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TANGLE-HEIGHT MINIMIZATION can be solved in ...

Simple lists
[Olszewski et al., GD'18]

eO(nz)

General lists

[Olszewski et al., GD'18]
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n:  the number of wires
|L|: the length of the list, i.e > ¢;;
@: the golden ratio, i.e. = 1.618

our result
eO(n log n)

our result

polynomial in |L]|
for fixed n
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Given a list L = (¢;;). O((2|L| + 1)%<P )

A = # of distinct sublists of L.
Consider them in order of increasing length.

Let L’ be the next list to consider.

Check its consistency.
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Get the final permutation id, L. ™

Choose the shortest tangle T(L")
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