Computing Optimal Tangles Faster

Oksana Firman Alexander Wolff
Philipp Kindermann Johannes Zink
Julius-Maximilians-Universität Würzburg, Germany

Alexander Ravsky

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics,

Introduction

Given a set of y-monotone wires

Introduction

Given a set of y-monotone wires

$$
\begin{aligned}
& \quad \begin{array}{l}
1 \leq i, j \leq n \\
\text { swap ij}
\end{array}
\end{aligned}
$$

Introduction

Given a set of y-monotone wires

$$
\begin{aligned}
& 1 \leq i, j \leq n \\
& \text { swap } i j
\end{aligned}
$$

disjoint swaps

Introduction

Given a set of y-monotone wires

$$
\begin{aligned}
& \quad 1 \leq i, j \leq n \\
& \text { swap } i j
\end{aligned}
$$

disjoint swaps
adjacent permutations

Introduction

Given a set of y-monotone wires

$1 \leq i, j \leq n$
swap ij
disjoint swaps
adjacent permutations
multiple swaps

Introduction

Given a set of y-monotone wires

Introduction

Given a set of y-monotone wires

$$
\begin{aligned}
& 1 \leq i, j \leq n \\
& \text { swap } i j
\end{aligned}
$$

disjoint swaps
adjacent
permutations
multiple swaps
tangle T of
height $h(T)$

Introduction

Given a set of y-monotone wires

disjoint swaps
adjacent permutations
multiple swaps
tangle T of
height $h(T)$

Introduction

Given a set of y-monotone wires

Introduction

Given a set of y-monotone wires

$1 \leq i, j \leq n$
swap ij
disjoint swaps
adjacent
permutations
multiple swaps
tangle T of
height $h(T)$

Tangle $T(L)$ realizes list L

Introduction

Given a set of y-monotone wires

.... and given a list of swaps L $1 \leq i<j \leq n$

- as a multiset $\left(\ell_{i j}\right)$

Tangle $T(L)$ realizes list L

Introduction

Given a set of y-monotone wires

.... and given a list of swaps L $1 \leq i<j \leq n$

- as a multiset $\left(\ell_{i j}\right)$

not feasible

Tangle $T(L)$ realizes list L

Introduction

Given a set of y-monotone wires

$1 \leq i, j \leq n$	\ldots and given a list of
swaps L	

A tangle $T(L)$ is optimal if it has the minimum height among all tangles realizing the list L .

Related work

- Olszewski et al. Visualizing the template of a chaotic attractor. GD 2018

Related work

- Olszewski et al. Visualizing the template of a chaotic attractor. GD 2018

Related work

- Olszewski et al. Visualizing the template of a chaotic attractor. GD 2018
Algorithm to find the optimal tangle

Related work

- Olszewski et al. Visualizing the template of a chaotic attractor. GD 2018
Algorithm to find the optimal tangle

Complexity ?

Related work

- Olszewski et al. Visualizing the template of a chaotic attractor. GD 2018
Algorithm to find the optimal tangle

Complexity

- Wang. Novel routing schemes for IC layout part I: Two-layer channel routing. DAC 1991

Given: $\begin{aligned} & \text { initial and } \\ & \text { final permutations }\end{aligned}$

Related work

- Olszewski et al. Visualizing the template of a chaotic attractor. GD 2018
Algorithm to find the optimal tangle

Complexity

- Wang. Novel routing schemes for IC layout part I: Two-layer channel routing. DAC 1991

Given: initial and
final permutations

- Bereg et al. Drawing Permutations with Few Corners. GD 2013

$$
\text { Objective: } \begin{aligned}
& \text { minimize } \\
& \text { the number of bends }
\end{aligned}
$$

Overview

- Complexity NP-hardness by reduction from
3-Partition
- Improved the algorithm of [Olszewski et al., GD'18] Using the Dynamic Program

$$
O\left(\frac{\varphi^{2}|L|}{5|L| / n} n\right) \longrightarrow O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)
$$

- Experiments

Complexity

Theorem

Tangle-Height Minimization is NP-hard.

Complexity

Theorem

Tangle-Height Minimization is NP-hard.

Proof

Reduction from 3-Partition

Complexity

Theorem

Tangle-Height Minimization is NP-hard.

Proof

Reduction from 3-Partition
Given: a multiset A of 3 m positive integers
a_{1}
a_{2}
a_{3}
$a_{3 m-2}$
$a_{3 m-1}$
$a_{3 m}$

Complexity

Theorem

Tangle-Height Minimization is NP-hard.

Proof

Reduction from 3-Partition
Given:
a multiset A of 3 m positive integers
Objective: decide whether A can be partitioned into m groups of three elements each that all sum up to the same value B

Complexity

Theorem

Tangle-Height Minimization is NP-hard.

Proof

Reduction from 3-Partition

$$
\begin{aligned}
& \frac{B}{4}<a_{i}<\frac{B}{2} \\
& B \text { is poly in } m
\end{aligned}
$$

Given:
a multiset A of $3 m$ positive integers
Objective: decide whether A can be partitioned into m groups of three elements each that all sum up to the same value B

Complexity

Theorem

Tangle-Height Minimization is NP-hard.

Proof

Reduction from 3-Partition

$$
\frac{B}{4}<a_{i}<\frac{B}{2}
$$

B is poly in m

Given: a multiset A of 3 m positive integers
Objective: decide whether A can be partitioned into m groups of three elements each that all sum up to the same value B

Given: an instance A of 3 -Partition

Complexity

Theorem

Tangle-Height Minimization is NP-hard.

Proof

Reduction from 3-Partition
$\frac{B}{4}<a_{i}<\frac{B}{2}$
B is poly in m

Given: a multiset A of 3 m positive integers
Objective: decide whether A can be partitioned into m groups of three elements each that all sum up to the same value B

Given: an instance A of 3 -Partition
Task: construct L s.t. there is T realizing L with height at most $H=2 m^{3}\left(\sum A\right)+7 m^{2}$ iff A is a yes-instance

Complexity

Theorem

Tangle-Height Minimization is NP-hard.

Proof

Reduction from 3-Partition

$\sum A$

Given: an instance A of 3 -Partition
Task: construct L s.t. there is T realizing L with height at most $H=2 m^{3}\left(\sum A\right)+7 m^{2}$ iff A is a yes-instance

Complexity

Theorem

Tangle-Height Minimization is NP-hard.

Proof

Reduction from 3-Partition

$\sum A$

Given: an instance A of 3 -Partition
Task: construct L s.t. there is T realizing L with height at most $H=2 m^{3}\left(\sum A\right)+7 m^{2}$ iff A is a yes-instance

Complexity

Theorem

Tangle-Height Minimization is NP-hard.

Proof

Reduction from 3-Partition

$$
\sum A+1
$$

Given: an instance A of 3 -Partition
Task: construct L s.t. there is T realizing L with height at most $H=2 m^{3}\left(\sum A\right)+7 m^{2}$ iff A is a yes-instance

Complexity

Theorem

Tangle-Height Minimization is NP-hard.

Proof

Reduction from 3-Partition

$$
\sum A+1
$$

Given: an instance A of 3 -Partition Task: construct L s.t. there is T realizing L with height at most $\boldsymbol{H}=2 m^{3}\left(\sum A+1\right)+7 m^{2}$ iff A is a yes-instance

Constructing the list L

Constructing the list L

$2 m$ swaps

Constructing the list L

Constructing the list L
$M=2 m^{3}$

Constructing the list L

$$
M=2 m^{3}
$$

What is not allowed?
split

Constructing the list L

$$
M=2 m^{3}
$$

Constructing the list L

$$
M=2 m^{3}
$$

What is not allowed?
put it on the same level with other $\alpha-\alpha^{\prime}$ swaps

Constructing the list L

$$
M=2 m^{3}
$$

Constructing the list L

Constructing the list L

Constructing the list L

Constructing the list L

Constructing the list L

Constructing the list L

Constructing the list L

Constructing the list L

Constructing the list L

Constructing the list L

Proof of correctness

Proof of correctness

Proof of correctness

$$
M=2 m^{3}
$$

A is a yes-instance by construction $H=2 m^{3}\left(\sum A\right)+7 m^{2}$ is the maximum allowed height for the reduction

Proof of correctness

$$
M=2 m^{3}
$$

A is a no-instance

$$
H=2 m^{3}\left(\sum A\right)+7 m^{2}
$$

is the maximum allowed height for the reduction

Proof of correctness

$$
M=2 m^{3}
$$

A is a no-instance

$$
H=2 m^{3}\left(\sum A\right)+7 m^{2}
$$

is the maximum allowed height for the reduction

Proof of correctness

$$
M=2 m^{3}
$$

A is a no-instance

bigger than H

$$
H=2 m^{3}\left(\sum A\right)+7 m^{2}
$$

is the maximum allowed height for the reduction

Improving of Exact Algorithms

Tangle-Height Minimization can be solved in ...

Simple lists

General lists

Improving of Exact Algorithms

Tangle-Height Minimization can be solved in ...
n : the number of wires

Simple lists
[Olszewski et al., GD'18]

```
e}\mp@subsup{e}{}{O(\mp@subsup{n}{}{2})
```


General lists

Improving of Exact Algorithms

Tangle-Height Minimization can be solved in ...

n : the number of wires

Simple lists
[Olszewski et al., GD'18]
$e^{O(n \log n)} \quad$ our result

General lists

Improving of Exact Algorithms

Tangle-Height Minimization can be solved in ...

Simple lists

[Olszewski et al., GD'18]

> our result

General lists

[Olszewski et al., GD'18]

$$
O\left(\frac{\varphi^{2|L|}}{5^{|L| / n}} n\right)
$$

Improving of Exact Algorithms

Tangle-Height Minimization can be solved in ...

Simple lists

[Olszewski et al., GD'18]

> our result

General lists

[Olszewski et al., GD'18]
our result

$$
O\left(\frac{\varphi^{2|L|}}{5|L| / n} n\right)
$$

$$
O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)
$$

Improving of Exact Algorithms

Tangle-Height Minimization can be solved in ...

Simple lists

[Olszewski et al., GD'18]

> our result

General lists

[Olszewski et al., GD'18]
our result

$$
O\left(\frac{\varphi^{2|L|}}{5|L| / n} n\right)
$$

$$
O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)
$$

polynomial in $|L|$

Dynamic Programming Algorithm

Given a list $L=\left(\ell_{i j}\right)$.

$$
O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)
$$

Dynamic Programming Algorithm

Given a list $L=\left(\ell_{i j}\right)$.

$$
O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)
$$

$\lambda=\#$ of distinct sublists of L.

$$
\begin{aligned}
& L^{\prime} \text { is a sublist of } L \text { if } \\
& \ell_{i j}^{\prime} \leq \ell_{i j}
\end{aligned}
$$

Dynamic Programming Algorithm

Given a list $L=\left(\ell_{i j}\right)$.

$$
O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)
$$

$\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length.

Dynamic Programming Algorithm

Given a list $L=\left(\ell_{i j}\right)$.

$$
O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)
$$

$\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length.
Let L^{\prime} be the next list to consider.

Dynamic Programming Algorithm

$$
\text { Given a list } L=\left(\ell_{i j}\right) \text {. }
$$

$$
O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)
$$

$\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length.
Let L^{\prime} be the next list to consider.
Check its consistency.

Dynamic Programming Algorithm

$$
\text { Given a list } L=\left(\ell_{i j}\right) \text {. }
$$

$$
O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)
$$

$\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length.
Let L^{\prime} be the next list to consider.
Check its consistency.

Dynamic Programming Algorithm

Given a list $L=\left(\ell_{i j}\right)$.
$O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)$
$\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length.
Let L^{\prime} be the next list to consider.
Check its consistency.
for each wire i :
// find a position where it is after applying L^{\prime}

Dynamic Programming Algorithm

Given a list $L=\left(\ell_{i j}\right)$.
$O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)$
$\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length.
Let L^{\prime} be the next list to consider.
Check its consistency.
। ।íl। ।
for each wire i :
// find a position where it is after applying L^{\prime}
$i \mapsto i+$

Dynamic Programming Algorithm

Given a list $L=\left(\ell_{i j}\right)$.
$O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)$
$\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length.
Let L^{\prime} be the next list to consider.
Check its consistency.

$$
11 i\rangle 1 \mid
$$

for each wire i :
// find a position where it is after applying L^{\prime}
$i \mapsto i+$

Dynamic Programming Algorithm

Given a list $L=\left(\ell_{i j}\right)$.
$O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)$
$\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length.
Let L^{\prime} be the next list to consider.
Check its consistency.

for each wire i :
// find a position where it is after applying L^{\prime}
$i \mapsto i+\mid\left\{j: i<j\right.$ and $l_{i j}$ is odd $\} \mid$

Dynamic Programming Algorithm

Given a list $L=\left(\ell_{i j}\right)$.
$O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)$
$\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length.
Let L^{\prime} be the next list to consider.
Check its consistency.

for each wire i :
// find a position where it is after applying L^{\prime}
$i \mapsto i+\mid\left\{j: i<j\right.$ and $I_{i j}$ is odd $\}|-|\left\{j: j<i\right.$ and $I_{i j}$ is odd $\} \mid$

Dynamic Programming Algorithm

Given a list $L=\left(\ell_{i j}\right)$.
$O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)$
$\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length.
Let L^{\prime} be the next list to consider.
Check its consistency.

for each wire i :
// find a position where it is after applying L^{\prime}
$i \mapsto i+\mid\left\{j: i<j\right.$ and $l_{i j}$ is odd $\}|-|\left\{j: j<i\right.$ and $I_{i j}$ is odd $\} \mid$
check whether the result is indeed a permutation

Dynamic Programming Algorithm

Given a list $L=\left(\ell_{i j}\right)$.
$O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)$
$\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length.
Let L^{\prime} be the next list to consider.
Check its consistency.
Get the final permutation $\mathrm{id}_{n} L^{\prime}$.

Dynamic Programming Algorithm

Given a list $L=\left(\ell_{i j}\right)$.
$O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)$
$\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length.
Let L^{\prime} be the next list to consider.
Check its consistency.
Get the final permutation $\mathrm{id}_{n} L^{\prime}$.

π_{h} and id $_{n} L^{\prime}$ are adjacent

Dynamic Programming Algorithm

Given a list $L=\left(\ell_{i j}\right)$.
$O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)$
$\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length.
Let L^{\prime} be the next list to consider.
Check its consistency.
Get the final permutation $\mathrm{id}_{n} L^{\prime}$.

π_{h} and id $_{n} L^{\prime}$ are adjacent $L^{\prime \prime}+$ add. swaps $=L^{\prime}$

Dynamic Programming Algorithm

Given a list $L=\left(\ell_{i j}\right)$.
$O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)$
$\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length.
Let L^{\prime} be the next list to consider.
Check its consistency.
Get the final permutation id $_{n} L^{\prime}$.

Choose the shortest tangle $T\left(L^{\prime \prime}\right)$
Add the final permutation to the end.

Dynamic Programming Algorithm

Given a list $L=\left(\ell_{i j}\right)$.
$O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)$
$\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length.
Let L^{\prime} be the next list to consider.
Check its consistency.
Get the final permutation id $_{n} L^{\prime}$.

Choose the shortest tangle $T\left(L^{\prime \prime}\right)$
Add the final permutation to the end.

Running time

O(

Dynamic Programming Algorithm

Given a list $L=\left(\ell_{i j}\right)$.
$O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)$
$\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length.
Let L^{\prime} be the next list to consider.
Check its consistency.
Get the final permutation id $_{n} L^{\prime}$.

Choose the shortest tangle $T\left(L^{\prime \prime}\right)$
Add the final permutation to the end.

Running time

$O(\lambda$

Dynamic Programming Algorithm

Given a list $L=\left(\ell_{i j}\right)$.
$O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)$
$\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length.
Let L^{\prime} be the next list to consider.
Check its consistency.
Get the final permutation id $_{n} L^{\prime}$.

Choose the shortest tangle $T\left(L^{\prime \prime}\right)$
Add the final permutation to the end.

Running time

$O\left(\lambda\left(F_{n+1}-1\right) n\right)$
F_{n} is the n-th Fibonacci number

Dynamic Programming Algorithm

Given a list $L=\left(\ell_{i j}\right)$.
$O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)$
$\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length.
Let L^{\prime} be the next list to consider.
Check its consistency.
Get the final permutation id $_{n} L^{\prime}$.

Choose the shortest tangle $T\left(L^{\prime \prime}\right)$
Add the final permutation to the end.

Running time
$O\left(\lambda\left(F_{n+1}-1\right) n\right) \leq$

$$
\left|\begin{array}{l}
\lambda=\prod_{i<j}\left(\ell_{i j}+1\right) \leq\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \\
F_{n} \in O\left(\varphi^{n}\right)
\end{array}\right| \leq
$$

Dynamic Programming Algorithm

Given a list $L=\left(\ell_{i j}\right)$.
$O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)$
$\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length.
Let L^{\prime} be the next list to consider.
Check its consistency.
Get the final permutation id $_{n} L^{\prime}$.

Choose the shortest tangle $T\left(L^{\prime \prime}\right)$
Add the final permutation to the end.

Running time

$O\left(\lambda\left(F_{n+1}-1\right) n\right) \leq$

$$
\lambda=\prod_{i<j}\left(\ell_{i j}+1\right) \leq\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}}
$$

$$
F_{n} \in O\left(\varphi^{n}\right)
$$

$|L|: \quad$ the length of the list

[Olszewski et al., GD'18]

$$
O\left(\frac{\varphi^{2|L|}}{5|L| / n} n\right)
$$

$O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)$

Open problems

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Open problems

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

If feasibility is NP-hard, can we decide it faster than finding optimal tangles?

Open problems

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

If feasibility is NP-hard, can we decide it faster than finding optimal tangles?

Problem 3

A list $\left(\ell_{i j}\right)$ is non-separable if, for any $i<k<j, \ell_{i k}=\ell_{k j}=0$ implies $\ell_{i j}=0$.

Open problems

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

If feasibility is NP-hard, can we decide it faster than finding optimal tangles?

Problem 3

A list $\left(\ell_{i j}\right)$ is non-separable if, for any $i<k<j, \ell_{i k}=\ell_{k j}=0$ implies $\ell_{i j}=0$.

Open problems

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

If feasibility is NP-hard, can we decide it faster than finding optimal tangles?

Problem 3

A list $\left(\ell_{i j}\right)$ is non-separable if, for any $i<k<j, \ell_{i k}=\ell_{k j}=0$ implies $\ell_{i j}=0$. necessary

For lists where all entries are even, is this sufficient?

Open problems

Problem 1

Thank you!

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

If feasibility is NP-hard, can we decide it faster than finding optimal tangles?

Problem 3

A list $\left(\ell_{i j}\right)$ is non-separable if, for any
$i<k<j, \ell_{i k}=\ell_{k j}=0$ implies $\ell_{i j}=0$. necessary

For lists where all entries are even, is this sufficient?

