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Abstract. We try to develop a theory of ω-regular partitions in parallel
with the theory around the Wagner hierarchy of regular ω-languages. In
particular, we generalize a theorem of L. Staiger and K. Wagner to the
case of partitions, prove decidability of all levels of the Boolean hierarchy
of regular partitions over open sets, establish coincidence of reducibilities
by continuous functions and by functions computed by finite automata
on the class of regular ∆0

2-partitions, and show undecidability of the first-
order theory of the structure of Wadge degrees of regular k-partitions for
all k ≥ 3.
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1 Introduction

This paper is devoted to the theory of infinite behavior of computing devices
that is of primary importance for theoretical and practical computer science.
More exactly, we consider topological aspects of this theory in the simplest case
of finite automata. A series of papers in this direction culminated with the paper
[Wag79] giving in a sense the finest possible topological classification of regular
ω-languages (i.e., of subsets of Xω for a finite alphabet X recognized by finite
automata) known as the Wagner hierarchy. Here we shall try to develop a similar
theory for partitions.

Let M be a set, P (M) the class of subsets of M , and for each k ≥ 2 let kM

be the set of all functions A : M → k (we identify a natural number k ∈ ω with
the set {0, . . . , k−1}). We call maps A ∈ kM k-partitions of M because they are
in a natural bijective correspondence with the tuples (A0, . . . , Ak−1) of pairwise
disjoint sets satisfying A0 ∪ · · · ∪ Ak−1 = M . For any class C ⊆ P (M), let Ck

denote the set of C-partitions, i.e. partitions A ∈ kM such that A−1(i) ∈ C for
each i < k.

The aim of this paper is to generalize the theory around the Wagner hierarchy
from the case of regular ω-regular languages to the case of regular k-partitions
of Xω. Note that the ω-languages are in a bijective correspondence with 2-
partitions of Xω. In particular, we generalize a theorem of L. Staiger and K.
? Supported by DFG Mercator program and by DFG-RFBR Grant 06-01-04002.
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Wagner from [SW74] to the case of partitions, prove decidability of all levels of
the Boolean hierarchy of regular partitions over open sets, establish coincidence
of reducibilities ≤CA by continuous functions and ≤DA by functions computed
by finite automata on the class of regular ∆0

2-partitions of Xω, and show un-
decidability of the first-order theory of the structure (Rk;≤CA) of CA-degrees
of regular partitions for each k ≥ 3. Our results show that, though the case of
partitions is certainly more complicated than the case of sets, there is a hope to
develop a full analog of the Wagner hierarchy for partitions.

The rest of the paper is organized as follows. In Section 2 we collect notions
and basic tools we will rely upon. In Section 3 we generalize the Staiger-Wagner
theorem to the case of partitions. In Section 4 we develop a full analog of the
Wagner hierarchy for regular ∆0

2-partitions. In Section 5 we characterize some
structures of CA-degrees of partitions, show the coincidence of CA- and DA-
reducibilities on regular ∆0

2-partitions and prove that for any k ≥ 3 the first-
order theory of the structure (Rk;≤CA) is undecidable (from the description of
this structure for k = 2 in [Wag79] it follows that the theory is decidable in this
case).

2 Notions and Tools

We use some standard notation and terminology on posets which may be found
in any book on the subject, see e.g. [DP94]. We will not be very cautious when
applying notions about posets also to quasiorders (known also as preorders); in
such cases we mean the corresponding quotient-poset of the quasiorder.

A poset (P ;≤) will be often shorter denoted just by P . Any subset of P may
be considered as a poset with the induced partial ordering. In particular, this
applies to the “cones” x̌ = {y ∈ P | x ≤ y} and x̂ = {y ∈ P | y ≤ x} defined by
any x ∈ P . A well partial order is a poset P that has neither infinite descending
chains nor infinite antichains; for such posets there is a canonical rank function
rk assigning ordinals to the elements of P .

By a forest we mean a finite poset in which every upper cone x̌ is a chain. A
tree is a forest having the biggest element (called the root of the tree). Note that
any forest is uniquely representable as a disjoint union of trees, the roots of the
trees being the maximal elements of the forest.

A k-labeled poset (or just a k-poset) is an object (P ;≤, c) consisting of a
finite poset (P ;≤) and a labeling c : P → k. Sometimes we simplify notation of
a k-poset to (P, c) or even to P . A morphism f : (P ;≤, c) → (P ′;≤′, c′) between
k-posets is a monotone function f : (P ;≤) → (P ′;≤′) respecting the labelings,
i.e. satisfying c = c′ ◦ f .

Let Fk and Tk be the sets of all finite k-forests and finite k-trees, respectively.
Define a preorder ≤ on Fk as follows: (P, c) ≤ (P ′, c′), if there is a morphism from
(P, c) to (P ′, c′) (this preorder maybe of course considered also on k-posets). By
≡ we denote the equivalence relation on Fk induced by ≤. The quotient structure
of (Fk;≤) plays an important role in this paper because it is intimately related
to the Boolean hierarchy of k-partitions, see [Se04,Se06].
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For arbitrary finite k-trees T0, . . . , Tn, let F = T0 t · · · t Tn be their join, i.e.
the disjoint union. Then F is a k-forest whose trees are exactly T0, . . . , Tn. Of
course, every k-forest is (equivalent to) the join of its trees. Note that the join
operation applies also to k-forests, and the join of any two k-forests is clearly
their supremum under ≤. Hence, (Fk;t) is an upper semilattice.

Fix a finite alphabet X containing more than one symbol (for simplicity we
may assume that X = m = {x | x < m} for a natural number m > 1, so
0, 1 ∈ X). Let X∗ and Xω denote respectively the sets of all words and of all
ω-words (i.e. sequences α : ω → X) over X. The empty word is denoted by ε. Let
X≤ω = X∗ ∪Xω. We use some almost standard notation concerning words and
ω-words, so we are not too casual in reminding it here. For w ∈ X∗ and ξ ∈ X≤ω,
w v ξ means that w is a substring of ξ, w · ξ = wξ denote the concatenation,
l = |w| is the length of w = w(0) · · ·w(l − 1). For w ∈ X∗, W ⊆ X∗ and
A ⊆ X≤ω, let w · A = {wξ : ξ ∈ A} and W · A = {wξ : w ∈ W, ξ ∈ A}. For
k, l < ω and ξ ∈ X≤ω, let ξ[k, l) = ξ(k) · · · ξ(l − 1) and ξ[k] = ξ[0, k).

The set Xω carries the Cantor topology with the open sets W · Xω, where
W ⊆ X∗. Continuous functions in this topology are called also CA-functions. A
CS-function is a function f : Xω → Xω satisfying f(ξ)(n) = φ(ξ[n+1]) for some
φ : X∗ → X. Every CS-function is a CA-function. In descriptive set theory CS-
functions are known as Lipschitz functions. Both classes of functions are closed
under composition. We relate to any pair ξ, η ∈ Xω its “code” ζ = 〈ξ, η〉 defined
by ζ(2n) = ξ(n) and ζ(2n + 1) = η(n), where n < ω. It is well-known that
(ξ, η) 7→ 〈ξ, η〉 is a homeomorphism of spaces Xω ×Xω and Xω.

Let {Σ0
n}n>0 denote the Borel hierarchy in Xω, i.e. Σ0

1 is the class of open
sets, Σ0

2 is the class of countable unions of closed sets and so on. Let Π0
n be

the dual class (i.e., the class of all complements) for Σ0
n, and ∆0

n = Σ0
n ∩Π0

n.
For any n > 0, Σ0

n contains ∅, Xω and is closed under countable unions and
finite intersections, while ∆0

n is a Boolean algebra. For any n > 0, Σ0
n ∪Π0

n ⊆
B(Σ0

n) ⊆ ∆0
n+1, and Σ0

n 6⊆ Π0
n. For a class of sets C, B(C) denotes the Boolean

closure of C. For more information on descriptive set theory see e.g. [Ke94].
By automaton (over X) we mean a triple A = (Q, f, i) consisting of a finite

non-empty set Q of states, a transition function f : Q ×X → Q and an initial
state i ∈ Q. The transition function is naturally extended to the function f :
Q×X∗ → Q defined by induction f(q, ε) = q and f(q, u·x) = f(f(q, u), x), where
u ∈ X∗ and x ∈ X. Similarly, we may define the function f : Q × Xω → Qω

by f(q, ξ)(n) = f(q, ξ[n]). Relate to any automaton A the set of cycles CA =
{fA(ξ) | ξ ∈ Xω} where fA(ξ) is the set of states which occur infinitely often in
the sequence f(i, ξ) ∈ Qω. Note that in this paper we consider only deterministic
finite automata.

Automata equipped with appropriate additional structures are used as ac-
ceptors (devises accepting words or ω-words) and transducers (devices comput-
ing functions on words or ω-words). For the case of ω-words, there are sev-
eral notions of acceptors of which we will use only one. A Muller acceptor has
the form (A,F) where A is an automaton and F ⊆ CA; it recognizes the set
L(A,F) = {ξ ∈ Xω | fA(ξ) ∈ F}. It is well known that Muller acceptors recog-
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nize exactly the regular ω-languages called also regular sets in this paper. The
class R of all regular ω-languages is a proper subclass of B(Σ0

2) that in turn is
a proper subclass of ∆0

3.
The notion of Muller acceptor is generalized to the notion of Muller k-

acceptor (a devise that recognizes k-partitions of Xω) in a straightforward way.
Namely, it is a pair (A, c) where A is an automaton and c : CA → k is a k-
partition of CA. Such a k-acceptor recognizes the k-partition L(A, c) = c ◦ fA
where fA : Xω → CA is the map defined above. We have the following charac-
terization of the ω-regular partitions.

Proposition 1. A partition L : Xω → k is regular iff it is recognized by a
Muller k-acceptor.

Proof. For k = 2 the assertion is trivial, so we assume k > 2. If L = L(A, c)
for a Muller k-acceptor (A, c) then L−1(l) = L(A, c−1(l)) for all l < k. Therefore,
L is a regular partition.

Conversely, let L be a regular k-partition. Then L−1(l) ∈ R for all l <
k, hence L−1(l) = L(Al,Fl) for some Muller acceptors (Al,Fl), l < k. Let
A = (Q, f, i) be the product of automata Al = (Ql, fl, il) for l < k − 1, so
Q = Q0 × · · · × Qk−2, f((q0, . . . , qk−2), x) = (f0(q0, x), . . . , fk−2(qk−2, x)) and
i = (i0, . . . , ik−2). As is well-known and easy to see, prl(fA(ξ)) = fAl

(ξ) for
all l < k − 1 and ξ ∈ Xω, where prl : Q → Ql is the projection to the l-th
coordinate. Since the sets L−1(l), l < k − 1, are pairwise disjoint, so are also
the sets pr−1

l (Fl). Let c : CA → k be the unique partition of CA satisfying
c−1(l) = pr−1

l (Fl) for all l < k−1. Then the Muller k-acceptor (A, c) recognizes
L, completing the proof.

An important role in this paper is played by a preorder ≤0 and a partial
order ≤1 on CA introduced in [Wag79] and defined as follows: D ≤0 E iff some
(equivalently, each) state in E is reachable in the graph of the automaton A
from some (equivalently, each) state in D; D ≤1 E iff D ⊇ E.

A synchronous transducer (over X) is a tuple T = (Q, f, g, i) consisting of
an automaton (Q, f, i) and an output function g : Q × X → X. The output
function is naturally extended to a function g : Q ×Xω → Xω denoted by the
same letter. The transducer T computes the function gT : Xω → Xω defined
by gT (ξ) = g(i, ξ). An asynchronous transducer (over X) is defined as a syn-
chronous transducer with only one exception: this time the output function g
maps Q × X into X∗. As a result, the value g(q, ξ) is in X≤ω, and the func-
tion gT maps Xω into X≤ω. Nevertheless, we usually consider the case when gT
maps Xω into Xω; this condition is easily described in terms of T . Functions
computed by synchronous (asynchronous) transducers are called DS-functions
(respectively DA-functions). As is well known, both of these classes of functions
are closed under composition, and every DS-function (DA-function) is a CS-
function (resp., CA-function). We will use the following well-known deep fact
established in [BL69]: for every regular set A, if ∀ξ(〈ξ, g(ξ)〉 ∈ A) for some CS-
function g on Xω then ∀ξ(〈ξ, h(ξ)〉 ∈ A) for some DS-function h on Xω. For
more information on automata on infinite words see e.g. [Th90,PP04].
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We will study several reducibilities on subsets of Xω and, more generally, on
k-partitions of Xω. A k-partition A is said to be CA-reducible to a k-partition
B (in symbols A ≤CA B), if A = B ◦ g for some CA-function g : Xω →
Xω. The relations ≤DA, ≤CS and ≤DS on kXω

are defined in the same way
but using the other three classes of functions. The introduced relations on kXω

are preorderings. The CA-reducibility is widely known in descriptive set theory
as Wadge reducibility, and CS-reducibility as Lipschitz reducibility. The other
two reducibilities are effective automatic versions of these. By ≡CA we denote
the induced equivalence relation which gives rise to the corresponding quotient
partial ordering. Following a well established jargon, we call this ordering the
structure of CA-degrees. For a set A and a class of sets C, C ≤CA A means that
any set from C is CA-reducible to A. The same applies to the other reducibilities
and to partitions in place of sets. Note that the class Rk of regular k-partitions
is closed downwards under DA- and DS-reducibilities but is not closed under
CA- and CS-reducibilities. Any level of the Borel hierarchy is closed under CA-
reducibility (and thus under all four reducibilities). Every Σ-level C (and also
every Π-level) of the Borel hierarchy has a CA-complete set C which means that
C = {A : A ≤CA C}.

The operation A⊕B on k-partitions of Xω, defined by (A⊕B)(0ξ) = A(ξ)
and (A ⊕ B)(iξ) = B(ξ) for all 0 < i < m and ξ ∈ Xω (recall that X = m),
induces the operation of supremum in the structures of degrees under all four
reducibilities introduced above. The class of regular k-partitions is closed under
⊕.

We conclude this section with recalling some unary operations on k-forests
and on k-partitions of Xω introduced in [Se04,Se06]. For every k-forest F and
every i < k, let pi(F ) be the k-tree obtained from F by joining a new biggest
element and assigning the label i to this element. It is clear that any k-forest
is equivalent to a term of signature {t, p0, . . . , pk−1, 0, . . . , k − 1} without free
variables (the constant symbol i in the signature is interpreted as the singleton
tree carrying the label i). For all i < k and k-partition A of Xω, define a k-
partition pi(A) by

[pi(A)](ξ) =
{

i, if ξ 6∈ 0∗1Xω,
A(η), if ξ = 0n1η.

It is easy to see that the class of regular k-partitions is closed under p0, . . . , pk−1.
In [Se04,Se06] it was shown that the structures (Fk;≤,t, p0, . . . , pk−1), (kXω

;≤CA

,⊕, p0, . . . , pk−1) and (Rk;≤CA,⊕, p0, . . . , pk−1) are dc-semilattices in terms of
the following notion introduced in [Se82].

Definition 1. By a semilattice with discrete closures (dc-semilattice for short)
we mean a structure (S;≤,t, p0, . . . , pk−1) satisfying the following axioms:

1) (S;≤,∪) is an upper semilattice, i.e., for all x, y ∈ S, x∪y is a supremum
of x, y in the preorder (S;≤).

2) Every pi, i < k, is a closure operation on (S;≤), i.e. it satisfies x ≤ pi(x),
x ≤ y → pi(x) ≤ pi(y) and pi(pi(x)) ≤ pi(x).
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3) The operations pi have the following discreteness property: for all distinct
i, j < k, pi(x) ≤ pj(y) → pi(x) ≤ y.

4) Every pi(x) is join-irreducible, i.e. pi(x) ≤ y∪z → (pi(x) ≤ y∨pi(x) ≤ z).

3 Regular B(Σ0
1)-Partitions

In this section we extend to the case of partitions the following nice result due to
L. Staiger and K. Wagner [SW74]: every regular ∆0

2-set is a Boolean combination
of open sets. We will generalize the following equivalent reformulation of this
result: if a regular set L is not a Boolean combination of open sets then Σ0

2 ≤CA L
or Π0

2 ≤CA L.
For all distinct i, j < k, let Ai,j : Xω → k be the unique partition satisfying

A−1(i) = B, A−1(j) = B and A−1(l) = ∅ for all l ∈ k \ {i, j} where B is a
CA-complete set for Σ0

2. Observe that the partitions Ai,j (i, j < k, i 6= j) are
pairwise CA-incomparable.

Let (A, c) be a Muller k-acceptor, ≤0 the preorder on CA from Section 2 and
≡0 the corresponding equivalence relation. We say that ≡0 respects the labeling
c if D ≡0 E implies c(D) = c(E) for all D, E ∈ CA.

Theorem 1. For any Muller k-acceptor (A, c) the following conditions are equiv-
alent:

(i) L(A, c) 6∈ (B(Σ0
1))k;

(ii) The relation ≡0 does not respect the labeling c;
(iii) Al,j ≤CA L(A, c) for some distinct l, j < k.

Proof. (i)→(ii). We prove contraposition. Let≡0 respect c. Then the quotient-
structure (C̃A,≤0, c̃), where C̃A = CA/ ≡0 and c̃(D̃) = c̃(D) for all D ∈ CA, is
well-defined. Then for any l < k the set c̃−1(l) is a Boolean combination of sets
closed upwards in (C̃A,≤0), and hence the set c−1(l) is a Boolean combination
of sets closed upwards in (CA,≤0) By a well-known result (see e.g. [Wag79]), for
any l < k the set {ξ | fA(ξ) ∈ c−1(l)} is in B(Σ0

1). Therefore, L(A, c) ∈ B(Σ0
1)k

which is a contradiction.
(ii)→(iii). Let D, E ∈ CA satisfy D ≡0 E and c(D) 6= c(E). Then F ⊇ D,E

for some F ∈ CA and c(F ) is distinct from at least one of c(D), c(E). Let
e.g. c(F ) 6= c(D). Since F ≤1 D, by a well-known result in [Wag79] we get a
continuous function g on Xω such that fA(g(ξ)) ∈ F for ξ 6∈ B and fA(g(ξ)) ∈ D
for ξ ∈ B. Taking l = c(D) and j = c(F ) we obtain Al,j ≤CA L(A, c).

(iii)→(i). Let Al,j ≤CA L(A, c) = L, then B ≤CA L−1(l). Therefore, L−1(l) 6∈
B(Σ0

1) and hence L 6∈ (B(Σ0
1))k. This completes the proof of the theorem.

Remark. The proof above gives for the case k = 2 a new proof of the
Staiger-Wagner theorem.

From the equivalence of (i) and (ii) above we immediately obtain

Corollary 1. The relation “L(A, c) ∈ B(Σ0
1)k” is decidable.
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4 Boolean Hierarchy of Regular B(Σ0
1)-Partitions

In this section we develop for partitions a full analog of the Boolean hierarchy of
regular sets inside B(Σ0

1). For this we need the Boolean hierarchy of partitions
developed in [Ko00,KW00] for the case of NP-partitions and simplified in [Se04]
for the case of partitions over reducible bases.

We recall some necessary definitions from [Ko00,KW00,Se04]. Let M be a
set and L ⊆ P (M) a class of subsets closed under ∪,∩ and containing ∅,M ; for
the sake of brevity, we call such a class L a base. A base L is reducible if for all
C0, C1 ∈ L there are disjoint C ′0, C

′
1 ∈ L such that C ′i ⊆ Ci for both i < 2 and

C0∪C1 = C ′0∪C ′1. As is well known [Ke94], each level Σ0
n of the Borel hierarchy

is reducible. In [Se98] it was shown that bases Ln = R ∩ Σ0
n+1, n = 0, 1, are

reducible as well.
Relate to any base L and any F = (F,≤, c) ∈ Fk a class L(F ) of k-partitions

as follows. We call a map S : F → L admissible if it is monotone,
⋃

x Sx = M and
Sx∩Sy = ∅ for all incomparable x, y ∈ F . For any x ∈ F , let S̃x = Sx\

⋃{Sy|y <

x}. The sets S̃x are pairwise disjoint and exhaust M . Hence, we can relate to any
admissible S : F → L the k-partition A = AS ∈ kM by A(s) = c(x) where x is
the unique element of F with s ∈ S̃x. Finally, let L(F ) be the set of all AS for all
admissible S : F → L. The family {L(F )}F∈Fk

is called the Boolean hierarchy
of k-partitions over L. Let also BHk(L) = {L(F ) | F ∈ Fk} be the class of levels
of this hierarchy. Note that in [Ko00,KW00] levels of the Boolean hierarchy of
partitions were considered for arbitrary k-posets (with a similar definition), and
in [Se04] it was shown that for reducible bases the levels defined above using
only k-forests are sufficient; this simplifies considerably the Boolean hierarchy
of partitions over reducible bases. This is important for this paper because here
we consider only the reducible bases mentioned in the preceding paragraph. As
is well-known and easy to see,

⋃{L(F ) | F ∈ Fk} = B(L)k.
In [Se04] we have proved the following result. For a further reference, we give

a short proofsketch.

Theorem 2. For any k ≥ 2, the structures (BHk(L0);⊆) and (BHk(Σ0
1);⊆)

are isomorphic to the quotient structure of (Fk;≤).

Proofsketch. By [Ko00,KW00,Se04], the map F 7→ Σ0
1(F ) induces a mono-

tone function from (Fk;≤) onto (BHk(Σ0
1);⊆). It remains to show that F 6≤ G

implies Σ0
1(F ) 6⊆ Σ0

1(G). According to the end of Section 2, F is equivalent to a
term t of signature {t, p0, . . . , pk−1, 0, . . . , k− 1} without free variables. Let BF

be the value of t in the structure (kXω

;⊕, p0, . . . , pk−1, 0, . . . , k − 1) where the
constant symbols i, i < k, are interpreted as the constant partitions Ai(ξ) = i. As
shown in [Se04], BF is a greatest element in (Σ0

1(F );≤CA), and BF ∈ L0(F ). As
shown in [Se06], F ≤ G iff BF ≤CA BG. Hence, BF ∈ Σ0

1(F ) \Σ0
1(G) whenever

F 6≤ G. A similar proof works for the structure (BHk(L0);⊆). This completes
the proof.

Our next goal is to show that, given a Muller k-acceptor (A, c) and a k-forest
F , we can effectively decide whether L(A, c) ∈ Σ0

1(F ). This is a generalization
of an important property of the Wagner hierarchy. First we prove a lemma.
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Lemma 1. Let (A, c) be a Muller k-acceptor, G a k-forest, and G ≤ (CA,≤0, c).
Then Σ0

1(G) ≤CA L(A, c).

Proof. Let h : G → (CA,≤0, c) be a morphism of k-posets. Let A ∈ Σ0
1(G),

we have to show A ≤CA L(A, c). Let S : G → Σ0
1 be an admissible map that

defines A as explained in the beginning of this section. Generalizing a well-
known property of Muller acceptors [Wag79], it is straightforward to construct
a continuous function g on Xω such that fA(ξ) = h(x) whenever ξ ∈ S̃x, x ∈ G.
Then g reduces A to L(A, c), completing the proof.

Theorem 3. The relation “L(A, c) ∈ Σ0
1(F )” is decidable.

Proof. By Corollary 1, we can first decide whether L(A, c) ∈ B(Σ0
1)k. If not,

then L(A, c) 6∈ Σ0
1(F ). If yes, then, by Theorem 1, ≡0 respects the labeling c.

Moreover, from the proof of that theorem and definition of the Boolean hierarchy
of partitions it follows easily that L(A, c) ∈ Σ0

1(C̃A,≤0, c̃). By the proof of
Theorem 3.1 in [Se04] we can effectively find a k-forest G ≤ C̃A with Σ0

1(G) =
Σ0

1(C̃A). By Lemma 1, L(A, c) is actually CA-complete in Σ0
1(G). By Theorem

2, L(A, c) ∈ Σ0
1(F ) iff G ≤ F . Since the relation G ≤ F is decidable, this

completes the proof.

5 Reducibilities on Regular Partitions

In this section we consider the reducibilities from Section 2 on the ω-regular
partitions. We start with a characterization of some structures of CA-degrees.

Theorem 4. For any k ≥ 2, the quotient-structures of (B(Σ0
1)k;≤CA), (B(Σ0

1)k∩
Rk;≤CA), (B(L0)k;≤CA)) and (Fk;≤) are isomorphic.

Proofsketch. By the proof of Theorem 2, the map F 7→ BF induces an
isomorphism from (the quotient-structure of) (Fk;≤) into (B(L0)k;≤CA). From
the proof of Theorem 2.2.4 in [H96] it follows that each C ∈ B(Σ0

1)k is CA-
equivalent to BF for some F ∈ Fk. Obviously, B(L0)k ⊆ B(Σ0

1)k∩Rk ⊆ B(Σ0
1)k,

completing the proof.
The next result generalizes the corresponding fact from [Wag79] and shows

that the effective “automatic” reducibilities from Section 2 coincide with their
non-effective counterparts on some classes of ω-regular partitions. Since the sets
B(L0)k and B(Σ0

1)k are closed under operations ⊕, p0, . . . , pk−1 introduced in
Section 2, we have the following assertion which follow from results mentioned
at the end of Section 2.

Lemma 2. (i) For any k ≥ 2, the sets B(L0)k, B(Σ0
1)k ∩ Rk and B(Σ0

1)k are
dc-semilattices under ≤CA,⊕, p0, . . . , pk−1.

Theorem 5. (i) For any k ≥ 2, the relations ≤CS and ≤DS coincide on Rk.
(ii) For any k ≥ 2, the relations ≤CA and ≤DA coincide on B(Σ0

1)k ∩Rk.
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Proof. (i) One implication is obvious. The other follows easily from the
Büchi-Landweber theorem. Indeed, let A, B ∈ Rk and A ≤CS B, i.e. A = B ◦ f
for some synchronous continuous function f on Xω. Then ∀ξ(〈ξ, f(ξ)〉 ∈ C)
where C = {〈ξ, η〉 | ∀i < k(ξ ∈ A−1(i) ↔ η ∈ B−1(i))}. Since C is regular,
by Büchi-Landweber theorem there is a synchronous DS-function g on Xω such
that ∀ξ(〈ξ, g(ξ)〉 ∈ C). Therefore, A ≤DS B via g.

(ii) Proof of this assertion is more complicated than the corresponding proof
in [Se98] because for k > 2 there is no analog of the well-known “semilinear
principle” stating that for all Borel sets A,B at least one of relations A ≤CS B,
B ≤CS A holds true. But it is possible to find another argument. Namely, let
A ≤CA B for some A, B ∈ B(Σ0

1)k ∩ Rk. If pi(B) ≡CA B for some i < k, then,
by Theorem 4 and Lemma 2, B ≡CA BT for some k-tree T (because, by [Se04],
k-trees correspond exactly to join-irreducible elements of (Fk,t)). By inspecting
the proof of Theorem 2.2.4 in [H96] it is not hard to show that A ≤CS B, hence
A ≤DS B by (i) and therefore A ≤DA B.

Now let pi(B) 6≡CA B. By Theorem 4, B ≡CA B0 ⊕ · · · ⊕ Bn for some
join-irreducible partitions B0, . . . , Bn strictly below B. If A is join-irreducible
then A ≤CA Bl for some l ≤ n, and the assertion follows by induction on rk(B).
Otherwise, consider representation A ≡CA A0⊕· · ·⊕Am for some join-irreducible
A0, . . . , Am. Then Aj ≤CA B for all j ≤ m. By the case just considered, Aj ≤DA

B for all j ≤ m. Therefore, A ≤DA B, completing the proof of the theorem.
As an easy corollary of the last theorem, we obtain the following generaliza-

tion of Theorem 6.9 in [Se98] (and Theorem 4.7 in [Ba92]) for some levels of the
hierarchy of partitions.

Theorem 6. (i) For all k ≥ 2 and F ∈ Fk, F (L0) = F (Σ0
1) ∩Rk.

(ii) For any k ≥ 2, B(L0)k = B(Σ0
1)k ∩Rk.

Proof. (i) The inclusion from left to right is obvious. Conversely, let A ∈
F (Σ0

1) and A ∈ Rk. Then A ≤CA BF and, by the proof of Theorem 2, BF ∈
F (L0). By Theorem 5, A ≤DA BF . The class F (L0) is clearly closed downwards
under ≤DA. Hence, A ∈ F (L0). Since

⋃{L0(F ) | F ∈ Fk} = B(L0)k and⋃{Σ0
1(F ) | F ∈ Fk} = B(Σ0

1)k, the assertion (ii) follows from (i). This completes
the proof.

So far, our results for ω-regular partitions generalized the corresponding re-
sults for ω-regular languages. Now we present a result that has completely dif-
ferent formulations for ω-regular languages and for ω-regular k-partitions for
k > 2. Recall that first-order theory FO(A) of a structure A of signature σ is
the set of first-order sentences of signature σ which are true in A.

Consider the question whether the first-order theory FO(Rk;≤CA) of the
quotient-structure of (Rk;≤CA) is decidable. The question may be also asked for
reasonable substructures of this structure. For k = 2 the theory FO(Rk;≤CA)
(as well as the theory FO(B(L0)k;≤CA)) is decidable because, by a main fact in
[Wag79], the quotient-structures of these preorderings are almost well-ordered,
and the first-order theory of any ordinal is known to be decidable. It turns out
that for k > 2 the situation is quite different.
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Theorem 7. (i) For any k ≥ 3, the theory FO(B(L0)k;≤CA) is undecidable
and, moreover, is computably isomorphic to the first-order arithmetic FO(ω; +, ·).

(ii) For any k ≥ 3, FO(Rk;≤CA) is undecidable and, moreover, FO(ω; +, ·)
is m-reducible to FO(Rk;≤CA).

Proof. (i) follows from Theorem 4 and the corresponding fact about the
theory FO(Fk;≤CA) established in [KS06].

(ii) By (i) and Theorem 4, it suffices to m-reduce FO(B(Σ0
1)k ∩Rk;≤CA) to

FO(Rk;≤CA). For this it suffices to show that the set B(Σ0
1)k∩Rk is first-order

definable in (Rk;≤CA). Let λ(u) be the formula ∃y(y < u)∧∀y < u∃z(y < z < u)
stating that u is not minimal and has no immediate predecessor. Let µ(u) be the
formula λ(u) ∧ ∀v < u¬λ(u) stating that u is minimal among the non-minimal
elements having no immediate predecessor. Finally, let p = k(k − 1), u1, . . . , up

be different variables, and φ(x) be the formula

∃u1 · · · ∃up((
∧

i 6=j

ui 6= uj) ∧ (
∧

i

(µ(ui) ∧ ui 6≤ x))).

By Theorem 1, φ(x) defines B(Σ0
1)k ∩ Rk in (Rk;≤CA). This completes the

proof.

6 Conclusion

We have shown that several facts about the Wagner hierarchy of regular ω-
languages may be extended to the case of ω-regular partitions. We expect that
actually the full theory around the Wagner hierarchy may be extended similarly,
though this of course needs some additional technical work.
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