
The Complexity of the Descriptiveness of
Boolean Circuits over Different Sets of Gates

Elmar Böhler1 and Henning Schnoor2

1 Theoretische Informatik, Universität Würzburg,
Am Hubland, 97072 Würzburg, Germany.
boehler@informatik.uni-wuerzburg.de

2 Theoretische Informatik, Universität Hannover,
Appelstr. 4, 30167 Hannover, Germany.

schnoor@thi.uni-hannover.de

Abstract. Any Boolean function can be defined by a Boolean circuit,
provided we may use sufficiently strong functions in its gates. On the
other hand, it depends on these gate functions, what Boolean functions
can be defined: Each set B of gate functions defines the class of Boolean
functions that can be defined by circuits over B. Although these classes
are known since the 1920s, their computational complexity was never
investigated. In this paper we will study how difficult it is to decide for
a Boolean function f and a class B, whether f is in B. Moreover we
will provide such a decision algorithm with additional information: How
difficult is it to decide whether or not f is in B, provided we already
know a circuit for f , but with gates from another class A? Given such a
circuit, we know that f is in A. Is the problem harder if we do not have a
concrete representation for f , but still know that it is from A? For nearly
all possible combinations, we show that this is not the case,and that the
problem is either in P or coNP-complete.

1 Introduction

Computer science is an inductive discipline. The idea of the algorithm,
that stands in the very core of computer science, is the idea of using
basic primitives to describe and analyze complex procedures. The idea
is global, independently of whether you are in functional programming,
object oriented programming, or Turing machines. It is the notion of
closures: You are provided with a small set of primitives and operations,
and everything that can be built by applying the operations on the prim-
itives, belongs to the closure.
Function algebras are an example for such closures. Here the primitives
are functions over some domain D and the operations are those you need
to build polynomials or formulas over the functions, in order to create
new ones. These operations are called superposition. Universal algebra
teaches us, that for every domain, the set of all possible closures form
a lattice. However, these lattices are huge, and for all domains but the
smallest ones their exact structure is unknown.

In the twenties of the last century, Emil Post studied this lattice for
the binary domain [Pos41]. He identified every set of Boolean functions
closed under superposition, determined the complete inclusion structure
of them and gave a finite base for every closed set (see Figure 1, Table 1).
The complexity of problems related to Boolean functions has been of
special interest throughout the history of complexity theory. Many prob-
lems of this kind are standard examples for certain complexity classes
- the first problem ever proven to be NP-complete was the satisfiability
problem for Boolean formulas [Coo71].
The complexity of many of these problems depends only on the set of con-
nectives used in the examined Boolean formulas. In 1979, Lewis showed
that the satisfiability problem is either NP-complete or polynomial-time
solvable, depending on which connectives are allowed in the formula
[Lew79]. Reith and Wagner studied the complexity of many problems
related to Post’s lattice, as for example equivalence, tautology, and quan-
tified satisfiability for formulas and circuits with a restricted set of con-
nectors [Rei01],[RW99].
If C0 is the set of functions that contains exactly those Boolean functions
that are constantly zero, then it is equivalent to ask whether a formula
is satisfiable or whether it is not contained in C0. This set is closed
under superposition (although, technically, it is not one of Post’s classes),
hence, a generalization of satisfiability is the question of whether a given
Boolean formula describes a function from any fixed Post class.
To be more specific, we define for each combination of Post’s classes A
and B the following problems:
1. Given a circuit with connectors from A, does it describe a function

from B?
2. Given a circuit (over a standard set of connectors) that we know to

be in A, does it describe a function from B?
Note that if a function is in a class B, then it can be described by a circuit
with gates computing functions from B. Hence the following questions
are equivalent:
1. Given a circuit with gates from A, is there a circuit with gates from

B, that describes the same function?
2. Given a circuit over a standard set of gates, is there a circuit with

gates from B, that describes the same function?
We determine for nearly all combinations of A and B the complexity of
these problems. Since for every finite set of Boolean functions its closure
is easy to determine, we can settle the following question for nearly all
circuits C and nearly all collections of gates B: Is it wise to search for
a circuit C′, with gates over B, that computes the same function as C?
The answer is “yes”, if problem 1 is easy for that combination and “no”,
otherwise, since any algorithm that is able to compute C′ rapidly (or is
able to say “there is no such C′”) would prove P = NP.
Furthermore, by examining question 2, we gain insight about whether the
complexity of the function-membership problem depends on the connec-
tors used in the circuit that describes the function.
For nearly every combination, we show that this does not make a differ-
ence, namely, the problems mentioned above are polynomial-time equiv-
alent, and each of these problems is polynomial-time solvable or coNP-

complete. Also, the complexity of the analogous problems over Boolean
circuits does not differ from the one over formulas.

2 Preliminaries

In this paper, if we talk about a machine, we have in mind the notion
of a Turing machine, to fix a model of computation (which is rather ar-
bitrarily, since we could have chosen any other equivalent model). Let
Σ:={0, 1}. Let P be the class of problems that can be decided by a de-
terministic machine in polynomial time. Let FP be the class of functions
that can be computed by such a machine in polynomial time. Let NP be
the class of problems that can be decided by a nondeterministic machine
in polynomial time. For any class of sets K, let coK:={A : A ∈ K}. Let
≤p

m denote the polynomial-time many-one reducibility. For two sets A
and B, we write A =p

m B if A ≤p
m B and B ≤p

m A.

2.1 Promises

If a machine decides a normal problem, we expect it to give a correct
answer for all possible inputs. It is slightly different with promise prob-
lems. A machine deciding such a problem may assume, that each of its
inputs fulfills a certain property. If it gets an input that really has that
property, the machine has to work correctly; its behavior on all other in-
puts is not defined. In the segment that follows, A, B, A′, and B′ always
denote sets, M denotes an algorithm and K denotes a complexity class.

Definition 2.1. M decides B with promise A or M decides the promise
problem BoA iff the following holds:
– If x ∈ A ∩B then M accepts x.
– If x ∈ A ∩B then M rejects x.

We also define a reflexive and transitive relation ≤: We write BoA ≤
B′oA′ if there exists an f ∈ FP such that
– if x ∈ A ∩B then f(x) ∈ A′ ∩B′.
– if x ∈ A ∩B then f(x) ∈ A′ ∩B′.

We write BoA ≡ B′oA′ if BoA ≤ B′oA′ and B′oA′ ≤ BoA.

We identify BoΣ∗ with B. We write BoA ∈ K if there is a K-algorithm
that decides BoA. We say BoA is hard for K if C ≤ BoA for every C ∈ K
and BoA is complete for K if BoA ∈ K and BoA is hard for K.
We need to make some observations about promises.

Proposition 2.2.
1. If A′ ⊆ A then BoA′ ≤ BoA.
2. BoA ≡ (A ∩B)oA.

Lemma 2.3. Let A, B, and C be sets with C ⊆ B, A 6⊆ B. If CoB ∈ P
then CoA ≤ BoA.

Proof: Since CoB ∈ P, there exists an f ∈ FP such that

– x ∈ B ∩ C ⇒ f(x) = 1
– x ∈ B ∩ C ⇒ f(x) = 0.

Now we choose x0 ∈ A ∩B and define

g(x):=

{
x if f(x) = 1

x0 if f(x) = 0.

Obviously g(x) ∈ FP.
– If x ∈ A∩C we get x ∈ C = B∩C and so f(x) = 1 and consequently

g(x) = x ∈ A ∩B.
– If x ∈ A ∩ C:

• Case 1: If x ∈ B then x ∈ B ∩ C and so f(x) = 0 and we get
g(x) = x0 ∈ A ∩B.

• Case 2: If x /∈ B then either g(x) = x ∈ A ∩ B or g(x) = x0 ∈
A ∩B.

2

2.2 Boolean Functions and Circuits

A standard way of representing Boolean functions is to write them as
propositional formulas, like x ∨ (y ∧ z). Usually, only ∨,∧, and negation
are used in formulas, as in fact, every Boolean function can be rep-
resented using only these three connectives. In this paper, we examine
more general propositional formulas, using arbitrary functions as connec-
tives. Observe from the following definition, that propositional formulas
are a special kind of Boolean circuits, where every node has out-degree
≤ 1. This definition is from [Vol99].

Definition 2.4. Let B be a finite set of Boolean functions. A B-circuit
with input-variables x1, . . . , xn is a tuple C = (V, E, α, β, o), where (V, E)
is a finite directed acyclic graph, α : E → N is an injective function,
β : V → B ∪ {x1, . . . , xn} is a function, and o ∈ V , such that:

– If v ∈ V has in-degree 0, then β(v) ∈ {x1, . . . , xn} or β(v) is a 0-ary
function (i.e. a constant) from B.

– If v ∈ V has in-degree k > 0, then β(v) is a k-ary function from B.

Nodes v ∈ V are called gates in C, β(v) is the gate-type of v. o ∈ V is the
output-gate of C. The function α defines the order of arguments for non-
commutative functions in B. We now define the function fC : {0, 1}n →
{0, 1} calculated by the circuit C. For this, we inductively define, how an
assignment to the variables propagates to each of the gates in the circuit.
Fore each gate v in C, we define the function valCv : {0, 1}n → {0, 1}:

Let α1, . . . , αn ∈ {0, 1}.

– If β(v) = xi for i ∈ {1, . . . , n}, then valCv (α1, . . . , αn):=αi.
– If β(v) = c for a constant function c ∈ B, then valCv (α1, . . . , αn):=c.
– Let v have in-degree k > 0, and let v1, . . . , vk be the predecessor gates

of v such that α((v1, v)) < · · · < α((vk, v)). Let β(v) = f be a k-ary
function. Then

valCv (α1, . . . , αn):=f(valCv1(α1, . . . , αn), . . . , valCvk
(α1, . . . , αn)).

Let fC :=valCo . fC is the function computed by the Boolean circuit C.

The size of a Boolean circuit C is the number of gates: |C|:=|V |.

We use standard propositional formulas like x1 → x2 to describe Boolean
functions. The construction of the corresponding circuit is obvious. We
write ↔ for equivalence in Boolean formulas, and ⇔ for equivalence in
the meta-language. For Boolean formulas F and G, we write F = G, if
the formulas describe the same circuit. We write F ≡ G, if fF = fG. We
write small Greek letters for elements from {0, 1} and bold Greek letters
for vectors. We define a relation ≤ on vectors as follows: (α1, . . . , αn) ≤
(β1, . . . , βn) if and only if αi ≤ βi for all 1 ≤ i ≤ n. For two vectors
α = (α1, . . . , αn) and β = (β1, . . . , βn) and a binary Boolean function f
let f(α, β):=(f(α1, β1), . . . , f(αn, βn)) be the bitwise application of f to
α and β. To avoid cumbersome notation, we often identify words over
{0, 1} of length n with vectors from {0, 1}n. Also, when it is clear from the
context, we often identify circuits or formulas with the Boolean functions
they describe. Also, if α = (α1, . . . , αn) we define C(α):=C(α1, . . . , αn),
f(α):=f(α1, . . . , αn), and α:=(α1, . . . , αn). So, for example C(120) =
C((1, 1, 0)) = C(0, 0, 1) = fC(0, 0, 1).
When defining a formula over arbitrary variables, it is not always clear
how the order of variables is defined. Therefore we will use the follow-
ing notation: Let F be some formula where variables x1, . . . , xm appear.
Then for n ≥ m, C(x1, . . . , xn):=F means that x1 is the first variable
of the formula, x2 is the second one, and so on. Also, if n > m, this
notation means that we formally regard C as a circuit over n vari-
ables, but some of the variables have no influence of the value of the
described function. Such variables are called fictive. For example, the
notation C(u, x, y, w):=x ∧ (u → x) ∨ w means that u is defined to be
the first, x is the second, y the third, and w is the fourth variable of
C. Furthermore, in this example, y is a fictive variable. Also, if we want
to express that C is a circuit with input-variables x1, . . . , xn, we write
C(x1, . . . , xn) instead of just C.

We now formally introduce the operations of superposition. We say a
set A of Boolean functions is closed if it is closed under the following
operations. For that, let f and g be functions of arities n and m. Then
if for all α1, . . . , αn+1, β1, . . . , βm ∈ {0, 1}
– h(α1, . . . , αn−1, β1, . . . , βm) = f(α1, . . . , αn−1, g(β1, . . . , βm)) then h

is derived from f and g via substitution,
– h(α1, . . . , αn) = f(απ(1), . . . , απ(n)), for a permutation π : {1, . . . ,

n} → {1, . . . , n}, then h is derived via permutation of variables from
f ,

– hn−1(α1, . . . , αn−1) = f(α1, . . . , αn−1, αn−1) then h is derived via
identification of the last variables from f , and

– h(α1, . . . , αn+1) = f(α1, . . . , αn) then h is derived via introduction
of a fictive variable from f .

Identification of arbitrary variables can be achieved by combining iden-
tification of the last variables with permutation of variables. Similarly, a
fictive variable can be introduced at an arbitrary position. We also de-
mand, that closed classes should contain the identity function id(x) = x.

Such closed classes are called clones. This definition is reasonable, be-
cause clones are exactly those classes that can be described by circuits
over some basic functions. Since the identity function can always be de-
scribed by a circuit, it should be contained in every clone. For a set B of
Boolean functions, let [B] denote the smallest closed set of Boolean func-
tions containing B. We say B is a base of [B]. The usual closure properties
hold, i.e. B ⊆ [B],B1 ⊆ B2 implies [B1] ⊆ [B2] and [[B]] = [B].
Emil Post showed in [Pos41] that the list of closed classes shown in
Table 1 is complete. The inclusion structure for these classes is shown
in Figure 1. Like any set of sets closed under a closure operator, Post’s
classes form a lattice.
Let S ⊆ {0, 1}n, β ∈ {0, 1}. We say S is β-separating, if there exists an i
such that for all (α1, . . . , αn) ∈ S, αi = β. The dual of a function f is the
function dual(f)(α):=¬f(α) for all α. For a set B of Boolean functions,
let dual(B):={dual(f) : f ∈ B}. For functions f and g of the same arity
n, we write f ≤ g, if for all α ∈ {0, 1}n holds f(α) ≤ g(α). For a circuit
C(x1, . . . , xn), we say xi is a relevant variable if there are α1, . . . , αi−1,
αi+1, . . . , αn such that

C(α1, . . . , αi−1, 0, αi+1, . . . , αn) 6=
C(α1, . . . , αi−1, 1, αi+1, . . . , αn).

The variable xi is fictive otherwise.

Definition 2.5. Let f be a Boolean function of arity n ≥ 0. It is called
– β-separating, if f−1({β}) is β-separating,
– β-separating of degree m, if every subset S ⊆ f−1({β}) with |S| = m

is β-separating,
– monotonic, if for all α and β with α ≤ β it holds f(α) ≤ f(β),
– self-dual if dual(f) = f
– α-reproducing, if f(α, . . . , α) = α, and
– linear if for all 1 ≤ i ≤ n it is the case that either for all α1, . . . , αn

holds

f(α1, . . . , αi−1, 0, αi+1, . . . , αn) = f(α1, . . . , αi−1, 1, αi+1, . . . , αn)

or for all of them holds

f(α1, . . . , αi−1, 0, αi+1, . . . , αn) 6= f(α1, . . . , αi−1, 1, αi+1, . . . , αn).

Note that n-ary linear functions are exactly those f for which there are
constants c0, . . . , cn ∈ {0, 1} such that c0 ⊕ c1x1 ⊕ . . . cnxn describes f .
We define the special functions

hm(x1, . . . , xm+1):=

m+1∧
i=1

x1 ∨ x2 ∨ · · · ∨ xi−1 ∨ xi+1 ∨ · · · ∨ xm+1

for m ≥ 2. These functions are 0-separating of degree m, but not 0-
separating of degree m + 1.

Definition 2.6. – Let P denote the set Boolean clones. In the follow-
ing, let B ∈ P.

– By base(B) we denote the base for B given in Table 1.
– We say B-circuit as an abbreviation for base(B)-circuit, and B-

formula for base(B)-formula. So, a B-circuit is a circuit using only
elements from the base of B as gates.

– Let M(B):={C : C is a Boolean circuit and fC ∈ B}.

We now define the membership problems we are interested in, and es-
tablish basic relations between them.

Definition 2.7. Let A be a set of Boolean functions and B ∈ P. Then
M(A � B):={f : f is a B-formula and f ∈M(A)}
MC(A � B):={C : C is a B-circuit and C ∈M(A)}
M(AoB):=MC(A � BF)oM(B) = {C : C is a {∨,∧,¬}-circuit from
M(A)}oM(B).

We call M(A � B) the A-membership problem for B-formulas and
MC(A � B) the A-membership problem for B-circuits. M(AoB) is
called the A-membership problem with promise B.

These problems are very similar in nature: In all cases, the question is
whether a certain function from a given class in Post’s lattice belongs
to another class as well. The difference between the problems is the
varying degree of information the algorithm is given and how compact
the information is given. For M(AoB), it is just known that a given input
circuit describes some function from the class B. For MC(A � B), the
representation of the function as a B-circuit is available, and in the case
M(A � B), we have the representation as a B-formula, which is a special
case of a circuit of possibly lesser tightness. Hence the problem gets easier
the more information we have and the larger the representation of the
input is. Formally, we establish the following reduction results:

Proposition 2.8. For any A, B1 ⊆ B2 ∈ P, the following holds:
1. M(A � B1) ≤p

m MC(A � B1)
2. MC(A � B1) ≤p

m MC(A � B2)
3. MC(A � B1) ≤p

m M(AoB1)

Proof:
1. Trivial, since a Boolean formula is a special case of a Boolean circuit.
2. Since B1 ⊆ B2, for every function f ∈ B1, there is a base(B2)-

circuit C such that fC = f . Since base(B1) is finite, we can locally
replace every gate with the corresponding B2-circuit; the size of the
resulting B2 circuit is only linearly larger than that of the original
one. Obviously this does not change the function of the circuit.

3. The given B1-circuit can be converted into a {∧,∨,¬}-circuit in
polynomial time (cf. 2.), since {∧,∨,¬} is a base for the set of all
Boolean functions. Obviously, this {∧,∨,¬}-circuit still describes the
same function from B1.

2

For all combinations of classes A and B where we succeed to determine
the complexity of the three problems, they are all either in P or coNP-
complete. Because of Proposition 2.8 the straight forward way to find
the polynomial time upper bounds is to show that M(AoB) is in P. The

lower bound can be established by just proving hardness for M(A � B).
Some of the combinations of classes yield problems that have an upper
complexity bound that is below P. We cannot expect that these exacter
bounds remain the same in all three cases. Especially the formula and
the circuit case will differ: A very important part of most algorithms that
decide membership problems is to compute the value of the circuit on
some inputs. But the complexity of the general circuit value problem is
complete for P whereas the formula value problem is in L.
Note that the problems M(A � B) and MC(A � B) depend on our
particular choice of bases in Table 1. However, at least the complexity
of MC(A � B) does not, since for every circuit over a base C for B we
easily find another one over a base D for B such that the size of the latter
one is at most linearly larger than that of the former one. Similarly, for
classes B1 and B2 such that [B1] ⊆ [B2], holds, we can easily transform
a given circuit over B1 into a B2-circuit.
For Boolean formulas, this cannot always be achieved easily. For example,
a formula calculating the function x1⊕x2⊕· · ·⊕xn cannot be expressed
as {∨,∧,¬}-formula in a straightforward way without the result growing
exponentially in size. Thus, we cannot take M(A � B2) for granted
as an upper bound for M(A � B1). However, in all known cases this
assumption holds, as will be shown later.
Since there are a lot of combinations of classes A and B for the mem-
bership problems, we need methods to reduce the number of the ones we
actually have to look at. With help of the lattice structure Post proved
for his classes, we only have to examine a subset of the possible combina-
tions. In the following paragraphs we present definitions and elementary
relationships between different membership problems.
Since any B-formula describes a function from B, we are only interested
in problems M(A � B) for A ⊆ B. This is formalized in the following
proposition:

Proposition 2.9. Let A, B ∈ P. Then

1. M(A � B) = M(A ∩B � B)
2. M(B � B) is trivial.

(the same results hold for MC(A � B) and M(AoB).)

Lemma 2.10. (Duality principle) [Pos41][JGK70][Rei01]

1. Let g, f, f1, . . . , f` be Boolean functions such that

g(x1, . . . , xn) = f(f1(x
1
1, . . . , x

1
m1), . . . , f`(x

`
1, . . . , x

`
m`

))

for some x1
1, . . . , x

`
m`

∈ {x1, . . . , xn}. Then

dual(g) = dual(f)(dual(f1), . . . , dual(f`)).

2. If B is a finite set of Boolean functions, then [dual(B)] = dual([B]).
3. Every closed class is dual to its mirror class (via the symmetry axis

in the lattice).
4. Let A be a closed class. Then dual(A) is a closed class, too.

Name Definition Base

BF All Boolean functions {∨,∧,¬}
R0 {f ∈ BF | f is 0-reproducing } {∧,⊕}
R1 {f ∈ BF | f is 1-reproducing } {∨,↔}
R2 R1 ∩ R0 {∨,∧, xy ∨ xz ∨ yz}
M {f ∈ BF | f is monotonic } {∨,∧, 0, 1}
M1 M ∩ R1 {∨,∧, 1}
M0 M ∩ R0 {∨,∧, 0}
M2 M ∩ R2 {∨,∧}
Sn
0 {f ∈ BF | f is 0-separating of degree n} {→, hn}

S0 {f ∈ BF | f is 0-separating } {→}
Sn
1 {f ∈ BF | f is 1-separating of degree n} {x ∧ y, dual(hn)}

S1 {f ∈ BF | f is 1-separating } {x ∧ y}
Sn
02 Sn

0 ∩ R2 {x ∨ (y ∧ z), hn}
S02 S0 ∩ R2 {x ∨ (y ∧ z)}
Sn
01 Sn

0 ∩M {hn, 1}
S01 S0 ∩M {x ∨ (y ∧ z), 1}
Sn
00 Sn

0 ∩ R2 ∩M {x ∨ (y ∧ z), hn}
S00 S0 ∩ R2 ∩M {x ∨ (y ∧ z)}
Sn
12 Sn

1 ∩ R2 {x ∧ (y ∨ z), dual(hn)}
S12 S1 ∩ R2 {x ∧ (y ∨ z)}
Sn
11 Sn

1 ∩M {dual(hn), 0}
S11 S1 ∩M {x ∧ (y ∨ z), 0}
Sn
10 Sn

1 ∩ R2 ∩M {x ∧ (y ∨ z), dual(hn)}
S10 S1 ∩ R2 ∩M {x ∧ (y ∨ z)}
D {f : f is self-dual} {xy ∨ xz ∨ (y ∧ z)}
D1 D ∩ R2 {xy ∨ xz ∨ yz}
D2 D ∩M {xy ∨ yz ∨ xz}
L {f | f is linear} {⊕,↔}
L0 L ∩ R0 {⊕}
L1 L ∩ R1 {↔}
L2 L ∩ R2 {x⊕ y ⊕ z}
L3 L ∩D {x⊕ y ⊕ z ⊕ 1}
V {f : There is a formula of the form c0 ∨ c1x1 ∨ · · · ∨ cnxn {∨, 1, 0}

such that ci are constants for 1 ≤ i ≤ n that describes f}
V0 [{∨}] ∪ {0} {∨, 0}
V1 [{∨}] ∪ {1} {∨, 1}
V2 [{∨}] {∨}
E {f : There is a formula of the form c0 ∧ (c1 ∨ x1) ∧ · · · ∧ (cn ∨ xn) {∧, 1, 0}

such that ci are constants for 1 ≤ i ≤ n that describes f}
E0 [{∧}] ∪ {0} {∧, 0}
E1 [{∧}] ∪ {1} {∧, 1}
E2 [{∧}] {∧}
N [{¬}] ∪ {0} ∪ {1} {¬, 1, 0}
N2 [{¬}] {¬}
I [{id}] ∪ {0} ∪ {1} {id, 0, 1}
I0 [{id}] ∪ {0} {id, 0}
I1 [{id}] ∪ {1} {id, 1}
I2 [{id}] {id}

where hn(x1, . . . , xn+1):=

n+1∧
i=1

x1 ∨ x2 ∨ · · · ∨ xi−1 ∨ xi+1 ∨ · · · ∨ xn+1

Table 1. List of all closed classes of Boolean functions with bases

R1 R0

BF

R2

M

M1 M0

M2

S2

0

S3

0

S0

S2

02

S3

02

S02

S2

01

S3

01

S01

S2

00

S3

00

S00

S2

1

S3

1

S1

S2

12

S3

12

S12

S2

11

S3

11

S11

S2

10

S3

10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

I

I1 I0

I2

N2

N

Fig. 1. Graph of all closed classes of Boolean functions

Corollary 2.11. Let A, B ∈ P. Then M(A � B) =p
m M(dual(A) �

dual(B)).

Proof: Let F be a B-formula. A formula G for dual(fF) can easily be com-
puted in polynomial time by replacing every connector from F by its dual
one due to the duality principle. Since dual(base(B)) = base(dual(B)),
the result is a dual(B)-formula.
Since fF ∈ A if and only if dual(fF) = fG ∈ dual(A) we have F ∈
M(A) ⇔ G ∈M(A). We can use the same argumentation for the oppo-
site reduction because for all A ∈ P holds dual(dual(A)) = A. 2

This corollary reduces the number of combinations A, B for which we
have to examine M(A � B): We have to consider membership problems
just for B-formulas, where B is on one fixed side of the lattice or on
the vertical symmetry axis. In this paper, we will analyze formulas from
classes on the left side of Post’s lattice.

Proposition 2.12. Let B, A1, A2 be classes from P, K ∈ {P, coNP}
such that M(A1 � B),M(A2 � B) ∈ K. Then M(A1 ∩ A2 � B) and
M(A1 ∪A2 � B) ∈ K.

We remark that this proposition holds true for any complexity class
closed under intersection and unification. Note A1∪A2 is not necessarily
a class from Post’s lattice, but A1 ∩A2 is.
To show that some membership problem M(A � B) is coNP-complete,
we have to formally construct some B-formula in many cases. The fol-
lowing lemma enables us to express the reduction function over any base,
as long as the function can be expressed with a formula of a certain class.
This also often helps us to give a single reduction for membership prob-
lems M(A � B1) and M(A � B2) with B1 ⊆ B2. We cannot convert
any given B1-formula into an equivalent B2-formula easily, but with this
lemma we can work around that in many important cases.

Proposition 2.13. Let B be some class from Post’s lattice, f be a fixed
function from B, and G1, . . . , Gn be B-formulas. Then the B-formula
f(G1, . . . , Gn), can be calculated in polynomial time.

We will now list some problems known to be coNP-complete from [RW99]
and [Rei01]. These will be used in our reductions.

Definition 2.14. Let B be a set of Boolean functions. Then
– EQF(B):={(G, H) : G and H are B-formulas and G ≡ H} is the

equivalence problem for B-formulas.
– TAUTF(B):={F : F is a B-formula and F ≡ 1 holds} is the tautol-

ogy problem for B-formulas.

The following theorem is from [RW99] and [Rei01]:

Theorem 2.15. Let B be a finite set of Boolean functions.
– If S10 ⊆ [B] or S00 ⊆ [B] or D2 ⊆ [B], then EQF(B) is coNP-

complete.
– If S0 ⊆ [B], then TAUTF(B) is coNP-complete.

We can use the last result for our first theorem.

Theorem 2.16. If the closed class B is from {R0, R1, R2, BF} then
M(BoBF) ∈ P is in P. Otherwise, M(B � BF) is coNP-complete.

Proof: If B = BF, the claim is obvious, if it is from {R0, R1, R2} one only
has to compute C(0, . . . , 0) or C(1, . . . , 1) or both to decide whether or
not C ∈M(B).
Now let B ⊆ M ∪ L ∪D ∪ S2

1 and let F be a BF-formula and

g(F)(x1, . . . , xn, y1, . . . , yn, z, u):=(F (x1, . . . , xn)∨F (y1, . . . , yn))∧ z∨u

for new variables z and u. We will show that F ∈ TAUTF(BF) if and
only if g(F) ∈M(B).
– If F ∈ TAUTF(BF) then obviously g(F) ∈M(I2) ⊆M(B).
– If F /∈ TAUT (BF) then there is a tuple α ∈ {0, 1}n, such that

F (α) = 0. Now we make the following observations:
• g(F) is not linear since both

g(F)(α, α, 0, 0) = 1 = g(F)(α, α, 0, 1)

and
0 = g(F)(α, α, 1, 0) 6= g(F)(α, α, 1, 1) = 1

hold.
• g(F) is not self-dual since g(F)(α, α, 0, 0) = g(F)(α, α, 1, 1).
• g(F) is not monotonic since although (α, α, 0, 0) > (α, α, 1, 0)

is true, so is 1 = g(F)(α, α, 0, 0) < g(F)(α, α, 1, 0) = 0.
• Finally g(F) /∈M(S2

1) since

g(F)(α, 0n, 0, 0) = 1 = g(F)(0n, α, 0, 0)

holds.
We still have to prove that M(B � BF) is coNP complete for all B
with S02 ⊆ B ⊆ S2

0. For this we can use the above and Corollary 2.11.
2

3 Upper Bounds

In this section, we will show upper bounds for our membership problems.
M(A � B) is obviously always in coNP. We will also show that all
membership problems for L-circuits and most membership problems for
M-circuits are easy to solve.

3.1 Subclasses of L

We now show that for a circuit describing a linear function, all mem-
bership problems in Post’s lattice are easy to solve. The reason for this
is that it is easy to determine the set of relevant variables for a linear
function. Knowing these, we know the structure of the linear function
and implicitly its whole truth table. Note that we only need to show
MC(A � L′) ∈ P for all pairs A, L′ such that A ⊆ L′ $ L, due to
Proposition 2.9.

Proposition 3.1. Let C be a Boolean circuit over n variables, C ∈
M(L). Then the formula of the form F :=c0 ⊕ c1x1 ⊕ · · · ⊕ cnxn, such
that fC = fF , where ci is a constant from {0, 1} for all 1 ≤ i ≤ n, can
be computed in polynomial time.

Proof: It is easy to see xi is a relevant variable for C if and only if
C(0n) 6= C(0i−110n−i). The constant ci in the definition of F is 1 if and
only if xi is a relevant variable. 2

Theorem 3.2. Let A ⊆ L′ ⊆ L be classes from P. Then M(AoL′) ∈ P.

Proof: Let C be a circuit, C ∈ M(L′), and F be the corresponding L-
formula constructed in Proposition 3.1. Obviously, F ∈ M(A) ⇔ C ∈
M(AoL′).
To test whether F ∈M(L0),M(L1), or M(L2), we just have to calculate
F (0n) or F (1n) or both. It is easy to see F ∈ M(L3) if and only if the
number of relevant variables in F is odd. Hence we have M(L3oL′) ∈ P.
To see whether F ∈M(N) or F ∈M(I) resp., observe this is true if and
only if F ≡ 1 ⊕ xi or F ≡ 0 ⊕ xi resp. for some i, which is trivial to
verify. Thus, M(NoL′),M(IoL′) ∈ P. With Proposition 2.12, this implies
M(AoL′) ∈ P for the cases A ∈ {N2, I0, I1, I2}.
From the form of F it is obvious, whether it represents a constant func-
tion. 2

3.2 Subclasses of M

For circuits describing monotonic functions, a lot of membership prob-
lems are easy to solve as well. The poset ({0, 1}n,≤) forms a complete
lattice with top element 1n and bottom element 0n. If we use a mono-
tonic function f to assign a value from {0, 1} to every element of the
lattice, we have the following phenomenon: On every path from 0n to 1n

there is an element v such that for all w on the path holds that if w is
below v, the value 0 is assigned to it by f and if w is above v, then it is
assigned the value 1. This property helps us to gain a lot of knowledge
about a monotonic f by just checking a few assignments.

Theorem 3.3. Let M ′ ⊆ M and A ∈ P such that A ⊆ S01, A ⊆ S11,
A ⊆ V or A ⊆ E. Then M(AoM′) ∈ P.

Proof: Let C be a circuit from M(M ′).

Case A = I2. Observe for an input variable xi, C ≡ xi if and only if
C(0n) = 0 = C(1i−101n−i) and C(0i10n−i) = 1 = C(1n). Thus,
for every input variable, at most four assignments to fC have to be
calculated.

Case A = V2. Let I:={i : C(0i−110n−i) = 1}. Observe, that
∨

i∈I xi →
C is tautological. On the other hand, if C(α1, . . . , αn) = 0 (∗), where
αi = 0 if and only if i ∈ I (1 ≤ i ≤ n), then C →

∨
i∈I xi is

tautological, too. So if I 6= ∅ and (∗) holds, then C ∈ M(V2). On
the other hand, if C ∈ M(V2), then I obviously cannot be empty.
Since C ≡

∨
i∈J xi for some J ⊆ {1, . . . , n}, C(α1, . . . , αn) = 1

cannot hold, if the αi’s are defined as above.

Case A = S01. For C ∈M(M), we have
C ∈M(S01) ⇔ C ∈M(S0)

⇔ ∃i such that C(α1, . . . , αn) = 0 ⇒ αi = 0
⇔ ∃i such that αi = 1 ⇒ C(α1, . . . , αn) = 1
⇔ ∃i such that C(0i−110n−i) = 1

(since fC is monotonic)
To verify this last condition, we just need to compute n values of
fC , which can be done in polynomial time.

Case A = C0 or A = E2 or A = S11. This follows from the above and
Corollary 2.11, since dual(M) = M.

The claim for the remaining classes I0, I1, I, V0, V1, E0, E1, V, S00 and S10

follows from the above with Proposition 2.12 and Theorem 2.16. 2

4 Lower Bounds: Hardness Results

4.1 R1-and R2-formulas

We will now examine R1-and R2-formulas. The information that a certain
Boolean function is from one of these classes does not give us much
information - we just know the value of the function for one or two
input tuples. We will show in this section that the knowledge of the
representation of a Boolean function as a R1- or R2-formula does not
give us a significant advantage either: Membership problems for these
formulas are not easier than those for general Boolean formulas. Note
the results for R0 formulas follow with Corollary 2.11.
For R2-formulas, we can prove coNP-completeness for all relevant mem-
bership problems using only one reduction.

Theorem 4.1. Let I2 ⊆ A ∈ P such that A ⊆ S2
0 or A ⊆ S2

1 or A ⊆ M
or A ⊆ D. Let B ∈ {R1, R2}. Then M(A � B) is coNP-complete.

Proof: We show EQF(B) ≤p
m M(A � B). The proposition follows with

Theorem 2.15. Let F1, F2 be n-ary B-formulas, and H a B-formula
such that H /∈ M(A). Let y be a new variable, F ′:=F1(x1, . . . , xn) ↔
F2(x1, . . . , xn), and

G(x1, . . . , xn, y):=

{
y ∧ F ′ , if F1(0

n) = F2(0
n)

H otherwise.

Since x ∧ (y ↔ z) ∈ M(R2) we can utilize Proposition 2.13 to see that
it is easy to construct R1- and R2-formulas that are equivalent to G. We
claim F1 ≡ F2 ⇔ G ∈M(A).
If F1 ≡ F2 then G ≡ y∧ (1) ≡ y ∈M(I2) ⊆M(A) therefore let F1 6≡ F2.
– Case F1(0

n) 6= F2(0
n). Then G = H /∈M(A).

– Case F1(0
n) = F2(0

n). Let α ∈ {0, 1}n such that, without loss of
generality, F1(α) = 0 and F2(α) = 1. Remember, that F1 and F2

are 1-reproducing. Thus,
1. G(1n0) ≡ 0 ∧ (1 ↔ 1) ≡ 0 and G(α, 1) ≡ 1 ∧ (0 ↔ 1) ≡ 0,
2. G(0n1) ≡ 1 ∧ (0 ↔ 0) ≡ 1 but G(α, 1) ≡ 1 ∧ (0 ↔ 1) ≡ 0, and

3. G(α, 1) ≡ 1 ∧ (0 ↔ 1) ≡ 0 but ¬G(α, 0) ≡ ¬(0 ∧ (F1 ↔ F2)) ≡
¬0 ≡ 1.

Therefore 1. G /∈M(S2
0), 2. G /∈M(M), and 3. G /∈M(D).

We still have to show that M(A � B) is coNP-complete if A ⊆ S2
1.

This is very similar to the first part of the proof: Construct a B-formula
G:=y ∨ (F1 ⊕ F2) (note y ∨ (x ⊕ z) ∈ M(R2) ⊆ M(B)) and argue
analogously. 2

The only cases left are membership problems for classes below L. Since
R2∩L = I2, and this case was shown to be coNP-complete in the previous
lemma, we only have to look at R1-formulas here:

Theorem 4.2. Let A ∈ P such that I2 ⊆ A ⊆ L. Then M(A � R1) is
coNP-complete.

Proof: We show TAUTF(R1) ≤p
m M(A � R1). The claim follows with

Theorem 2.15. Let F be an R1-formula. Let

G(x1, . . . , xn, y):=(F (x1, . . . , xn) ↔ y) ∨ y

for some new variable y. We claim F ∈ TAUTF(R1) ⇔ G ∈ M(A). If
F ∈ TAUTF(R1) then G ≡ (1 ↔ y) ∨ y ≡ y ∈ M(I2) ⊆ M(A), so
let F /∈ TAUTF(R1). Furthermore, let α such that F (α) = 0. Since
F ∈M(R1), we know F (1n) = 1. Thus,

G(1n, 0) ≡ (1 ↔ 0) ∨ 0 ≡ 0 6= 1 ≡ 1 ∨ (1 ↔ 1) ≡ G(1n, 1)

therefore we know that y is a relevant variable for G. Observe

G(α, 0) ≡ (0 ↔ 0) ∨ 0 ≡ 1 ≡ (1 ↔ 0) ∨ 1 ≡ G(α, 1)

Thus, the changing of the value for y does not change the value of the
formula G, although y is a relevant variable for G. Therefore, G /∈M(L).

2

4.2 0-separating Formulas

Basic Properties In this section, we examine classes of formulas
which are 0-separating of some degree k ∈ N. We state some properties
of 0-separating sets and functions.

Lemma 4.3. Let g, g′ be Boolean functions, m ∈ N such that g ≤ g′. For
a Boolean function f , let f ′(x1, . . . , xn) = f(x1, . . . , xn)∧ (x1 ∨ · · · ∨ xn)
and let k ≥ 2.
1. A set A ⊆ {0, 1}n is 0-separating if and only if

∨
α∈A

α 6= (1, . . . , 1).

2. g ∈ Sm
0 ⇒ g′ ∈ Sm

0 .
3. g ∈ S0 ⇒ g′ ∈ S0.
4. f ∈ Sk

0 ⇔ f ′ ∈ Sk
0 .

5. f ∈ S0 ⇔ f ′ ∈ S0.

Proof: The first three points are obvious. For the fourth point, let f ′ ∈ Sk
0 .

Since f ′ ≤ f , the one direction follows with point 2. For the other one,
let f ′ /∈ Sk

0 . Let A:={α1, . . . , αk} such that f ′(α) = 0 for all α ∈ A and
let

∨
α∈A α = 1. Let B:={α1, . . . , αk} \ {(0, . . . , 0)}. Note 1 ≤ |B| ≤ k

and
∨

α∈B α = 1. For all β ∈ B holds 0 = f ′(β) = f(β1, . . . , βn)∧ (β1 ∨
· · · ∨ βn) = f(β1, . . . , βn). Thus, f /∈ S

|B|
0 ⊇ Sk

0 .

The last point follows directly from the above, since S0 =
⋂

m≥2

Sm
0 . 2

Nonmonotonic 0-Separating Formulas In this section
we discuss membership problems for formulas representing 0-separating
functions which are not necessarily monotonic.

Theorem 4.4. Let B ∈ P, S02 ⊆ B ⊆ R1 and A ⊆ M. Then M(A �
B) is coNP-complete.

Proof: We show EQF(B) ≤p
m M(A � B). The result follows from The-

orem 2.15. Let F1, F2 be B-formulas. Let

G′(x1, . . . , xn):=(y ∨ (F1(x1, . . . , xn)⊕ F2(x1, . . . , xn))).

Note that y∨(x1⊕x2) is a function from S02 ⊆ B. Therefore, a B-formula
G(x1, . . . , xn, y) exists that is equivalent to G′ and is polynomial-time
constructible due to Proposition 2.13.

We claim F1 ≡ F2 if and only if G ∈ M(A). Let F1 ≡ F2. Then G ≡
(y ∨ (F1 ⊕ F1)) ≡ y ∈M(I2) ⊆M(A).

Let α ∈ {0, 1}n such that β:=F1(α) 6= F2(α) =: γ. Then we have
G(α, 0) ≡ 0 ∨ (β ⊕ γ) ≡ 1 and G(1n0) ≡ 0 ∨ (1 ⊕ 1) ≡ 0 since F1, F2 ∈
M(B) ⊆M(R1). Thus, G /∈M(M) ⊇M(A). 2

Theorem 4.5. Let A ∈ P such that V2 ⊆ A ⊆ Sk
0 . Then M(A � Sm

0)
is coNP-complete for k > m ≥ 2.

Proof: We show TAUTF(Sm
0) ≤p

m M(A � Sm
0). The lemma follows with

Theorem 2.15. Let F be any Sm
0 -formula. Let

G(x1, . . . , xn, y1, . . . , ym):=hm(F (x1, . . . , xn), y1, . . . , ym)

for new variables y1, . . . , ym. We claim F ∈ TAUTF ⇔ G ∈M(A).

Let F ∈ TAUTF(Sm
0). Then G ≡ hn(1, y1, . . . , ym) ≡

∨m
i=1 yi ∈M(V2) ⊆

M(A). Let F /∈ TAUTF. Let α such that F (α) = 0. Then we have:

G(α, 1, 0m−1) = hn(0, 1, 0m−1) = 0,

G(α, 0, 1, 0m−2) = hn(0, 0, 1, 0m−2) = 0,

...

G(α, 0m−1, 1) = hn(0m, 1) = 0, and

G(1n, 0m) = hn(1, 0m) = 0, since G ∈M(R1).

These are m + 1 assignments for which G evaluates to 0, but the input
tuples do not have a common 0. Thus, G /∈M(Sm+1

0) ⊇M(Sk
0) ⊇M(A).

2

Since the only difference between formulas from Sk
0 and those from Sk

02

is that the latter ones have to evaluate to 1 for one specific assignment,
we expect the complexity of the corresponding membership problems to
be similar. In the following lemma, we construct a Sk

02-formula which
describes ”nearly the same function” as a given Sk

0 formula.

Theorem 4.6. Let m ≥ 2, S02 ⊆ A ⊆ Sm+1
02 . Then M(A � Sm

02) is
coNP-complete. Furthermore, M(D2 � S2

02) is coNP-complete.

Proof: We claim M(A � Sm
0) ≤p

m M(A � Sm
02). Let F (x1, . . . , xn) be

an n-ary Sm
0 -formula, i.e. a formula containing gates from {→, hm} only.

Note, that x ∨ (y ∧ z) is a base function for Sm
02. Define

Z1(x1) := x1

Zi+1(x1, . . . , xi+1) := xi+1 ∨ (Zi ∧ xi+1)

for i ≥ 1. Observe that Zn(x1, . . . , xn) ≡
∨n

i=1 xi and |Zn| = O(n). We
build a new formula F ′ from F by replacing every sub-formula F1 → F2 of
F with the formula F2∨(Zn∧F1). Observe that for all α ∈ {0, 1}n\{0n}
we have F2∨(Zn∧F1)(α) = F2∨(1∧F1)(α) = (F1 → F2)(α). Hence, for
all such α holds F (α) = F ′(α). Furthermore, since the only connectors
in F ′ are from {hm, x ∨ (y ∧ z)}, it is an Sm

02-formula, which implies
F ′(0n) = 0 and F ′ ≡ F ∧

∨n
i=1 xi. F ′ has size O(|F |2). Since a formula

from M(Sm
02) is in M(Sk

0) if and only if it is in M(Sk
02) our claim follows

with Lemma 4.3.
For M(D2 � S2

02), we show the reduction M(D2 � S2
0) ≤p

m M(D2 �
S2

02). For that, let F and F ′ be as above and let H be some S2
02-formula

such that H /∈M(D2). Define

G:=

{
F ′ , if F (0n) = 0

H otherwise

We claim F ∈M(D2) ⇔ G ∈M(D2).
Let F ∈M(D2). Since F ∈M(S2

0) ⊆M(R1), we know F (1n) = 1. Since
F ∈M(D2), this implies F (0n) = 0. Thus, G = F ′ ≡ F∧(x1∨· · ·∨xn) ≡
F ∈ M(D2). Let F /∈ M(D2). If F (0n) = 0 then, as above, G ≡ F and
therefore G /∈M(D2). If F (0n) = 1 then G = H /∈M(D2). 2

Formulas being Monotonic and 0-Separating In this
section we will discuss membership problems for formulas from classes
below S2

01. By Theorem 3.3, a lot of these can be solved in polynomial
time, since S2

01 ⊆ M. For m > k, this leaves open the complexity of
M(Sk

01 � Sm
01) and M(Sk

00 � Sm
00). These remain open, but we can

anyhow show relationships between them.

Lemma 4.7. Let k > m ≥ 2. Then M(Sk
01 � Sm

01) ≤p
m M(Sk

00 � Sm
00).

Proof: Let F a Sm
01-formula. Note that x ∨ (y ∧ z) is a base function for

Sm
00 and construct Sm

00-formulas Zn as follows:

Z1(x1) := x1

Zi+1(x1, . . . , xi+1) := Zi(x1, . . . , xi) ∨ (xi+1 ∧ xi+1)

Obviously Zn ≡ (x1 ∨ · · · ∨ xn), and |Zn| is linear in n. Now, replace
every occurring 1-gate in F with Zn, and call the result F ′. It can easily
be verified that F ′ ≡ F ∧ (x1 ∨ · · · ∨ xn): For any α ∈ {0, 1}n \ {0n}
holds F ′(α) = F (α) and since F ′ is an Sm

00-formula and Sm
00 ⊆ R0, we

have F ′(0n) = 0. Now the proposition follows with Lemma 4.3. 2

Another open problem is M(Sk
0 � M) for k ≥ 3. This is equivalent with

M(Sk
0 � M2). In fact, since x ∧ 1 ≡ x ∨ 0 ≡ x, x ∧ 0 ≡ 0, x ∨ 1 ≡ 1,

and M = [{∧,∨}] we have M = M2 ∪{f : f is a constant}. Of course, all
membership problems for constant functions are trivial. Furthermore, we
can easily determine, whether a monotonic function f is constant, since
f is a constant-a function if and only if f(a, . . . , a) = a. If a monotonic
formula does not describe a constant function, we can easily find an
equivalent formula, without constant symbols by successively eliminating
subformulas of the form x ∧ a and x ∨ a, where a ∈ {0, 1}.
We can again state a relationship between two open problems.

Lemma 4.8. Let k > m ≥ 2. Then M(Sk
0 � M2) ≤p

m M(Sk
0 � Sm

00).

Proof: Let F (x1, . . . , xn) be an M2-formula. First, construct formulas
Zn(x1, . . . , xn) as in Lemma 4.7, such that Zn ≡ x1 ∨ · · · ∨ xn, and
|Zn| = O(n) = O(|F |).
Let y1, . . . , ym+1 be new variables. Replace every subformula of the form

– F1 ∨ F2 with F1 ∨ (F2 ∧ Zn) and

– F1 ∧ F2 with hm(y1, . . . , ym+1) ∨ (F1 ∧ F2).

thus creating the formula F ′′. Note that x ∨ (y ∧ z) is a base function
for Sm

00. Let F ′(x1, . . . , xn, y1, . . . , ym+1):=hm(y1, . . . , ym+1)∨ (F ′′∧F ′′).
From the above follows that the length of F ′ is polynomial in |F |. It is
easy to see that F ′ ≡ F ∨hm(y1, . . . , ym+1) holds. We claim F ∈M(Sk

0)
if and only if F ′ ∈M(Sk

0).

Let F ∈M(Sk
0). Since F ≤ F ′, the claim follows with Proposition 4.3.

Let F /∈ M(Sk
0). Let α1, . . . , αk such that F (αi) = 0 for 1 ≤ i ≤ k and∨k

i=1 αi = 1n. Now, let

γi:=

{
0i−110m−i+1 , if i ≤ m + 1

0m+1 otherwise.

Note that, since k > m, for every i ∈ {1, . . . , m + 1}, there is a γj with
the i-th position of γj being 1. Thus, F ′(αi, γi) = 0 for all 1 ≤ i ≤ k,
and

∨k
i=1 αi = 1n, and

∨k
i=1 γi = 1m+1. Hence, F ′ /∈M(Sk

0). 2

Lemma 4.9. M(D2 � S2
01) ≤p

m M(D2 � S2
00).

Proof: Let F be a S2
01-formula. Like in the proof to Lemma 4.7, construct

a S2
00-formula F ′ in polynomial time such that F ′ ≡ F ∧ (x1 ∨ · · · ∨ xn).

Now, we use the same reduction as in the corresponding proposition for
S2

0 and S2
02. For that, let H be some S2

02-formula such that H /∈ M(D2)
and let

G:=

{
F ′, if F (0n) = 0

H, otherwise.

We claim F ∈ M(D2) ⇔ G ∈ M(D2). Let F ∈ M(D2). Since F ∈
M(S2

0) ⊆ M(R1), we know F (1n) = 1. Since F ∈ M(D2), we have
F (0n) = 0. Thus, G = F ′ ≡ F ∧ (x1 ∨ · · · ∨ xn) ≡ F ∈M(D2).

Let F /∈ M(D2). If F (0n) = 0 then, as above, G ≡ F , and thus G /∈
M(D2). If F (0n) = 1 then G = H /∈M(D2). 2

So deciding membership problems for Sk
01-formulas is not harder than for

Sk
00-formulas. It seems plausible to assume the reverse is also true, since

Sk
00 is a subset of Sk

01, but there does not seem to be a straightforward
way to convert Sk

00-formulas into equivalent Sk
01-formulas in polynomial

time. Of course, this could be different, if we would choose other bases.

Another open question is the complexity of M(D2 � S2
01) and M(D2 �

S2
00). But we can show the promise version of these problems are coNP-

complete:

Theorem 4.10. If B ∈ P, S2
00 ⊆ B then M(D2oB) is coNP-complete.

Proof: We show M(D2oM2) ≤p
m M(D2oS2

10
). The proposition then follows

with Lemma 2.2, Lemma 4.11, and Corollary 2.11. For a circuit C from
M(M2), let

C′:=C(x1, . . . , xn) ∧ C(x1, . . . , xn).

Since C′ ≡ C ∧ dual(C), it is monotonic and because C is from R2, also
C′ ∈ M(R1). Let us suppose that C′ is not 1-separating of degree 2.
Then there exist tuples α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ {0, 1}n

with C′(α) = C′(β) = 1 and there is no s ∈ {1, . . . , n} such that αs =
βs = 1. Therefore β ≤ α holds and because C′ is monotonic C′(α) = 1.
Since 1 = C′(α) = C(α) ∧ C(α), of course C(α) = 1. In the same way
1 = C′(α) = C(α) ∧ C(α) = 1 and consequently C(α) = 1. This is a
contradiction, so C′ is 1-separating of degree 2.

Now let C ∈M(D2). Then C(α) = C(α) for all α ∈ {0, 1}n so

C′(α) = C(α) ∧ C(α) = C(α) ∨ C(α) = C(α) = C′(α)

holds for all α and therefore C′ ∈M(D2).

Let C /∈ M(D2); then there is an α ∈ {0, 1}n with C(α) = C(α) and
we conclude

C′(α) = C(α) ∧ C(α) = 1 6= C(α) ∧ C(α) = C′(α)

so C′ is not self-dual. 2

4.3 Formulas Representing Monotonic
Functions

In this section, we will examine membership problems for M-, M1-, and
M2-formulas. Note that since for M ′ ∈ {M, M2}, M ′ = dual(M ′) and
base(M ′) = dual(base(M ′)) holds, we only need to consider subclasses
of M and M2 on the left side of Post’s lattice due to Corollary 2.11.

Theorem 4.11. Let A ∈ P, D2 ⊆ A ⊆ S2
00. Then M(A � M2) is

coNP-complete.

Proof: We show EQF({∧,∨}) ≤p
m M(A � M2). The lemma follows with

Theorem 2.15.

Let F1(x1, . . . , xn) and F2(x1, . . . , xn) be {∧,∨}-formulas. Let

G(x1, . . . , xn, y, z):=(y ∨ F1) ∧ (z ∨ dual(F2)) ∧ (y ∨ z).

Since calculating the dual one for a M2-formula can be done by just
exchanging every ∨ with a ∧ and vice versa, computing this M2-formula
can be done in polynomial time. Observe the following equations, where
α ∈ {0, 1}n:

G(α, 1, 0) = 1 ∧ dual(F2)(α) ∧ 1

= dual(F2)(α)

G(α, 0, 1) = F1(α) ∧ 1 ∧ 1

= F1(α)

dual(G)(α, 1, 0) = ¬((0 ∨ F1(α)) ∧ (1 ∨ dual(F2)(α)) ∧ (0 ∨ 1))

= ¬F1(α)

= dual(F1)(α)

dual(G)(α, 0, 1) = ¬((1 ∨ F1(α)) ∧ (0 ∨ dual(F2)(α)) ∧ (1 ∨ 0))

= ¬dual(F2)(α)

= F2(α)

G(α, 0, 0) = 0

G(α, 1, 1) = 1

We claim F1 ≡ F2 if and only if G ∈ M(A). Let F1 ≡ F2. Then
dual(F1) ≡ dual(F2), and from the above equations follows dual(G) ≡ G.
Since G ∈M(M), we have G ∈M(M ∩D) = M(D2) ⊆M(A)
Now let, without loss of generality, α such that F1(α) = 0 and F2(α) = 1.
Then we have

G(α, 0, 1) = F1(α) = 0

G(α, 1, 0) = dual(F2)(α) = ¬F2(α) = 0

but obviously the two input tuples do not have a common 0, thus G /∈
M(S2

0) ⊇M(A). 2

Corollary 4.12. The following problems are coNP-complete: M(D2 �
M1), M(D2 � M), M(S2

00 � M2), M(S2
00 � M1), M(S2

00 � M),
M(S2

01 � M1), M(S2
01 � M).

Proof: The first four cases are trivial, since the bases for M1, M2 are su-
persets of the base for M2. The remaining two cases follow fromM(S2

00 �
M2) = M(S2

01 � M2) ≤p
m M(S2

01 � M1) ≤p
m M(S2

01 � M). 2

4.4 Formulas Representing Self-Dual Functions

We will now consider D- and D1-formulas. Note that M(A � D2) is in
P for any class A from P.

Theorem 4.13. Let A ⊆ M, B ∈ {D, D1}. Then M(A � B) is coNP-
complete.

Proof: We show EQF(B) ≤p
m M(A � B). The result follows with Theo-

rem 2.15. Let F1, F2 be B-formulas. Since x⊕ y⊕ z ∈ D1 and because of
Proposition 2.13, we can construct a B-formula G in polynomial time,
such that G(x1, . . . , xn, y) ≡ F1(x1, . . . , xn) ⊕ F2(x1, . . . , xn) ⊕ y. We
claim F1 ≡ F2 if and only if G ∈M(A).
Let F1 ≡ F2. Then G ≡ y ∈ M(I2) ⊆ M(A). Let α ∈ {0, 1}n such that
F1(α) 6≡ F2(α). Then we have

G(α, 0) = F1(α)⊕ F2(α)⊕ 0 = 1

G(α, 1) = F1(α)⊕ F2(α)⊕ 1 = 0

thus, G /∈M(M) ⊇M(A). 2

Theorem 4.14. Let A, B ∈ P such that A ⊆ L and B ∈ {D, D1}. Then
M(A � B) is coNP-complete.

Proof: We show EQF(B) ≤p
m M(A � B). The proposition follows with

Theorem 2.15. Let H be some B-formula such that H /∈ M(A). Now,
let F1(x1, . . . , xn) and F2(x1, . . . , xn) be B-formulas. If F1(0

n) 6= F2(0
n),

then let G:=H. Otherwise, let G be such that

G(x1, . . . , xn, y) ≡ (y ∧ F1) ∨ (y ∧ F2) ∨ (F1 ∧ F2).

We can calculate such a G in polynomial time due to Proposition 2.13.
We claim F1 ≡ F2 ⇔ G ∈M(A).
Let F1 ≡ F2. Then G ≡ (y ∧ F1) ∨ (y ∧ F1) ∨ (F1 ∧ F1) ≡ y ∈ M(I2) ⊆
M(A). Let F1 6≡ F2. If F1(0

n) 6= F2(0
n) then G ≡ H /∈ M(A), so

let β:=F1(0
n) = F2(0

n). Let α ∈ {0, 1}n such that, without loss of
generality, F1(α) = 0 and F2(α) = 1. Then

G(0n, y) ≡ y ∧ β ∨ y ∧ β ∨ β ∧ β ≡ y.

Thus, y is a relevant variable for G. Assume G ∈M(A) ⊆M(L). Then,
since y is relevant for G, the negation of y’s value would negate the value
of G as well. But we have

G(α, 0) = (0∧0)∨(0∧0)∨(0∧1) = 0 = (1∧0)∨(1∧0)∨(0∧1) = G(α, 1)

so, G /∈M(L) ⊇M(A). 2

5 Conclusions and Generalizations

To summarize our results we can say that especially if we can guarantee a
function to be in one of the lower closed classes we find fast algorithms for
the membership problem. This is the expected result, since the smaller
the classes are, the more information an algorithm has to work with.
The fast algorithms for classes that are subsets of E or V or L stem from
the fact that formulas from such a set have equivalent ones in a very
regular form that can be computed easily.
Membership problems for functions from D2 are easy because the only
proper subclass of D2 is I2. For monotonic functions it is trivial to de-
termine, whether they are an identity as well.
In all cases, we were able to solve, it turned out that the membership
problem for B-formulas is as hard to solve as the membership problem
for {∨,∧,¬} circuits with promise B. This means that the knowledge
of the actual representation of a Boolean function does not provide a
significant advantage over knowing that the function can be represented
in such a way.
Although we always focused on a single fixed base for every class, most
of the results can easily be generalized for arbitrary bases, since Proposi-
tion 2.13 can be stated for any base. Thus, we can use the same reductions
we used for our proofs for coNP-completeness. There are only two kinds
of proofs dependent on explicit bases: The proofs for membership prob-
lems for Sk

0x-formulas (Theorem 4.6 and Lemma 4.7) - in those proofs,
an algorithm transforms a circuit into another that is specific to a fixed
base. The other case is the coNP-completeness result for M-formulas
(Theorem 4.11), where we use the fact that for a given M2-formula F ,
dual(F) is a M2-formula as well.

All proofs of upper bounds just use the fact that the value of a Boolean
circuit can always be calculated in polynomial time. Thus they are also
independent of the chosen base.

We were not able to decide the complexity of M(Sk
01 � M) for k > 2.

It seems plausible to assume these problems are coNP-complete, since
this is the case for k = 2, and there seems to be no reason why this
should be more difficult than the general case. If this problem is in fact
coNP-complete, we know M(Sk

00 � Sm
00) is coNP-complete as well for

k > m. It seems plausible to assume M(Sk
01 � Sm

01) cannot be easier
than M(Sk

00 � Sm
00). So the main question here remains that of the

complexity of M(Sk
01 � M) for k > 2.

The other open problem is M(D2 � B) for B ∈ {S2
00, S

2
01}. Since

M(AoB) and M(A � B) are of the same complexity for all known cases
and M(D2oS2

00
) is coNP-complete, these problems are most likely coNP-

complete as well. Looking at the proof of Theorem 4.10, the straight-
forward way to show M(D2 � S2

00) is coNP-complete would be to con-
struct, for a given S2

00-formula F , a S2
00-formula which is equivalent to

F ∨ dual(F). Such a formula surely exists, since F ∨ dual(F) is in S2
00

again, but it is not clear how to do this in polynomial time, and even if
such a formula of polynomial length exists.

Acknowledgments: We thank Heribert Vollmer and Klaus Wagner for
an introduction to the topic, helpful hints and discussions.

6 Collection of Results

In this concluding section, we give an overview of our results. For the
following, let k, m ∈ N such that k > m ≥ 2. Since membership prob-
lems for B-formulas with B ⊆ V, B ⊆ L, B ⊆ D2 or B ⊆ E are
always polynomial-time solvable, these results are not repeated here.
For subclasses from L, this follows from Theorem 3.2, for classes be-
low V, this is a consequence from Theorem 3.3. When some result is
referred to as ”trivial”, this means it is of the form M(A � B) for
A ∈ {B ∩ R0, B ∩ R1, B ∩ R2}, and therefore only one or two values of
the B-circuit must be calculated to decide the membership problem.

The complexity of M(A � B) for selected combinations (k > m > 2):

A\B BF R1 M M2 S2
0 Sm

0 S0 S2
01 Sm

01 S01 D D2 L V

BF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
R1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
R2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
M • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
M1 • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
M2 • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
S2

0 • • • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Sk

0 • • ? ? • • ◦ ? ? ◦ • ◦ ◦ ◦
S0 • • ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦
S2

01 • • • • • • • ◦ ◦ ◦ • ◦ ◦ ◦
Sk

01 • • ? ? • • • ? ? ◦ • ◦ ◦ ◦
S01 • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
D • • • • • • • ? ◦ ◦ ◦ ◦ ◦ ◦
D1 • • • • • • • ? ◦ ◦ ◦ ◦ ◦ ◦
D2 • • • • • • • ? ◦ ◦ • ◦ ◦ ◦
L • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
L0 • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
L1 • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
L2 • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
L3 • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
V • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
V2 • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
N • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
I • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦
I2 • • ◦ ◦ • • • ◦ ◦ ◦ • ◦ ◦ ◦

◦ polynomial time solvable, • coNP-complete, ? unknown

coNPc is used as an abbreviation for ”coNP-complete” in this table.
Problem Comp Source
M(Sm

02 � R2) coNPc Theorem 4.1
M(S02 � R2) coNPc Theorem 4.1
M(Sm

00 � R2) coNPc Theorem 4.1
M(S00 � R2) coNPc Theorem 4.1
M(Sm

12 � R2) coNPc Theorem 4.1
M(S12 � R2) coNPc Theorem 4.1
M(Sm

10 � R2) coNPc Theorem 4.1
M(S10 � R2) coNPc Theorem 4.1
M(M2 � R2) coNPc Theorem 4.1
M(D1 � R2) coNPc Theorem 4.1
M(D2 � R2) coNPc Theorem 4.1
M(L2 � R2) coNPc Theorem 4.1
M(I2 � R2) coNPc Theorem 4.1
M(V2 � R2) coNPc Theorem 4.1
M(E2 � R2) coNPc Theorem 4.1
M(Sm

02 � R1) coNPc Theorem 4.1
M(S02 � R1) coNPc Theorem 4.1
M(Sm

01 � R1) coNPc Theorem 4.1
M(S01 � R1) coNPc Theorem 4.1
M(S00 � R1) coNPc Theorem 4.1
M(Sm

00 � R1) coNPc Theorem 4.1
M(Sm

12 � R1) coNPc Theorem 4.1
M(Sm

10 � R1) coNPc Theorem 4.1
M(S10 � R1) coNPc Theorem 4.1
M(S12 � R1) coNPc Theorem 4.1
M(M2 � R1) coNPc Theorem 4.1
M(D1 � R1) coNPc Theorem 4.1
M(D2 � R1) coNPc Theorem 4.1
M(I2 � R1) coNPc Theorem 4.1
M(V2 � R1) coNPc Theorem 4.1
M(L2 � R1) coNPc Theorem 4.2
M(L1 � R1) coNPc Theorem 4.2
M(E2 � R1) coNPc Theorem 4.1
M(Sm

0 � R1) coNPc Theorem 4.1
M(Sm

02 � R1) coNPc Theorem 4.1
M(S0 � R1) coNPc Theorem 4.1
M(S02 � R1) coNPc Theorem 4.1
M(V1 � R1) coNPc Theorem 4.1
M(I1 � R1) coNPc Theorem 4.1
M(M1 � R1) coNPc Theorem 4.1
M(E1 � R1) coNPc Theorem 4.1

M(Sk
00 � Sm

0) coNPc Theorem 4.5
M(S00 � Sm

0) coNPc Theorem 4.5
M(Sm

02 � Sm
0) P trivial

M(Sm
01 � Sm

0) coNPc Theorem 4.4
M(Sm

00 � Sm
0) coNPc Theorem 4.4

M(Sk
02 � Sm

02) coNPc Theorem 4.6
M(Sm

00 � Sm
02) coNPc Theorem 4.4

M(Sk
00 � Sm

02) coNPc Theorem 4.4
M(S00 � Sm

02) coNPc Theorem 4.4
M(S01 � Sm

02) coNPc Theorem 4.4
M(S01 � Sm

02) coNPc Theorem 4.6
M(V1 � Sm

02) coNPc Theorem 4.4
M(V2 � Sm

02) coNPc Theorem 4.4
M(I1 � Sm

02) coNPc Theorem 4.4
M(I2 � Sm

02) coNPc Theorem 4.4

Problem Comp Source
M(V1 � Sm

0) coNPc Theorem 4.5
M(V2 � Sm

0) coNPc Theorem 4.5
M(I1 � Sm

0) coNPc Theorem 4.4
M(I2 � Sm

0) coNPc Theorem 4.4

M(Sk
0 � Sm

0) coNPc Theorem 4.5
M(S0 � Sm

0) coNPc Theorem 4.5

M(Sk
02 � Sm

0) coNPc Theorem 4.5
M(S02 � Sm

0) coNPc Theorem 4.5

M(Sk
01 � Sm

0) coNPc Theorem 4.5
M(S01 � Sm

0) coNPc Theorem 4.5
M(D2 � D1) coNPc Theorem 4.13
M(L2 � D1) coNPc Theorem 4.14
M(I2 � D1) coNPc Theorem 4.13
M(D1 � D) P trivial
M(D2 � D) coNPc Theorem 4.13
M(L2 � D) coNPc Theorem 4.14
M(I2 � D) coNPc Theorem 4.13
M(L3 � D) coNPc Theorem 4.14
M(N2 � D) coNPc Theorem 4.14

M(S2
00 � M2) coNPc Theorem 4.11

M(S00 � M2) P Theorem 3.3
M(V2 � M2) P Theorem 3.3
M(I2 � M2) P Theorem 3.3
M(D2 � M2) coNPc Theorem 4.11
M(M2 � M1) P trivial
M(S00 � M1) P Theorem 3.3
M(V2 � M1) P Theorem 3.3
M(I2 � M1) P Theorem 3.3
M(D2 � M1) coNPc Corollary 4.12
M(E1 � M1) P Theorem 3.3
M(E2 � M1) P Theorem 3.3
M(I1 � M1) P Theorem 3.3
M(S01 � M1) P Theorem 3.3
M(V1 � M1) P Theorem 3.3

M(S2
00 � M1) coNPc Corollary 4.12

M(S2
01 � M1) coNPc Corollary 4.12

M(M1 � M) P trivial
M(M2 � M) P trivial
M(S00 � M) P Theorem 3.3

M(S2
01 � M) coNPc Corollary 4.12

M(V2 � M) P Theorem 3.3
M(I2 � M) P Theorem 3.3
M(D2 � M) coNPc Corollary 4.12
M(E1 � M) P Theorem 3.3
M(E2 � M) P Theorem 3.3
M(I1 � M) P Theorem 3.3
M(S01 � M) P Theorem 3.3
M(V1 � M) P Theorem 3.3
M(E � M) P Theorem 3.3
M(E0 � M) P Theorem 3.3
M(V � M) P Theorem 3.3
M(V1 � M) P Theorem 3.3
M(V0 � M) P Theorem 3.3
M(I � M) P Theorem 3.3
M(I0 � M) P Theorem 3.3

M(S2
00 � M) coNPc Corollary 4.12

References

[Coo71] S. A. Cook. The complexity of theorem proving procedures.
Proc. 3rd Ann. ACM Symp. on Theory of Computation, pages
151–158, 1971.

[JGK70] S. W. Jablonski, G. P. Gawrilow, and W. B. Kudrajawzew.
Boolesche Funktionen und Postsche Klassen. Akademie-Verlag,
1970.

[Lew79] Harry R. Lewis. Satisfiability problems for propositional calculi.
Mathematical Systems Theory, 13:45–53, 1979.

[Pos41] E. L. Post. Two-value iterative systems, 1941.
[Rei01] Steffen Reith. Generalized Satisfiability Problems. PhD thesis,

Julius-Maximilians-Universität Würzburg, 2001.
[RW99] Steffen Reith and Klaus W. Wagner. The complexity of prob-

lems defined by subclasses of boolean functions. Technical Re-
port 218, Institut für Informatik, Universität Würzburg, 1999.

[Vol99] H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.

