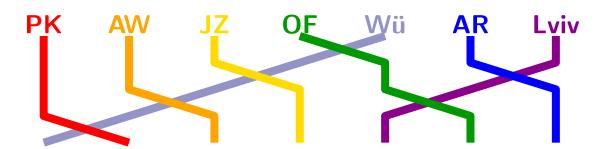


Computing Optimal Tangles Faster



Oksana Firman Philipp Kindermann

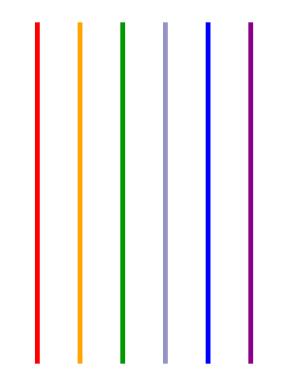
Alexander Wolff Johannes Zink

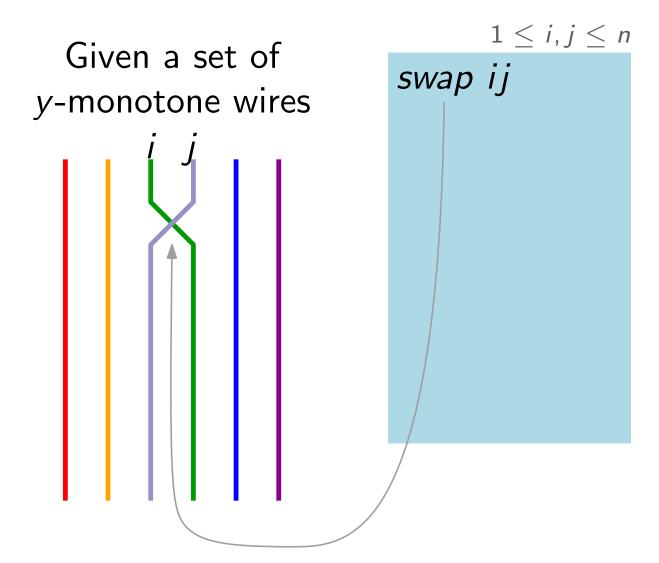
Julius-Maximilians-Universität Würzburg, Germany

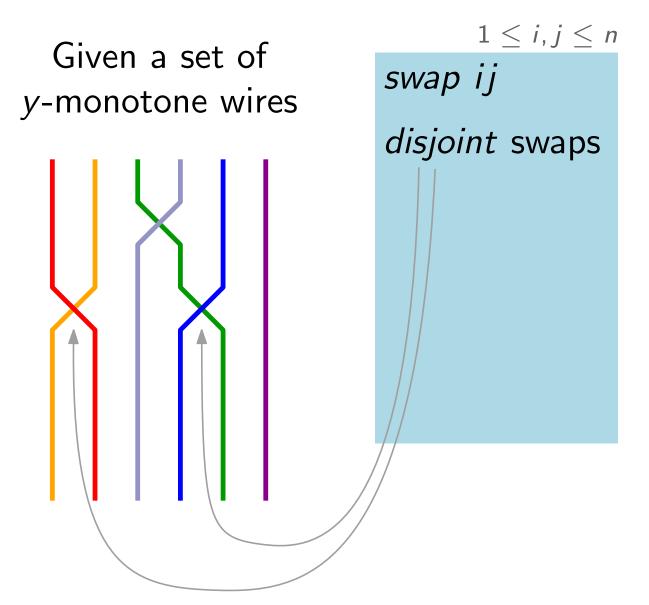
Alexander Ravsky

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, Lviv, Ukraine

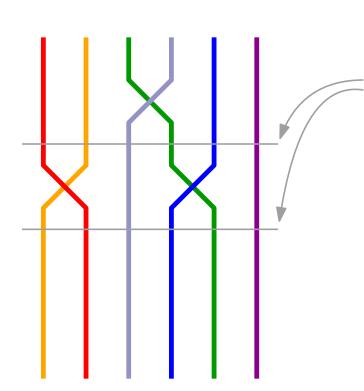
Given a set of y-monotone wires







Given a set of y-monotone wires

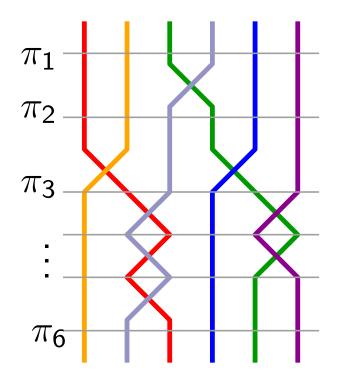


1 ≤ i, j ≤ n swap ij disjoint swaps adjacent permutations

Given a set of y-monotone wires

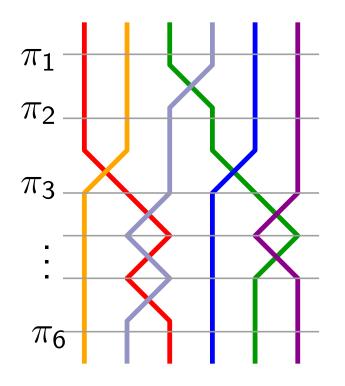
 $1 \leq i, j \leq n$ swap ij *disjoint* swaps *adjacent* permutations multiple swaps

Given a set of y-monotone wires

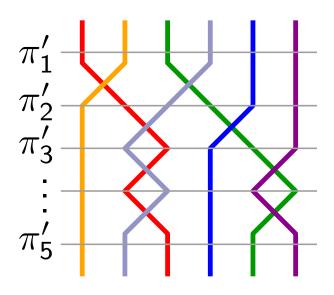


 $1 \leq i, j \leq n$ swap ij *disjoint* swaps adjacent permutations *multiple* swaps tangle T of height h(T)

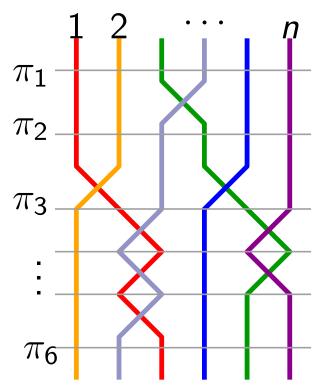
Given a set of y-monotone wires



 $1 \leq i, j \leq n$ swap ij *disjoint* swaps adjacent permutations *multiple* swaps tangle T of height h(T)



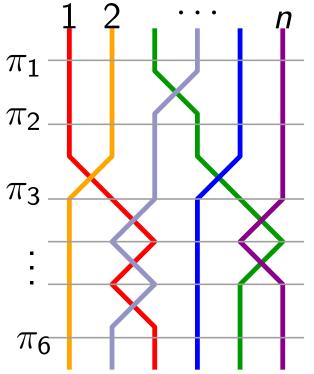
Given a set of y-monotone wires



 $1 \leq i, j \leq n$ swap ij *disjoint* swaps adjacent permutations *multiple* swaps tangle T of height h(T)

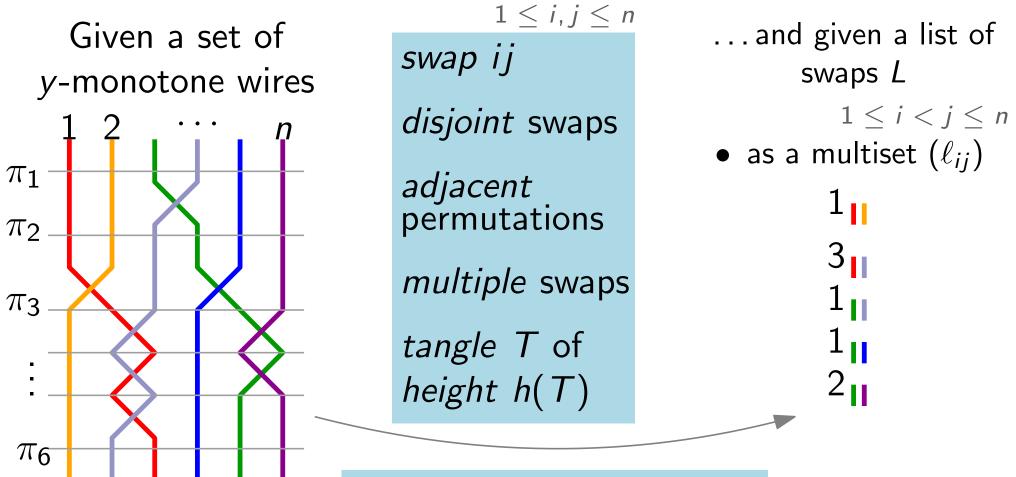
...and given a list of swaps L

Given a set of y-monotone wires

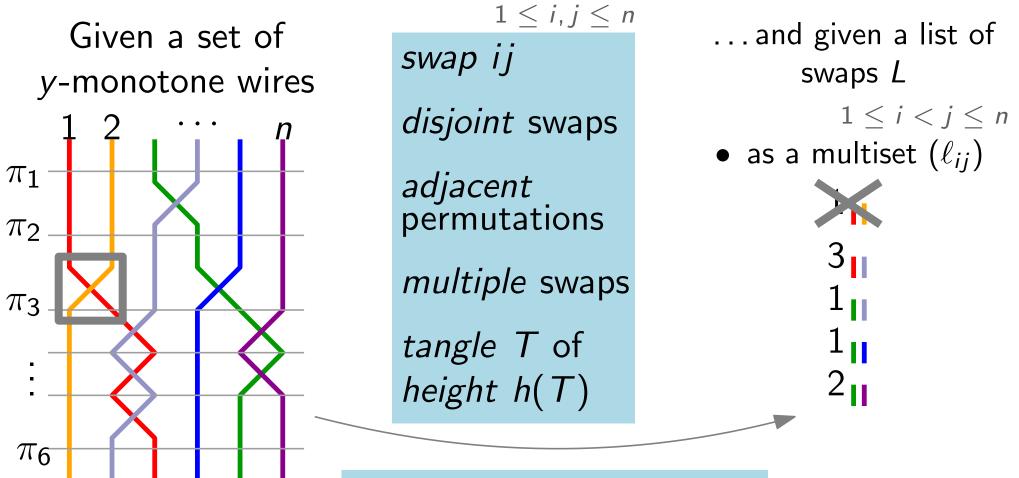


 $1 \leq i, j \leq n$ swap ij *disjoint* swaps adjacent permutations *multiple* swaps tangle T of height h(T)

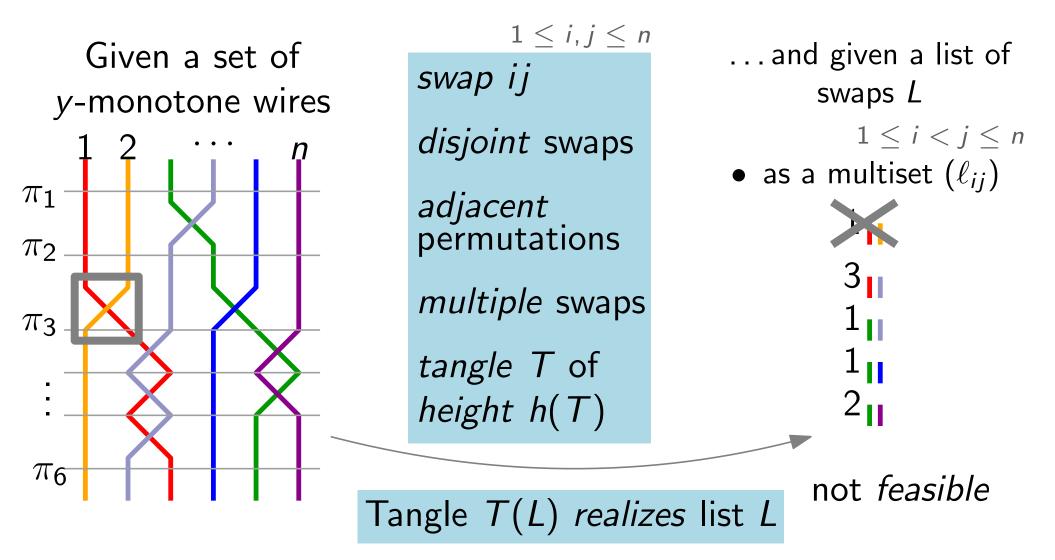
...and given a list of swaps L $1 \le i < j \le n$ • as a multiset (ℓ_{ij}) $1_{||}$ $3_{||}$ $1_{||}$ $2_{||}$

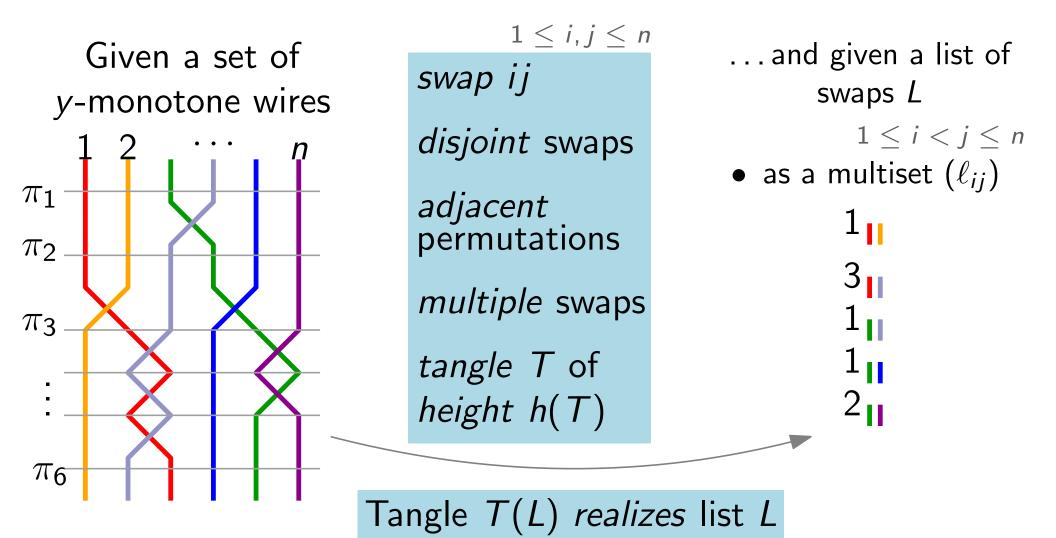


Tangle T(L) realizes list L



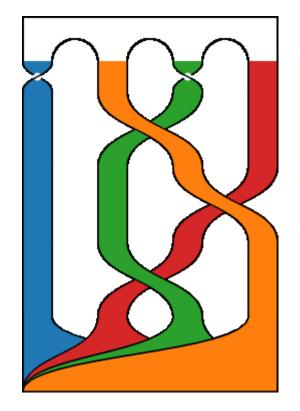
Tangle T(L) realizes list L



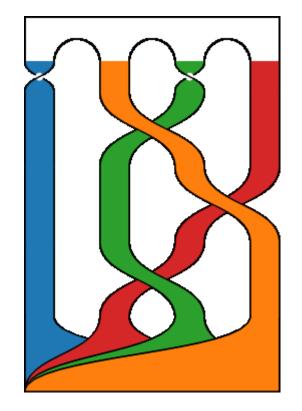


A tangle T(L) is optimal if it has the minimum height among all tangles realizing the list L.

 Olszewski et al. Visualizing the template of a chaotic attractor. GD 2018

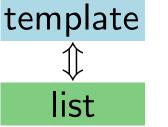


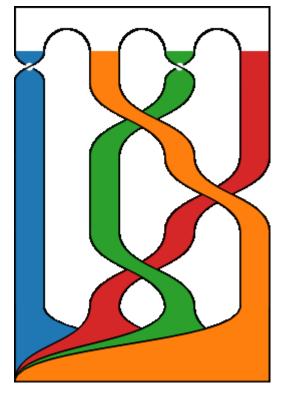
Olszewski et al. Visualizing the template of a chaotic attractor.
 GD 2018



• Olszewski et al. Visualizing the template of a chaotic attractor. GD 2018 list

Algorithm to find the optimal tangle

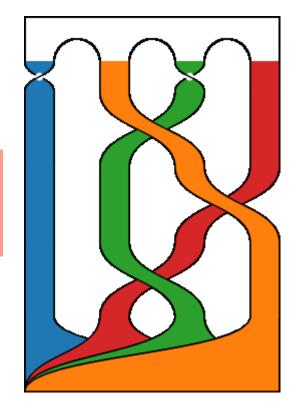




Olszewski et al. Visualizing the template of a chaotic attractor.
 GD 2018
 template templat

Algorithm to find the optimal tangle

Complexity ?



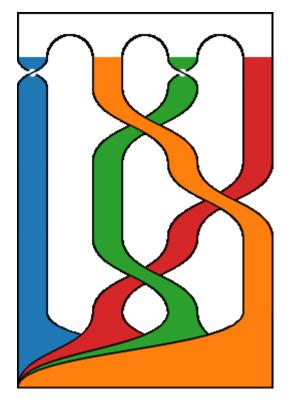
Olszewski et al. Visualizing the template of a chaotic attractor.
 GD 2018
 template templat

Algorithm to find the optimal tangle

 Wang. Novel routing schemes for IC layout part I: Two-layer channel routing. DAC 1991
 initial and

Given: *final* permutations

Complexity ?



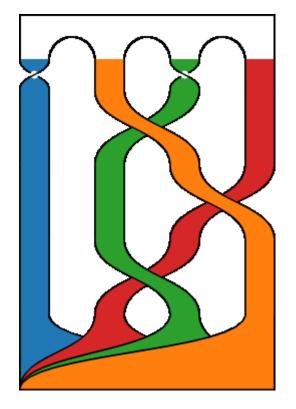
Olszewski et al. Visualizing the template of a chaotic attractor.
 GD 2018
 Iist

Algorithm to find the optimal tangle

 Wang. Novel routing schemes for IC layout part I: Two-layer channel routing. DAC 1991

Given: initial and final permutations

Complexity ?

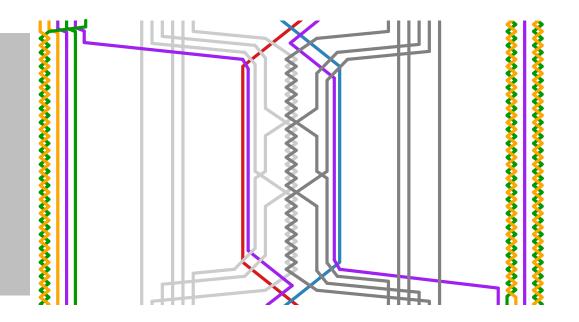


Bereg et al. Drawing Permutations with Few Corners.
 GD 2013

Objective: minimize the number of *bends*

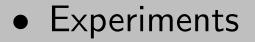
Overview

Complexity
 NP-hardness by
 reduction from
 3-PARTITION



• Improved the algorithm of [Olszewski et al., GD'18] Using the Dynamic Program

$$O\left(\frac{\varphi^{2|L|}}{5^{|L|/n}}n\right) \longrightarrow O\left(\left(\frac{2|L|}{n^2}+1\right)^{\frac{n^2}{2}}\varphi^n n\right)$$



Theorem

TANGLE-HEIGHT MINIMIZATION is NP-hard.

Theorem

TANGLE-HEIGHT MINIMIZATION is NP-hard. Proof

Reduction from 3-PARTITION

Theorem

TANGLE-HEIGHT MINIMIZATION is NP-hard. **Proof**

Reduction from 3-PARTITION

Given: a multiset A of 3m positive integers

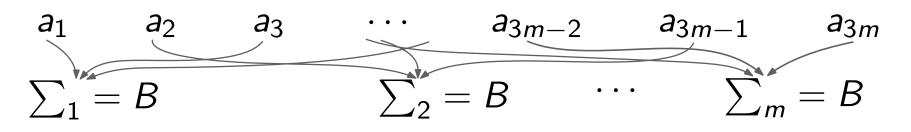
$a_1 a_2 a_3 \cdots a_{3m-2} a_{3m-1} a_{3m}$

Theorem

TANGLE-HEIGHT MINIMIZATION is NP-hard. **Proof**

Reduction from **3-PARTITION**

Given: a multiset A of 3m positive integers
Objective: decide whether A can be partitioned into
m groups of three elements each that all
sum up to the same value B



Theorem

TANGLE-HEIGHT MINIMIZATION is NP-hard.

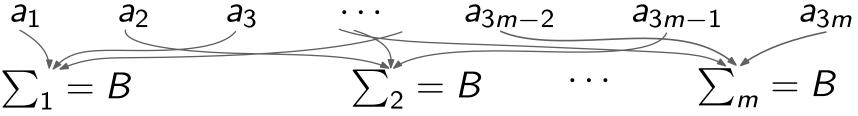
Proof

Reduction from **3-PARTITION**

 $\frac{B}{4} < a_i < \frac{B}{2}$ B is poly in m

Given: a multiset A of 3m positive integers Objective: decide whether A can be partitioned into m groups of three elements each that all

sum up to the same value B



Theorem

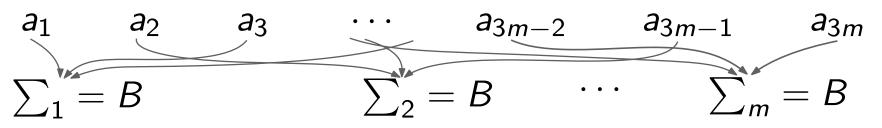
TANGLE-HEIGHT MINIMIZATION is NP-hard.

Proof

Reduction from 3-PARTITION

 $\frac{B}{4} < a_i < \frac{B}{2}$ B is poly in m Given: a multiset A of 3m positive integers Objective: decide whether A can be partitioned into *m* groups of three elements each that all

sum up to the same value B



an instance A of 3-PARTITION Given:

Theorem

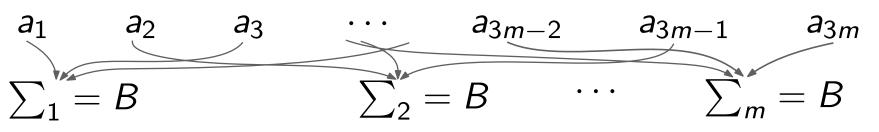
TANGLE-HEIGHT MINIMIZATION is NP-hard.

Proof

Reduction from 3-PARTITION

 $\frac{B}{4} < a_i < \frac{B}{2}$ B is poly in m a multiset A of 3m positive integers Given: Objective: decide whether A can be partitioned into *m* groups of three elements each that all

sum up to the same value B

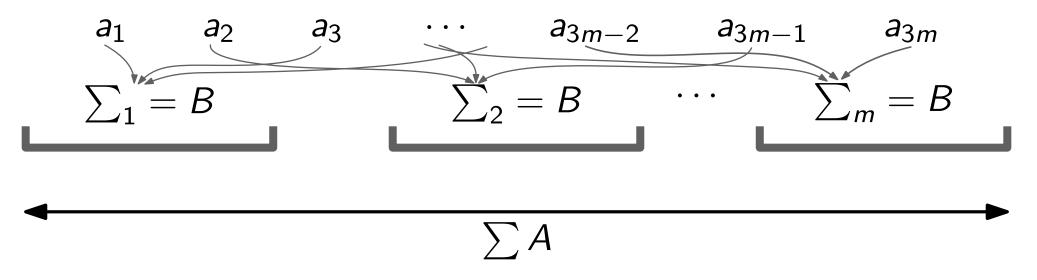


Given: an instance A of 3-PARTITION Task: construct L s.t. there is T realizing L with height at most $H = 2m^3(\sum A) + 7m^2$ iff A is a yes-instance

Theorem

TANGLE-HEIGHT MINIMIZATION is NP-hard. **Proof**

Reduction from 3-PARTITION

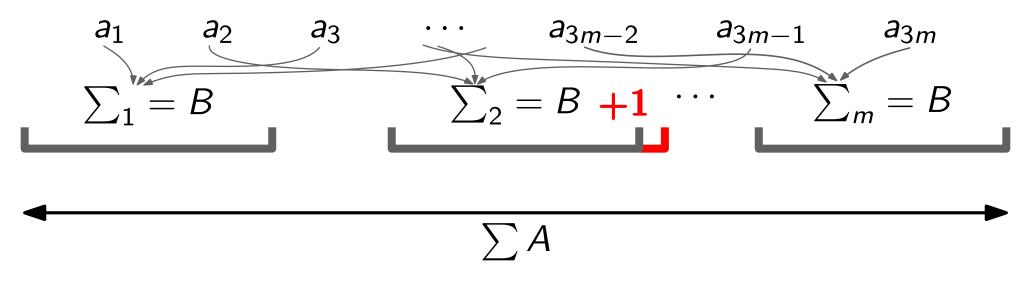


Given: an instance A of 3-PARTITION Task: construct L s.t. there is T realizing L with height at most $H = 2m^3(\sum A) + 7m^2$ iff A is a yes-instance

Theorem

TANGLE-HEIGHT MINIMIZATION is NP-hard. **Proof**

Reduction from 3-PARTITION

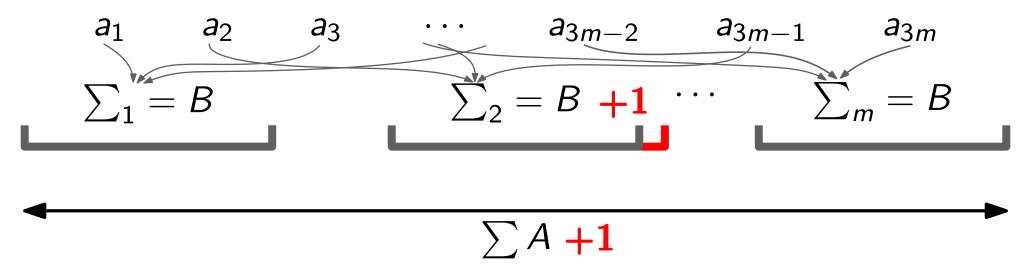


Given: an instance A of 3-PARTITION Task: construct L s.t. there is T realizing L with height at most $H = 2m^3(\sum A) + 7m^2$ iff A is a yes-instance

Theorem

TANGLE-HEIGHT MINIMIZATION is NP-hard. **Proof**

Reduction from 3-PARTITION

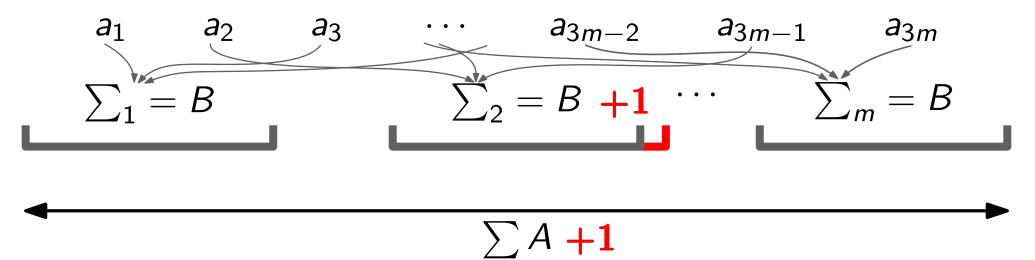


Given: an instance A of 3-PARTITION Task: construct L s.t. there is T realizing L with height at most $H = 2m^3(\sum A) + 7m^2$ iff A is a yes-instance

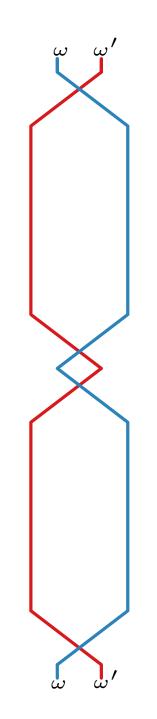
Theorem

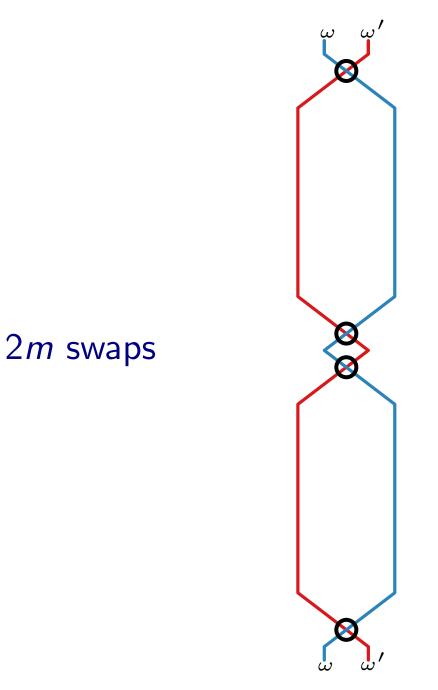
TANGLE-HEIGHT MINIMIZATION is NP-hard. **Proof**

Reduction from 3-PARTITION

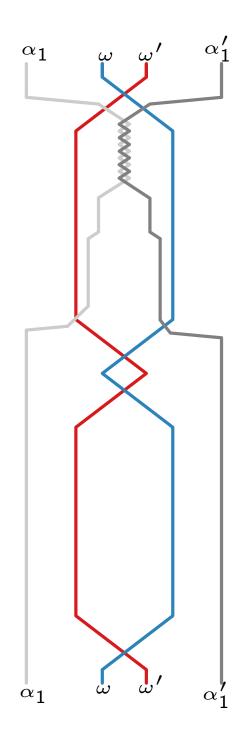


Given: an instance A of 3-PARTITION Task: construct L s.t. there is T realizing L with height at most $H = 2m^3(\sum A+1)+7m^2$ iff A is a yes-instance

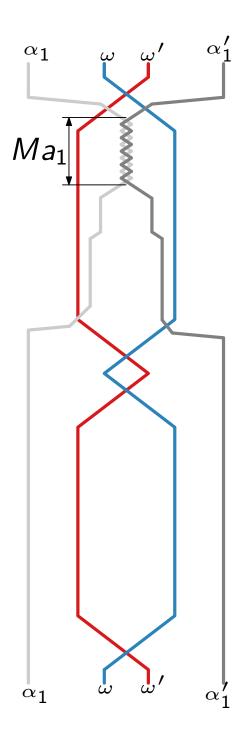




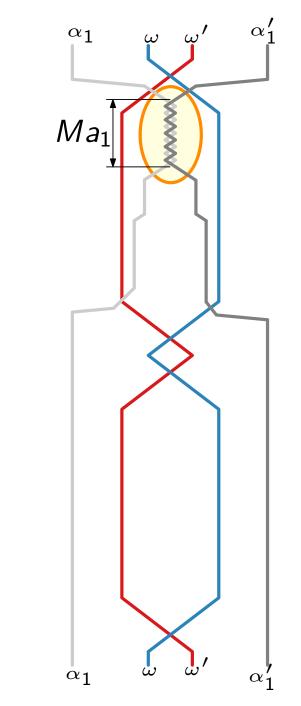
2



$$M = 2m^{3}$$

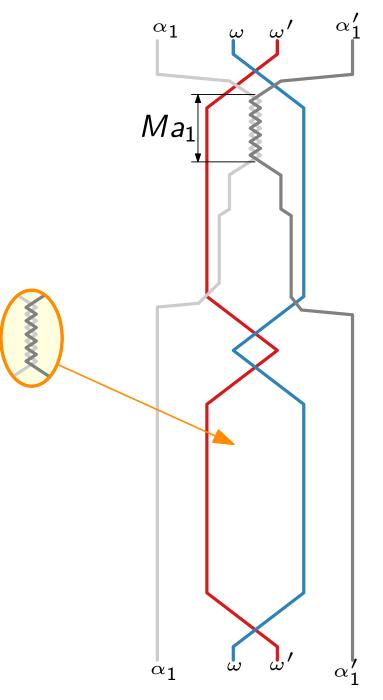


$$M = 2m^{3}$$

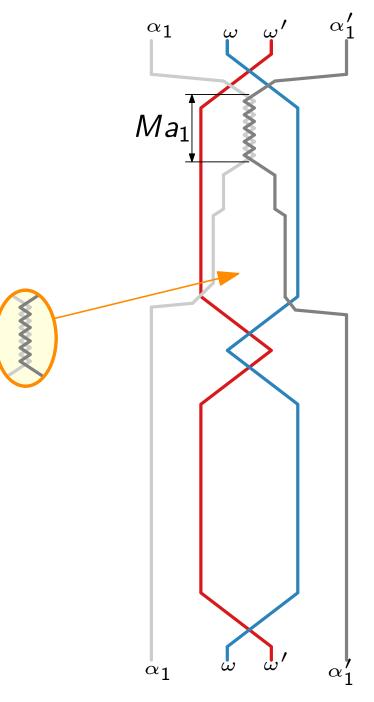


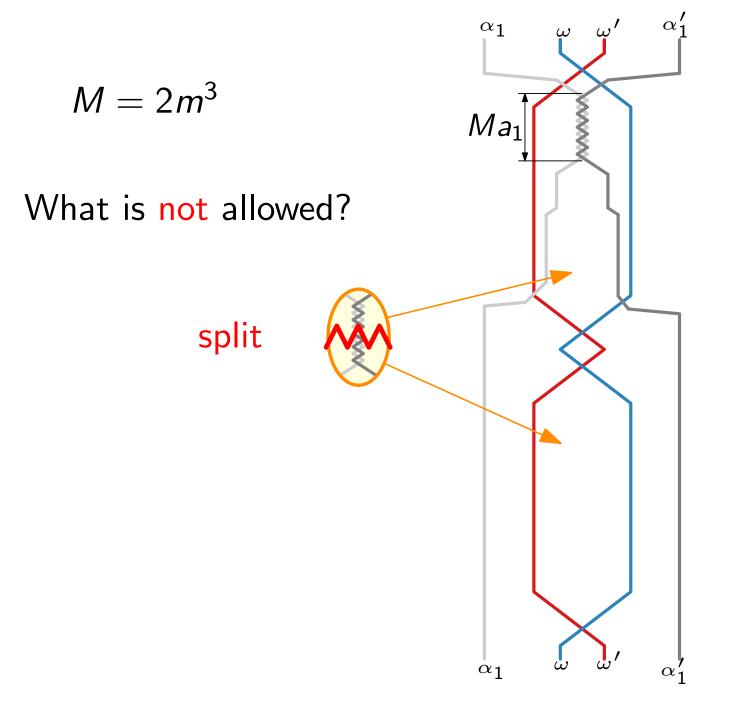
NVVV

$$M = 2m^{3}$$

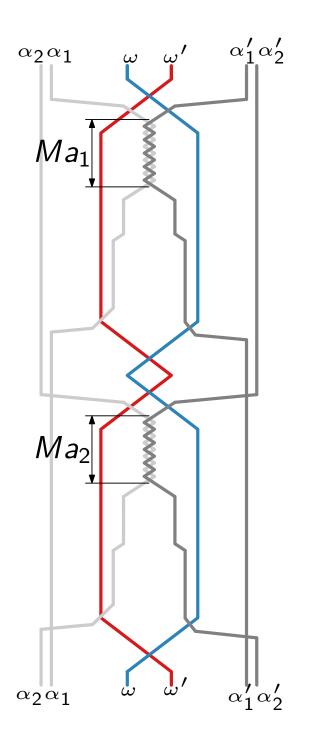


$$M = 2m^{3}$$





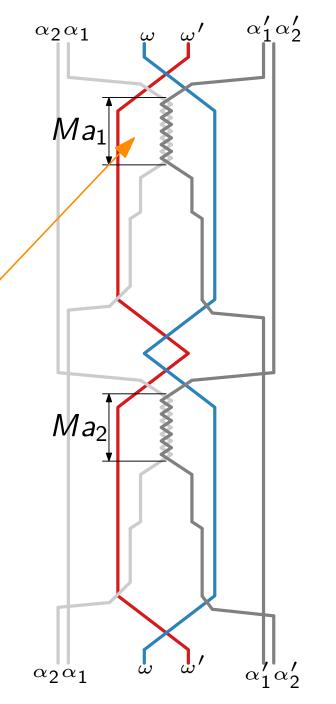
$$M = 2m^{3}$$



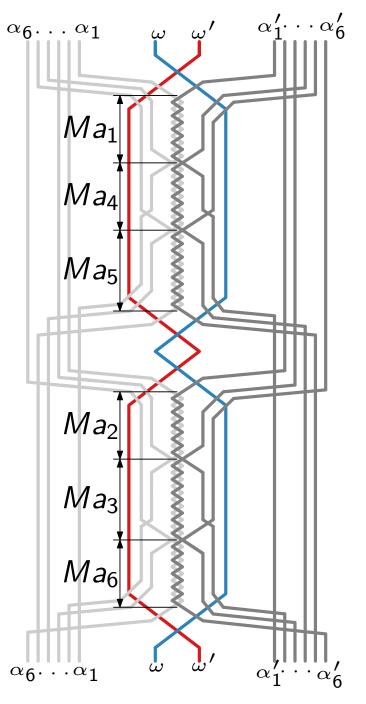
 $M = 2m^{3}$

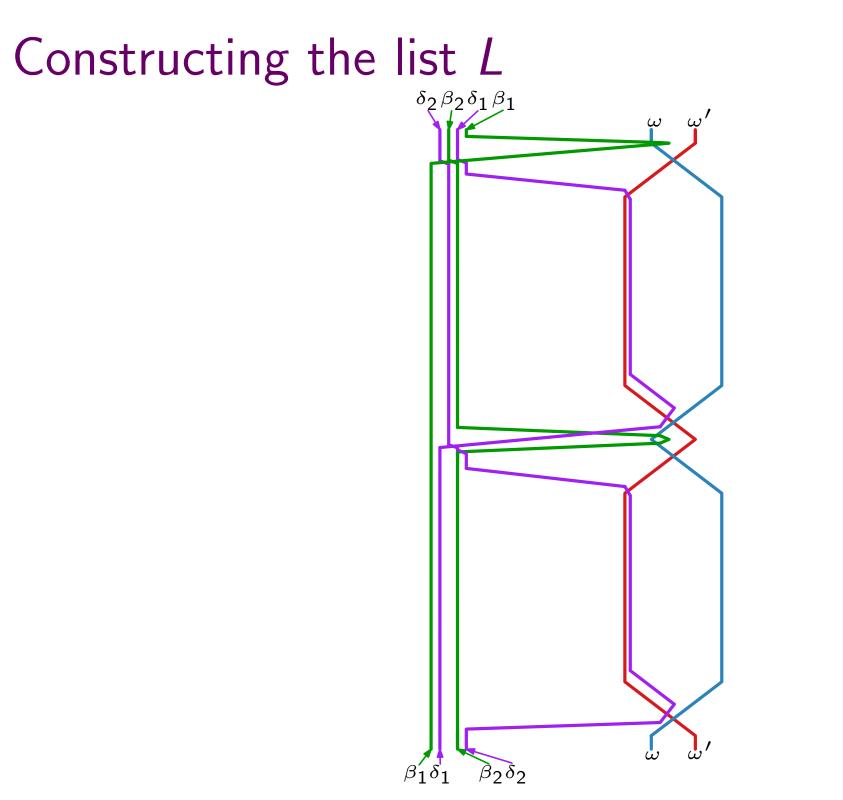
What is **not** allowed?

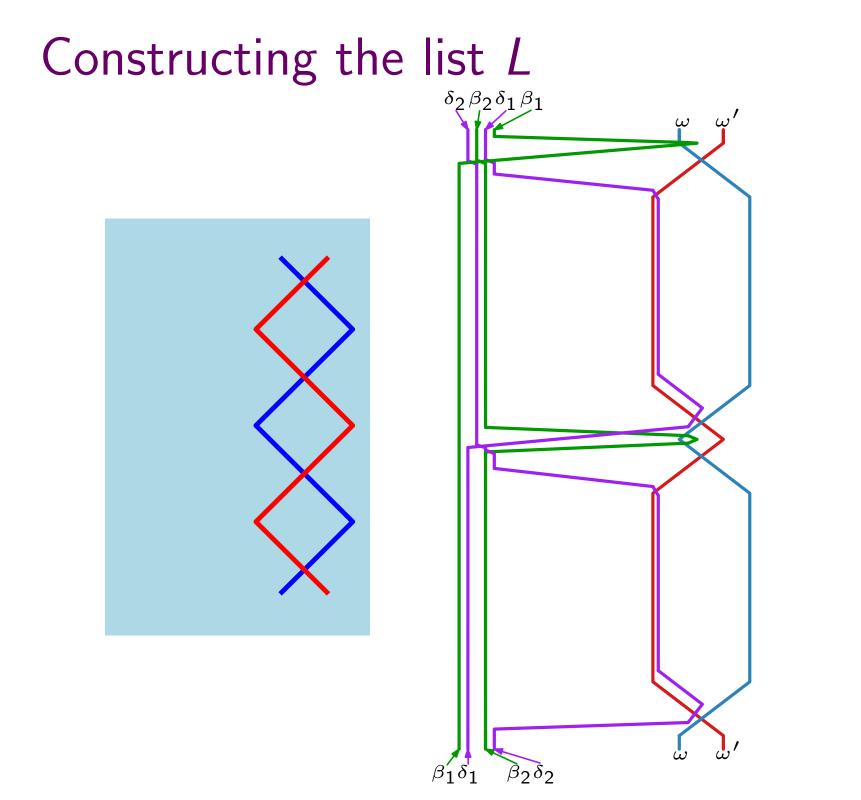
put it on the same level with other α - α' swaps

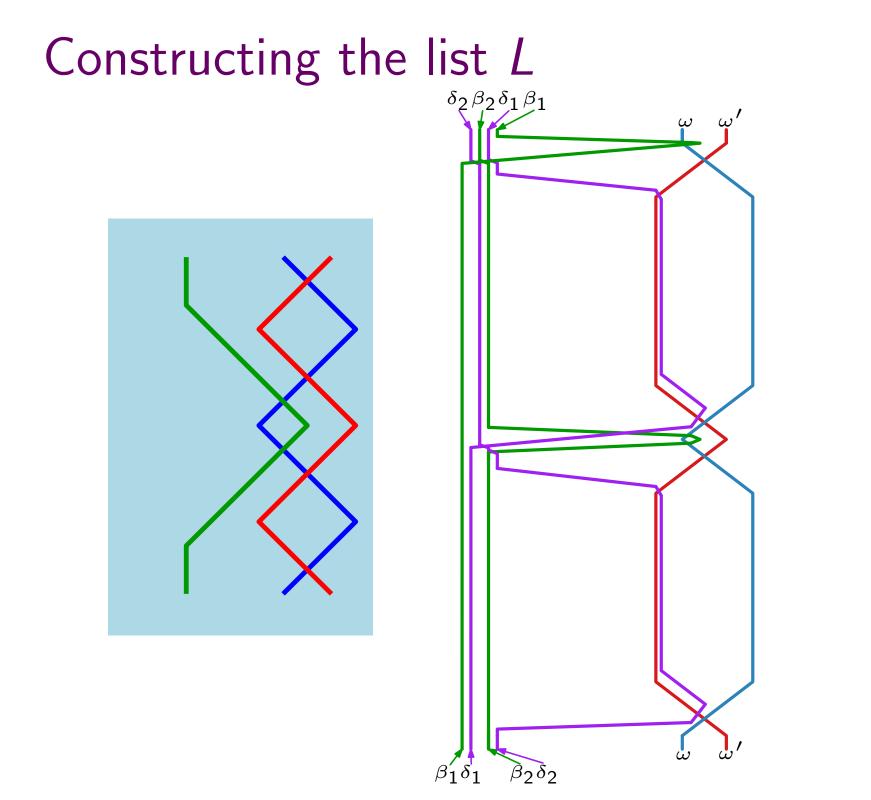


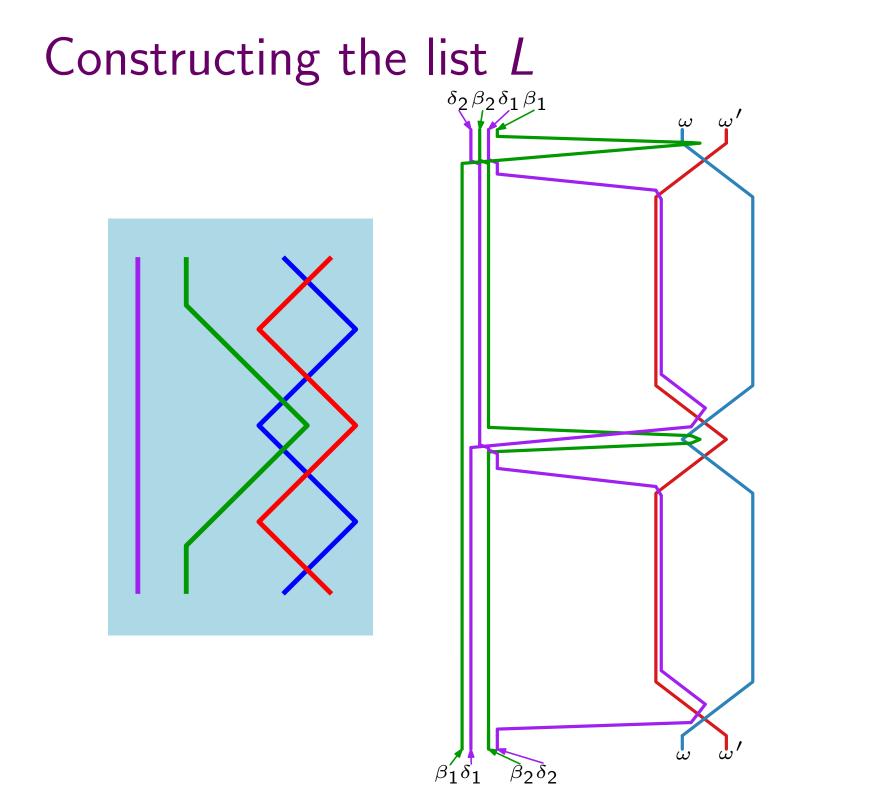
$$M = 2m^{3}$$

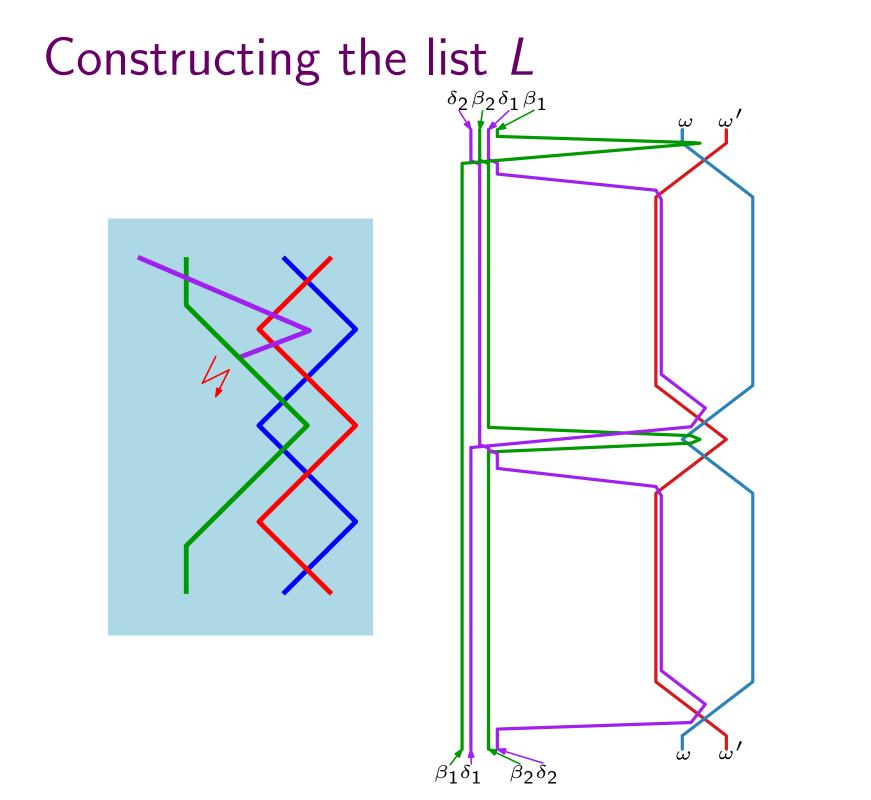


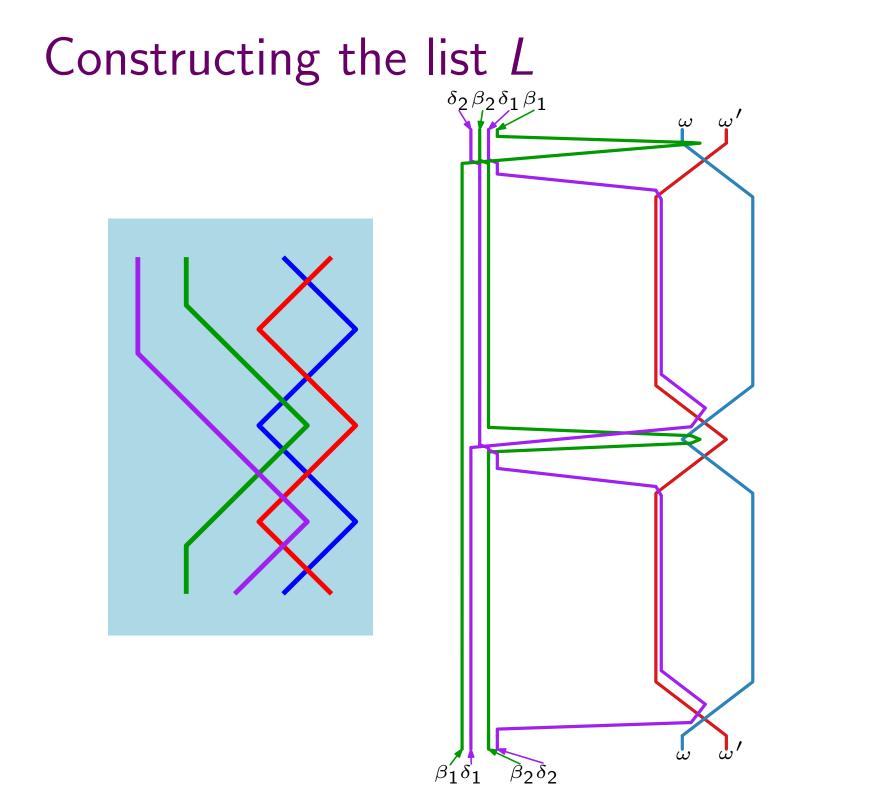


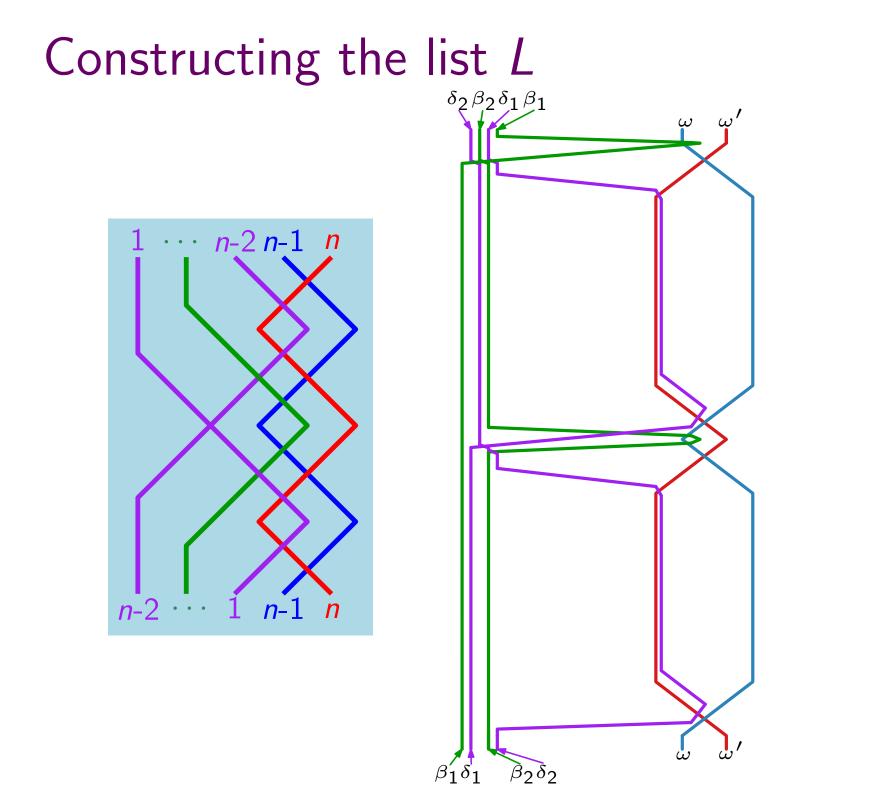


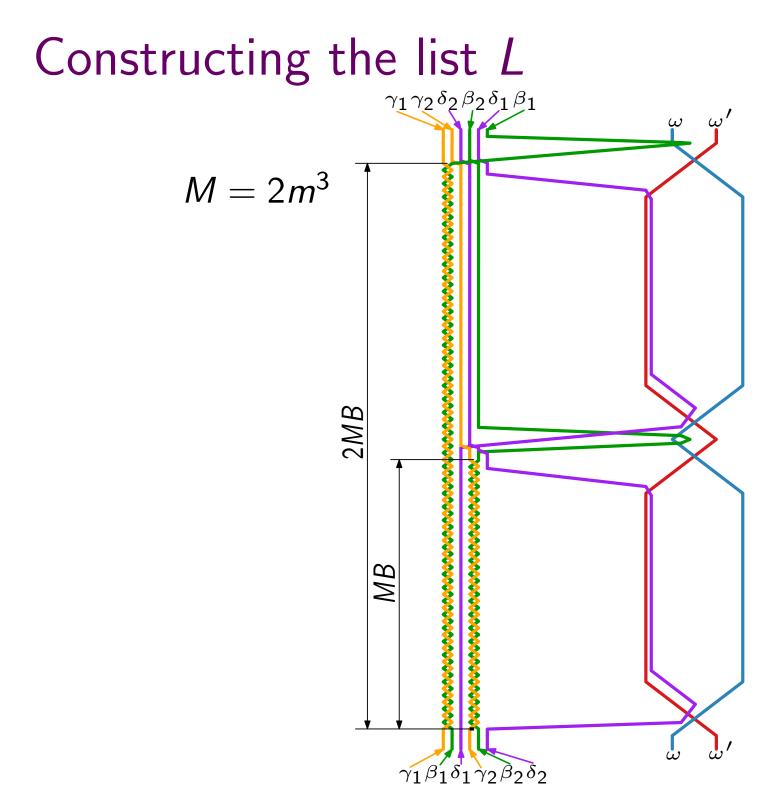


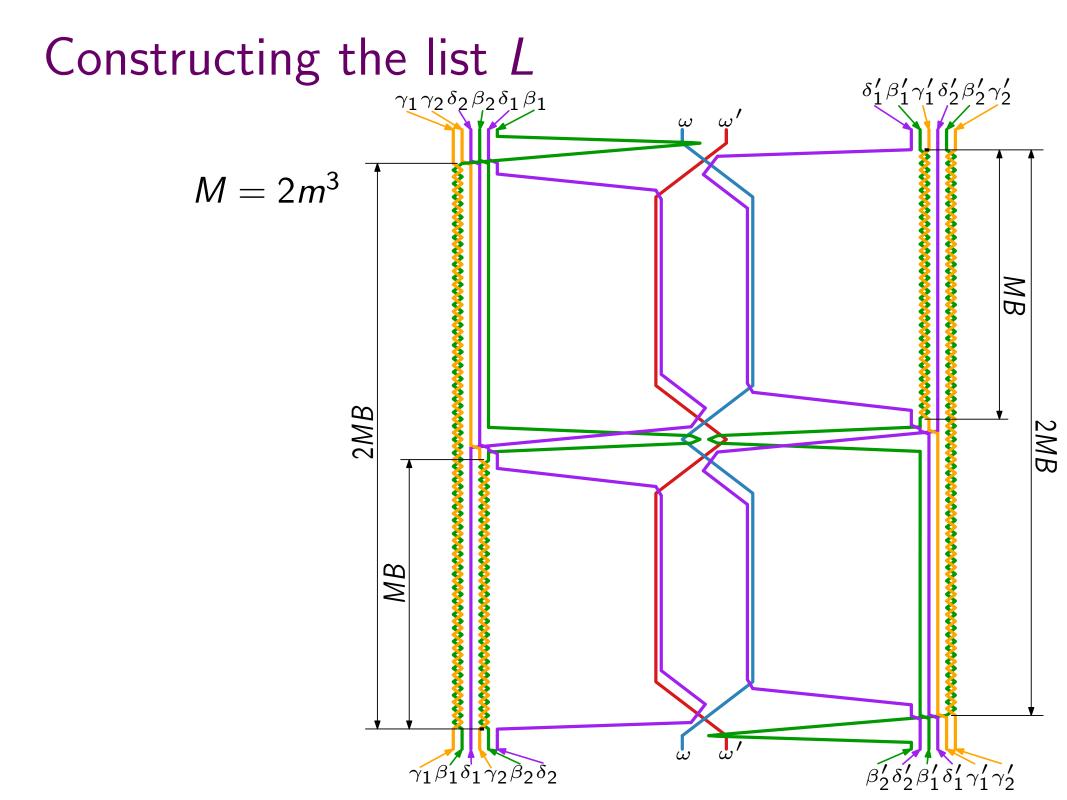


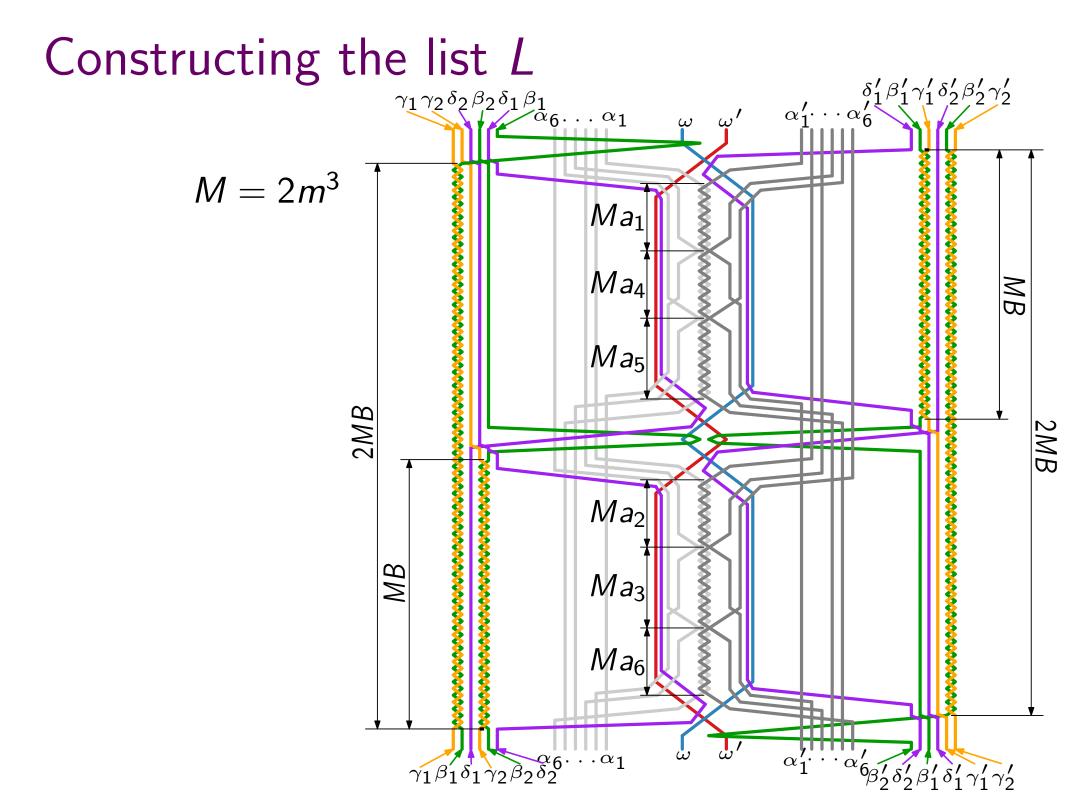


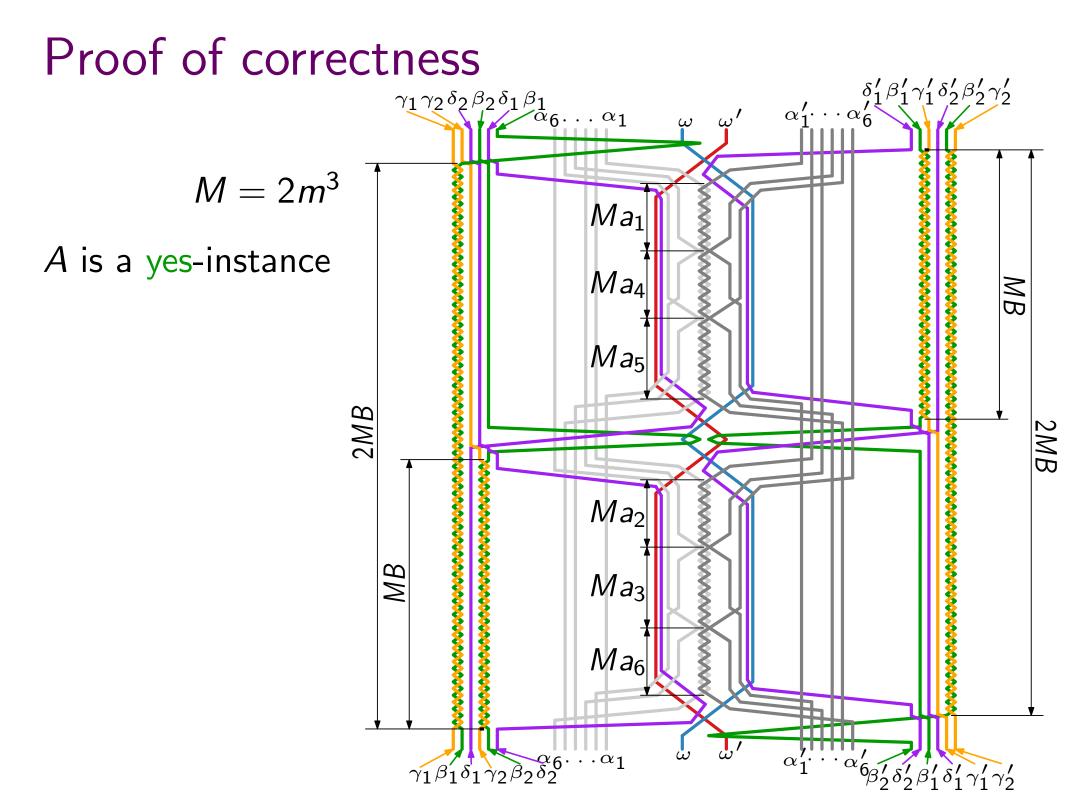


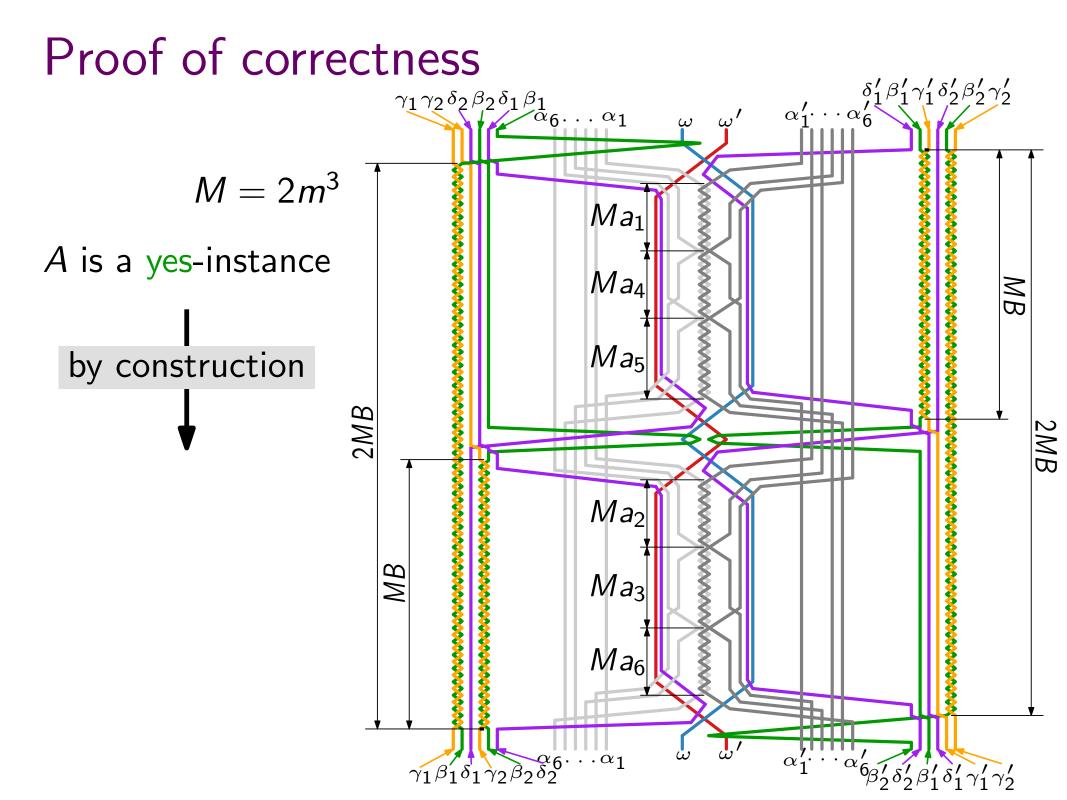


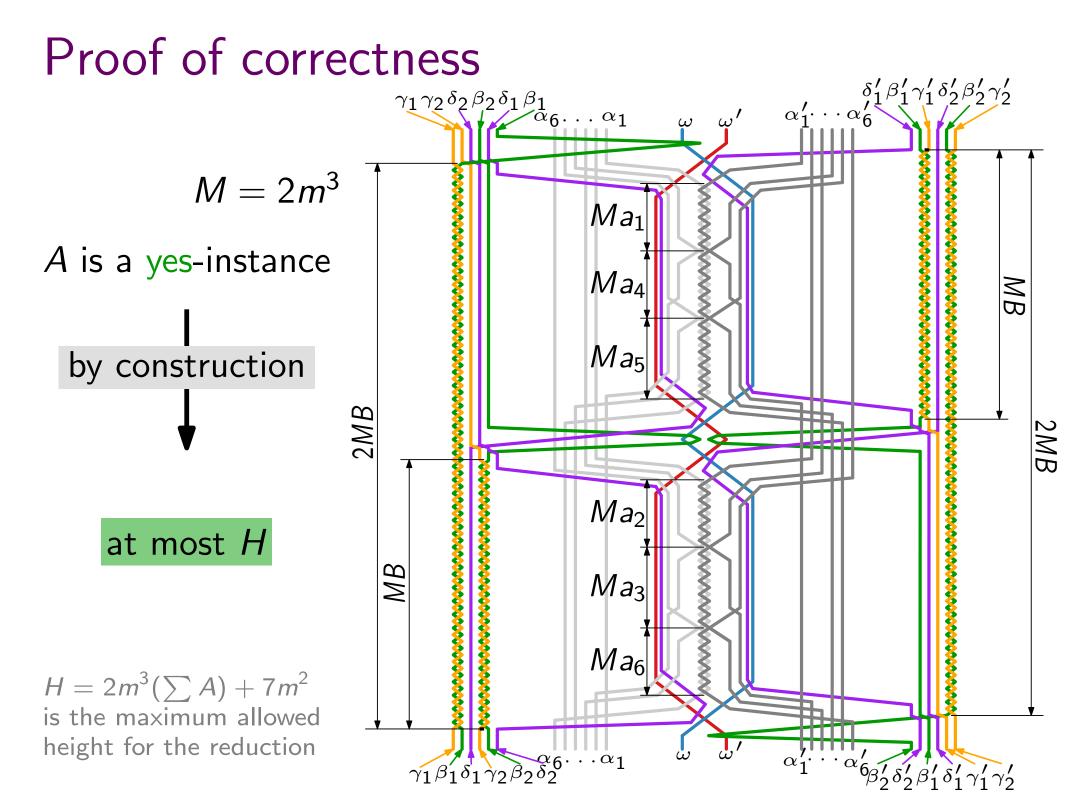


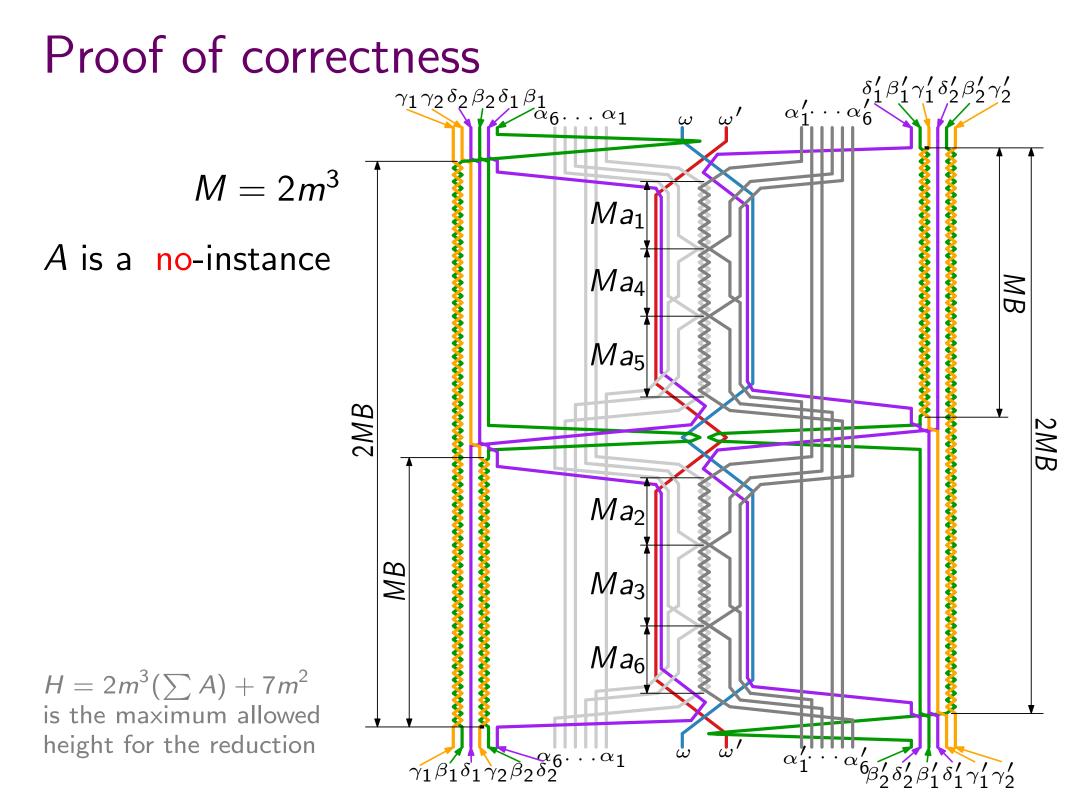












Proof of correctness $\delta_1'\beta_1'\gamma_1'\delta_2'\beta_2'\gamma_2'$ $\gamma_1\gamma_2\delta_2\beta_2\delta_1\beta_1$ $\alpha'_1 \cdots \alpha'_6$ $\dot{\alpha}_6 \dots \alpha_1$ $M = 2m^{3}$ Ma_1 A is a **no**-instance Ma_4 MB minimum height Ma_5 $2m^{3}(\sum A+1)$ 2MB2MB Ma_2 MB Ma_3 Ma_6 $H = 2m^3(\sum A) + 7m^2$ is the maximum allowed height for the reduction α_1 $\gamma_1\beta_1^{'}\delta_1^{'}\gamma_2\beta_2\delta_2^{\alpha_6}$ $\alpha_{6\beta_{2}\delta_{2}\beta_{1}}^{\prime}\delta_{1}^{\prime}\gamma_{1}^{\prime}\gamma_{2}^{\prime}$ α

Proof of correctness $\delta_1'\beta_1'\gamma_1'\delta_2'\beta_2'\gamma_2'$ $\gamma_1\gamma_2\delta_2\beta_2\delta_1\beta_1$ $\alpha'_1 \cdots \alpha'_6$ $\dot{\alpha}_{6}$... α_{1} $M = 2m^{3}$ Ma_1 A is a **no**-instance Ma_4 MB minimum height Ma_5 $2m^3(\sum A+1)$ 2MB2MB Ma_2 bigger than H MB Ma_3 Ma_6 $H = 2m^3(\sum A) + 7m^2$ is the maximum allowed height for the reduction $\gamma_1 \beta_1 \delta_1 \gamma_2 \beta_2 \delta_2^{\alpha_6}$ α_1 $^{\prime}_{6}\beta_{5}^{\prime}\delta_{5}^{\prime}\beta_{1}^{\prime}\delta_{1}^{\prime}\gamma_{1}^{\prime}\gamma_{2}^{\prime}$

TANGLE-HEIGHT MINIMIZATION can be solved in \ldots

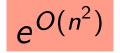
Simple lists

General lists

TANGLE-HEIGHT MINIMIZATION can be solved in \ldots

n: the number of wires

[Olszewski et al., GD'18]

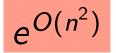


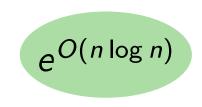
General lists

TANGLE-HEIGHT MINIMIZATION can be solved in \ldots

n: the number of wires

[Olszewski et al., GD'18]





our result

General lists

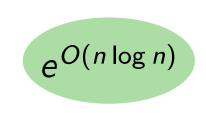
TANGLE-HEIGHT MINIMIZATION can be solved in \ldots

n: the number of wires |*L*|: the *length* of the list, i.e $\sum \ell_{ij}$ φ : the golden ratio, i.e. ≈ 1.618

Simple lists

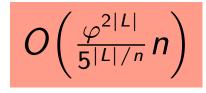
[Olszewski et al., GD'18]

 $e^{O(n^2)}$

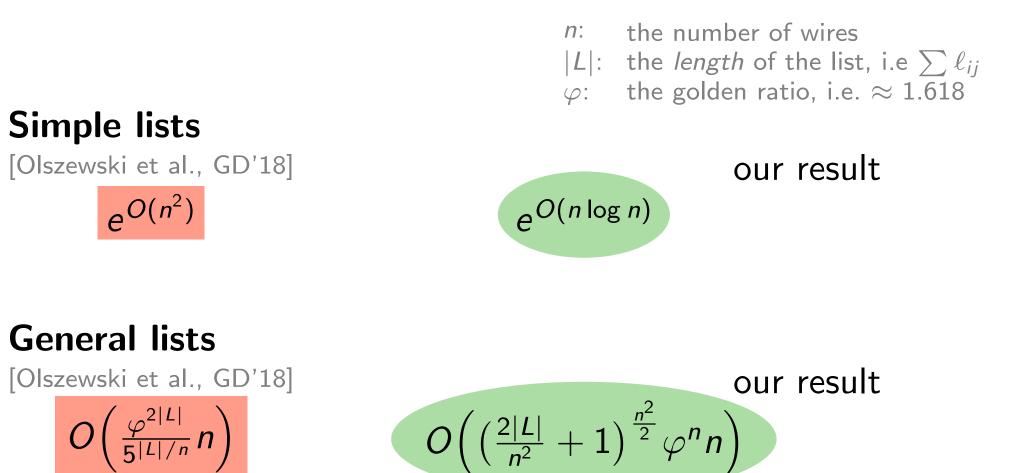


General lists

[Olszewski et al., GD'18]



TANGLE-HEIGHT MINIMIZATION can be solved in \ldots



TANGLE-HEIGHT MINIMIZATION can be solved in \ldots



Given a list $L = (\ell_{ij})$.

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{\frac{n^2}{2}}\varphi^n n\right)$$

Given a list $L = (\ell_{ij})$.

 $\lambda = \#$ of **distinct sublists** of *L*.

 $O\left(\left(\frac{2|L|}{n^2}+1\right)^{\frac{n^2}{2}}\varphi^n n\right)$

L' is a *sublist* of L if $\ell'_{ij} \leq \ell_{ij}$

Given a list $L = (\ell_{ij})$.

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{\frac{n^2}{2}}\varphi^n n\right)$$

 $\lambda = \#$ of **distinct sublists** of *L*.

Consider them in order of increasing length.

Given a list $L = (\ell_{ij})$.

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{\frac{n^2}{2}}\varphi^n n\right)$$

 $\lambda = \#$ of **distinct sublists** of *L*.

Consider them in order of **increasing length**.

Let L' be the next list to consider.

Given a list $L = (\ell_{ij})$.

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{\frac{n^2}{2}}\varphi^n n\right)$$

 $\lambda = \#$ of **distinct sublists** of *L*.

Consider them in order of **increasing length**.

Let L' be the next list to consider.

Check its **consistency**.

Given a list $L = (\ell_{ij})$.

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{\frac{n^2}{2}}\varphi^n n\right)$$

 $\lambda = \#$ of **distinct sublists** of *L*.

Consider them in order of **increasing length**.

Let L' be the next list to consider.

Check its **consistency**.

```
Given a list L = (\ell_{ij}).
```

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{\frac{n^2}{2}}\varphi^n n\right)$$

 $\lambda = \#$ of **distinct sublists** of *L*.

Consider them in order of increasing length.

Let L' be the next list to consider.

Check its **consistency**.

for each wire *i*: // find a position where it is after applying *L*'

Given a list $L = (\ell_{ij})$.

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{\frac{n^2}{2}}\varphi^n n\right)$$

 $\lambda = \#$ of **distinct sublists** of *L*.

Consider them in order of increasing length.

Let L' be the next list to consider.

Check its **consistency**.

for each wire *i*: // find a position where it is after applying *L'* $i \mapsto i +$

Given a list $L = (\ell_{ij})$.

 $O\left(\left(\frac{2|L|}{n^2}+1\right)^{\frac{n^2}{2}}\varphi^n n\right)$

 $\lambda = \#$ of **distinct sublists** of *L*.

Consider them in order of increasing length.

Let L' be the next list to consider.

Check its **consistency**.

for each wire *i*: // find a position where it is after applying L' $i \mapsto i +$

Given a list
$$L = (\ell_{ij})$$
.

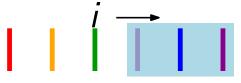
$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{\frac{n^2}{2}}\varphi^n n\right)$$

 $\lambda = \#$ of **distinct sublists** of *L*.

Consider them in order of increasing length.

Let L' be the next list to consider.

Check its **consistency**.



for each wire *i*: // find a position where it is after applying *L'* $i \mapsto i + |\{j : i < j \text{ and } I_{ij} \text{ is odd}\}|$

Given a list
$$L = (\ell_{ij})$$
.

 $\lambda = \#$ of **distinct sublists** of *L*.

Consider them in order of increasing length.

Let L' be the next list to consider.

Check its **consistency**.

 $O\left(\left(\frac{2|L|}{n^2}+1\right)^{\frac{n^2}{2}}\varphi^n n\right)$

for each wire *i*: // find a position where it is after applying *L'* $i \mapsto i + |\{j : i < j \text{ and } l_{ij} \text{ is odd}\}| - |\{j : j < i \text{ and } l_{ij} \text{ is odd}\}|$

Given a list
$$L = (\ell_{ij})$$
.

 $\lambda = \#$ of **distinct sublists** of *L*.

Consider them in order of increasing length.

Let L' be the next list to consider.

Check its **consistency**.

for each wire *i*: // find a position where it is after applying *L'* $i \mapsto i + |\{j : i < j \text{ and } I_{ij} \text{ is odd}\}| - |\{j : j < i \text{ and } I_{ij} \text{ is odd}\}|$ check whether the result is indeed a permutation

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{\frac{n^2}{2}}\varphi^n n\right)$$

Given a list
$$L = (\ell_{ij})$$
.

 $O\left(\left(\frac{2|L|}{n^2}+1\right)^{\frac{n^2}{2}}\varphi^n n\right)$

 $\lambda = \#$ of **distinct sublists** of *L*.

Consider them in order of **increasing length**.

Let L' be the next list to consider.

Check its **consistency**.

Get the **final permutation** $id_n L'$.

Given a list
$$L = (\ell_{ij})$$
.

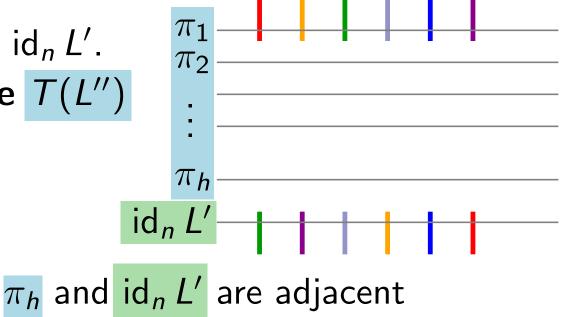
 $\lambda = \#$ of **distinct sublists** of *L*.

Consider them in order of increasing length.

Let L' be the next list to consider.

Check its **consistency**.

Get the **final permutation** $id_n L'$. Choose the **shortest tangle** T(L'')



Given a list
$$L = (\ell_{ij})$$
.

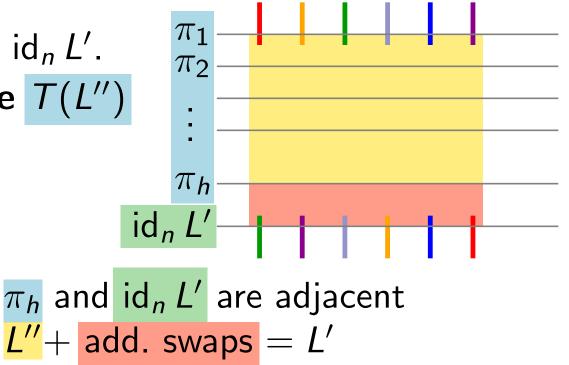
 $\lambda = \#$ of **distinct sublists** of *L*.

Consider them in order of increasing length.

Let L' be the next list to consider.

Check its **consistency**.

Get the **final permutation** $id_n L'$. Choose the **shortest tangle** T(L'')



Given a list
$$L = (\ell_{ij})$$
.

 $\lambda = \#$ of **distinct sublists** of *L*.

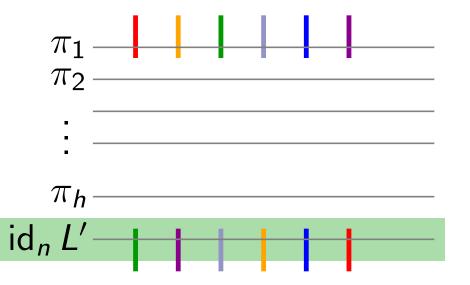
Consider them in order of increasing length.

Let L' be the next list to consider.

Check its consistency.

Get the **final permutation** $id_n L'$. Choose the **shortest tangle** T(L'')

Add the final permutation to the end.



Given a list
$$L = (\ell_{ij})$$
.

 $\lambda = \#$ of **distinct sublists** of *L*.

Consider them in order of increasing length.

Let L' be the next list to consider.

Check its **consistency**.

Get the **final permutation** $id_n L'$. Choose the **shortest tangle** T(L'')

Add the final permutation to the end.

Running time

 $\begin{array}{c}
\pi_1 \\
\pi_2 \\
\vdots \\
\pi_h \\
\text{id}_n L' \\
\end{array}$

Given a list
$$L = (\ell_{ij})$$
.

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{\frac{n^2}{2}}\varphi^n n\right)$$

 $\lambda = \#$ of **distinct sublists** of *L*.

Consider them in order of increasing length.

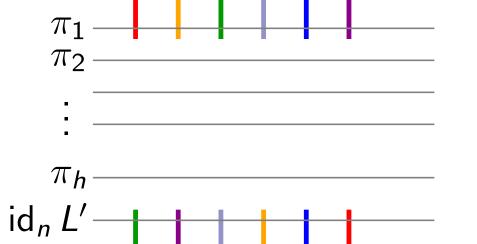
Let L' be the next list to consider.

Check its **consistency**.

Get the **final permutation** $id_n L'$. Choose the **shortest tangle** T(L'')

Add the final permutation to the end.

Running time



Given a list
$$L = (\ell_{ij})$$
.

 $\lambda = \#$ of **distinct sublists** of *L*.

Consider them in order of increasing length.

Let L' be the next list to consider.

Check its consistency.

Get the **final permutation** $id_n L'$.

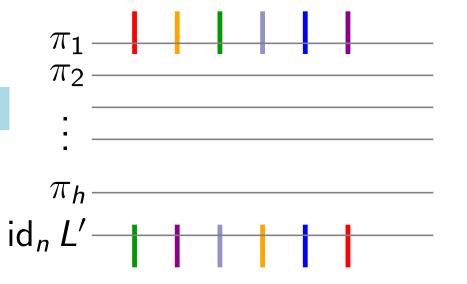
Choose the **shortest tangle** T(L'')

Add the final permutation to the end.

Running time

 $O(\lambda(F_{n+1}-1)n)$

 F_n is the *n*-th Fibonacci number



Given a list
$$L = (\ell_{ij})$$
.

 $\lambda = \#$ of **distinct sublists** of *L*.

Consider them in order of increasing length.

Let L' be the next list to consider.

Check its **consistency**.

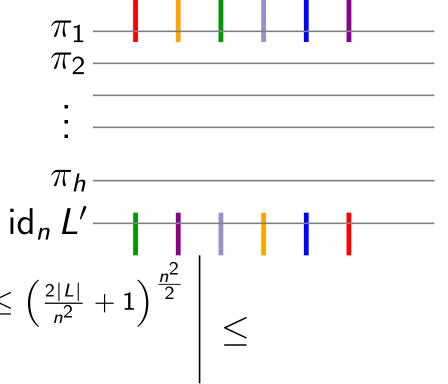
Get the **final permutation** $id_n L'$. Choose the **shortest tangle** T(L'')

Add the final permutation to the end.

Running time

$$O(\lambda(F_{n+1}-1)n) \leq$$

$$\left| egin{array}{l} \lambda = \prod\limits_{i < j} (\ell_{ij} + 1) \leq \left(rac{2|L|}{n^2} + 1
ight)^{rac{n^2}{2}} \\ F_n \in O(arphi^n) \end{array}
ight| \leq$$



Given a list
$$L = (\ell_{ij})$$
.

 $\lambda = \#$ of **distinct sublists** of *L*.

Consider them in order of increasing length.

Let L' be the next list to consider.

Check its **consistency**.

Get the **final permutation** $id_n L'$. Choose the **shortest tangle** T(L'')

Add the final permutation to the end.

Running time

$$O(\lambda(F_{n+1}-1)n) \leq$$

$$egin{aligned} \lambda &= \prod\limits_{i < j} (\ell_{ij} + 1) \leq \left(rac{2|L|}{n^2} + 1
ight)^{rac{n^2}{2}} \ F_n \in O(arphi^n) \end{aligned}$$

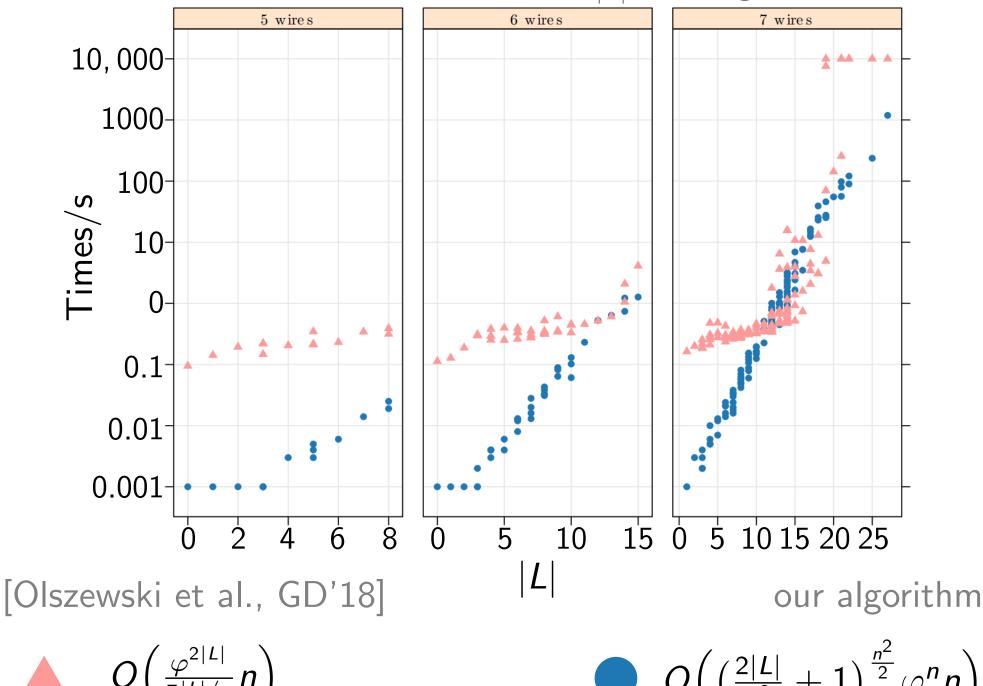
 π_1

 π_2

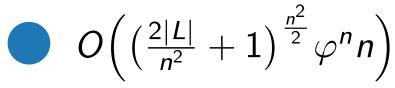
 π_h -

 $\operatorname{id}_n L'$

|L|: the length of the list



 $O\left(\frac{\varphi^{2|L|}}{5^{|L|/n}}n\right)$



Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

If feasibility is NP-hard, can we decide it faster than finding optimal tangles?

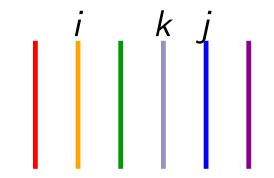
Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

If feasibility is NP-hard, can we decide it faster than finding optimal tangles?

Problem 3



A list
$$(\ell_{ij})$$
 is *non-separable* if, for any $i < k < j$, $\ell_{ik} = \ell_{kj} = 0$ implies $\ell_{ij} = 0$.

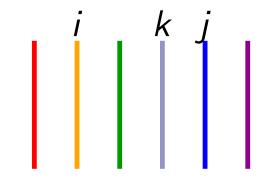
Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

If feasibility is NP-hard, can we decide it faster than finding optimal tangles?

Problem 3



A list
$$(\ell_{ij})$$
 is *non-separable* if, for any $i < k < j$, $\ell_{ik} = \ell_{kj} = 0$ implies $\ell_{ij} = 0$.

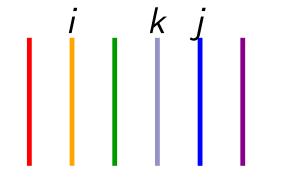
Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

If feasibility is NP-hard, can we decide it faster than finding optimal tangles?

Problem 3



A list
$$(\ell_{ij})$$
 is *non-separable* if, for any $i < k < j$, $\ell_{ik} = \ell_{kj} = 0$ implies $\ell_{ij} = 0$.

For lists where all entries are even, is this sufficient?

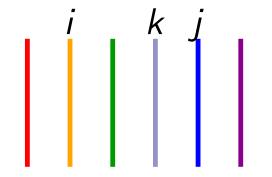
Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

If feasibility is NP-hard, can we decide it faster than finding optimal tangles?

Problem 3



A list
$$(\ell_{ij})$$
 is *non-separable* if, for any $i < k < j$, $\ell_{ik} = \ell_{kj} = 0$ implies $\ell_{ij} = 0$.

For lists where all entries are even, is this sufficient?

