANAAANANAN
PUYTETITITVTPTTVTVITTVITVIvIvIvIvIvIvIvIvIevrs _.\6

—””””””””””
.““““““““““h

-

N

NI
/Bﬂ/_
NS
~
£F
/cO.I_/ O

3

Ma4

g

4
>

—37

S S =

I””””’

A AAAAAAANAANAAN
A dadhdads a4 4h 4 4 4

“““(“‘a

6..

"""""""""""""""""""""“v AAAAAANAAANAAAAANAAAAANANAANANI

A AA 44 Ad 44 a4 4 4d 44 4d 44 a4 4 4d 44 a4 44 44 44 44 4

an

ks
@\

]
=

A is a yes-instance

qine

/

a
v¥1B1617v28262

Proof of correctness

2MB

MB

v"""""""""""""""""""’.

y

BAAAAANAAAAAAANAAANAAAAANANAN
((““““(““‘((‘I

BAAAAAAAAAAANAANAANAANAAAANAAANANAN
PUYTETITITVTPTTVTVITTVITVIvIvIvIvIvIvIvIvIevrs _.\6

ine

g

Ma4

4

—37

R RO R P PO

s

s

/
O
0
=

L

6..

IV

o

eV

I o\
”””””””””’A Nl
VWV T VTV TV TV IV IV IV VIV IV IV VI v IV IV Y —
-0
v"""""""""""""""""""‘.I/ —
|

an

ks
@\

]
=

A is a yes-instance
by construction

qine

Proof of correctness

M =2m?
A is a yes-instance

by construction

v
at most H

H=2m"A)+7m?
Is the maximum allowed
height for the reduction

71725<

B261 81
| &

2MB

Q
-~

! ol 1 <! ot /7
018171926272

4
‘L*I

M31

MB

an

qN¢

v1B19

3

6.
1728202

ceal ok B

(8

6o’ <! !t <t 1/
520581017172

Proof of correctness

M =2m?3

A Is a no-instance

H=2m"A)+7m?
Is the maximum allowed
height for the reduction

Y

1725<

B261 81
| &

ag. . . 1 w w!

2MB

MB

4
‘L*I

M31

an

qN¢

v1B19

3

6..
1728202

ceal ok B

(8

6o’ <! !t <t 1/
520581017172

Proof of correctness

2MB

MB

v"""""""""""""""""""’.

y

BAAAAANAAAAAAANAAANAAAAANANAN
((““““(““‘((‘I

BAAAAAAAAAAANAANAANAANAAAANAAANANAN
PUYTETITITVTPTTVTVITTVITVIvIvIvIvIvIvIvIvIevrs _.\6

ine

\

4

g

Ma4

/ N
‘_ ﬂ

R RO R P PO

s S

/
O
0
=

L

6..

IV

o

eV

I o\
”””””””””’A Nl
VWV T VTV TV TV IV IV IV VIV IV IV VI v IV IV Y —
-0
v"""""""""""""""""""‘.I/ —
|

an

ks
@\

]
=

A Is a no-instance

minimum height

qine

2m3(Y" At1)
v

height for the reduction

H=2m(A)+7m?
Is the maximum allowed

Proof of correctness

2MB

MB

v"""""""""""""""""""’.

—””””””””””
.“““““““““‘I

v"""""""""""""""""""""’¢ ,

-

\

4

g

Ma4

/ N
‘_ ﬂ

R RO R P PO

L

S S =

6..

IV

o

eV

I o\
”””””””””’A Nl
VWV T VTV TV TV IV IV IV VIV IV IV VI v IV IV Y —
-0
v"""""""""""""""""""‘.I/ —
|

an

ks
@\

]
=

A Is a no-instance

|
minimum height

2m3(Y" At1)

qine

bigger than H

2m3(z A) + m°
Is the maximum allowed
height for the reduction

H =

Improving of Exact Algorithms

TANGLE-HEIGHT MINIMIZATION can be solved in ...

Simple lists

General lists

Improving of Exact Algorithms

TANGLE-HEIGHT MINIMIZATION can be solved in ...

n. the number of wires

Simple lists
[Olszewski et al., GD'18]

eO(nz)

General lists

Improving of Exact Algorithms

TANGLE-HEIGHT MINIMIZATION can be solved in ...

n: the number of wires
Simple lists
[Olszewski et al., GD'18] our result
cO(n%) eO(nlogn)

General lists

Improving of Exact Algorithms

TANGLE-HEIGHT MINIMIZATION can be solved in ...

n: the number of wires
|L|: the length of the list, i.e > ¢;;
@: the golden ratio, i.e. = 1.618

Simple lists
[Olszewski et al., GD'18] our result

eO(nz) eO(nlog n)

General lists
[Olszewski et al., GD'18]

O(g"li—:L/Ln)

Improving of Exact Algorithms

TANGLE-HEIGHT MINIMIZATION can be solved in ...

Simple lists
[Olszewski et al., GD'18]

eO(nz)

General lists
[Olszewski et al., GD'18]

O(;fi—:L/Ln)

n: the number of wires
|L|: the length of the list, i.e > ¢;;
@: the golden ratio, i.e. = 1.618

our result
eO(n log n)

our result

Improving of Exact Algorithms

TANGLE-HEIGHT MINIMIZATION can be solved in ...

Simple lists
[Olszewski et al., GD'18]

eO(nz)

General lists

[Olszewski et al., GD'18]
2|L]

O(%n)

n: the number of wires
|L|: the length of the list, i.e > ¢;;
@: the golden ratio, i.e. = 1.618

our result
eO(n log n)

our result

polynomial in |L]|
for fixed n

Dynamic Programming Algorithm

Given a list L = (¢;;). O((

Dynamic Programming Algorithm

Given a list L = (¢;;).
A = # of distinct sublists of L.

L’ is a sublist of L if
i < L

Dynamic Programming Algorithm

Given a list L = (¢;;). O((
A = # of distinct sublists of L.
Consider them in order of increasing length.

Dynamic Programming Algorithm

Given a list L = (¢;;). O((
A = # of distinct sublists of L.
Consider them in order of increasing length.

Let L’ be the next list to consider.

Dynamic Programming Algorithm

Given a list L = (¢;;). O((
A = # of distinct sublists of L.
Consider them in order of increasing length.

Let L’ be the next list to consider.
Check its consistency.

Dynamic Programming Algorithm

Given a list L = (¢;;). O((
A = # of distinct sublists of L.
Consider them in order of increasing length.

Let L’ be the next list to consider.
Check its consistency. |

Dynamic Programming Algorithm

Given a list L = (¢;;). O((
A = # of distinct sublists of L.
Consider them in order of increasing length.

Let L’ be the next list to consider.
Check its consistency. |

for each wire I:
// find a position where it is after applying L’

Dynamic Programming Algorithm

Given a list L = (¢;;). O((
A = # of distinct sublists of L.
Consider them in order of increasing length.

Let L’ be the next list to consider.
Check its consistency. |

for each wire I:
// find a position where it is after applying L’

| — | +

Dynamic Programming Algorithm

Given a list L = (¢;;). O((
A = # of distinct sublists of L.
Consider them in order of increasing length.

Let L’ be the next list to consider.
Check its consistency. |

for each wire I:
// find a position where it is after applying L’

| — | +

Dynamic Programming Algorithm

Given a list L = (¢;;). O((
A = # of distinct sublists of L.
Consider them in order of increasing length.

Let L’ be the next list to consider.
Check its consistency. |

for each wire I:
// find a position where it is after applying L’

i— i+ |{j: 7 <jand [jis odd}|

Dynamic Programming Algorithm

Given a list L = (¢;;). O((%ﬁ| + 1)n7<p”n)
A = # of distinct sublists of L.
Consider them in order of increasing length.

Let L’ be the next list to consider.
Check its consistency. | i B

for each wire I:
// find a position where it is after applying L’

i—i+{j:i<jandljisodd}| —|{j:j <iand [;is odd}|

Dynamic Programming Algorithm

Given a list L = (¢;;). O((%ﬁ| + 1)n7<p”n)
A = # of distinct sublists of L.
Consider them in order of increasing length.

Let L’ be the next list to consider.
Check its consistency. | — i B

for each wire I:
// find a position where it is after applying L’

i—i+{j:i<jandljisodd}| —|{j:j <iand [;is odd}|
check whether the result is indeed a permutation

Dynamic Programming Algorithm

Given a list L = (¢;;). O((
A = # of distinct sublists of L.
Consider them in order of increasing length.

Let L’ be the next list to consider.
Check its consistency. |
Get the final permutation id, L.

Dynamic Programming Algorithm

Given a list L = (¢;;). O((%ﬁ| +1)

A = # of distinct sublists of L.
Consider them in order of increasing length.

Let L’ be the next list to consider.
Check its consistency. | |

Get the final permutation id,, L’ %
Choose the shortest tangle T(L")
Th
idn £ |

7 and id, L” are adjacent

Dynamic Programming Algorithm

Given a list L = (¢;;). O((%ﬁ| + 1)n7<p”n)
A = # of distinct sublists of L.
Consider them in order of increasing length.

Let L’ be the next list to consider.
Check its consistency. | |]

Get the final permutation id,, L’ %
Choose the shortest tangle T(L")
Th
Gl]

7 and id, L” are adjacent
[+ add. swaps = L’

Dynamic Programming Algorithm

Given a list L = (¢;;).
A = # of distinct sublists of L.

Consider them in order of increasing length.

Let L’ be the next list to consider.
Check its consistency.

Get the final permutation id, L. ™
Choose the shortest tangle T(L")

Add the final permutation
to the end. Y

Dynamic Programming Algorithm

Given a list L = (¢;;).
A = # of distinct sublists of L.

Consider them in order of increasing length.

Let L’ be the next list to consider.
Check its consistency.

Get the final permutation id, L. ™
Choose the shortest tangle T(L")

Add the final permutation
to the end. .y

Running time

O(

Dynamic Programming Algorithm

Given a list L = (¢;;).
A = # of distinct sublists of L.

Consider them in order of increasing length.

Let L’ be the next list to consider.
Check its consistency.

Get the final permutation id, L. ™
Choose the shortest tangle T(L")

Add the final permutation
to the end. .y

Running time

O

Dynamic Programming Algorithm

Given a list L = (¢;;).
A = # of distinct sublists of L.

Consider them in order of increasing length.

Let L’ be the next list to consider.
Check its consistency.

Get the final permutation id, L. 77%
Choose the shortest tangle T(L")

Add the final permutation 7%/7
to the end. Iy

Running time
O(A(Fn—l—l o]-)n)

F, is the n-th Fibonacci number

Dynamic Programming Algorithm

Given a list L = (¢;;). O((%ﬁ| + 1)n7<p”n)
A = # of distinct sublists of L.
Consider them in order of increasing length.

Let L’ be the next list to consider.

Check its consistency.
m

Get the final permutation id, L. ™

Choose the shortest tangle T(L")

Add the final permutation

he end n
to the end. d L | | | |
Running time 2
A= 110 +1) < (%'Jrl)7

O(A(Fn—l-l — 1)n) § i<j
Fn € O(¢")

VAN

Dynamic Programming Algorithm

2

Given a list L = (¢;;). O((2|L| + 1)%<P)

A = # of distinct sublists of L.
Consider them in order of increasing length.

Let L’ be the next list to consider.

Check its consistency.
m—

Get the final permutation id, L. ™

Choose the shortest tangle T(L")

Add the final permutation

to the end n

o the end. d L =

Running time 2
A=TI+1) < (2 +1) 2

O(A(Fry1 —1)n) < <
Fn € O(¢")

VAN

|L|: the length of the list
5 wires 6 wires 7 wires
10, 000+ .
1000- o L
100- 88 i
n I
~— b
O 10- ad -
= i
- 0+ o ,\:-'" -
0.1- a ¥ i
g
2 - i
0.01- 1 ! :
o 3 ge o
0.001d+ « « - . i
0 2 46 80 5 10 150 510152025
L]

[Olszewski et al., GD'18]

o

©

2|L|
s1L/n 1

)

our algorithm

Open problems

Problem 1
Is it NP-hard to test the feasibility of a given (non-simple) list?

Open problems

Problem 1
Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

If feasibility is NP-hard, can we decide it faster than finding
optimal tangles?

Open problems

Problem 1
Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

If feasibility is NP-hard, can we decide it faster than finding
optimal tangles?

Problem 3
ik A list (¢;;) is non-separable if, for any
‘ i<k<j, Vi, = fkj =0 implies g,’j = 0.

Open problems

Problem 1
Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

If feasibility is NP-hard, can we decide it faster than finding
optimal tangles?

Problem 3
ik A list (¢;;) is non-separable if, for any
‘ i<k<j, Vi, = fkj =0 implies g,’j = 0.

necessary

Open problems

Problem 1
Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

If feasibility is NP-hard, can we decide it faster than finding
optimal tangles?

Problem 3
ik A list (¢;;) is non-separable if, for any
‘ i<k<j, Vi, = fkj =0 implies g,’j = 0.

necessary

For lists where all entries are even, is this sufficient?

Open problems T
hani you!
Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

If feasibility is NP-hard, can we decide it faster than finding
optimal tangles?

Problem 3
ik A list (¢;;) is non-separable if, for any
‘ i<k<j, Vi, = fkj =0 implies Z,-j = 0.

necessary

For lists where all entries are even, is this sufficient?

	Introduction
	Related work
	Overview
	Complexity
	Constructing the list L
	Proof of correctness
	Improving of Exact Algorithms
	Dynamic Programming Algorithm
	Open problems

