

Tight Rectilinear Hulls of Simple Polygons

Annika Bonerath, Jan-Henrik Haunert and Benjamin Niedermann

Institute of Geodesy und Geoinformation, University of Bonn

Main Goal:

Simplification of a polygon P with a polygon Q.

Main Goal:

Simplification of a polygon P with a polygon Q.

Requirements for Q:

- simple
- *C*-oriented
- contains *P*
- cannot be shrunk

(formalization follows on the next slides)

Main Goal:

Simplification of a polygon P with a polygon Q.

Requirements for Q:

- simple
- *C*-oriented
- contains *P*
- cannot be shrunk

(formalization follows on the next slides)

Main Goal:

Simplification of a polygon P with a polygon Q.

Requirements for Q:

- simple
- *C*-oriented
- contains *P*
- cannot be shrunk

(formalization follows on the next slides)

Optimization Goal:

few bends, small area, short length

Main Goal:

Simplification of a polygon P with a polygon Q.

Application:

- schematization of plane graph drawings
- travel-time maps that visualize reachable parts in a road network
- schematic representation of point sets, instead of using bounding boxes as usually done in data management systems

This Paper

Restriction to rectilinear simple input and output polygons.

Definition:

The polygon Q' is a *linear distortion* of Q if each edge of Q' can be scaled and translated such that the polygon Q results.

Definition:

The polygon Q' is a *linear distortion* of Q if each edge of Q' can be scaled and translated such that the polygon Q results.

Definition:

The polygon Q' is a *linear distortion* of Q if each edge of Q' can be scaled and translated such that the polygon Q results.

Definition:

A **simple** polygon Q is a *tight hull* of another polygon P if Q contains P and there is no linear distortion of Q that lies in Q and contains P.

What is a good tight hull?

Definition:

The tight hull Q of P is α -optimal if Q minimizes

$$cost(Q) = \alpha_1 \cdot length(Q) + \alpha_2 \cdot area(Q) + \alpha_3 \cdot bends(Q)$$

over all tight hulls Q'.

Lemma 1:

Every vertex of Q on P is a vertex of the maximally subdivided P.

Idea of Proof:

but then Q is not tight (scale e_1 and e_3)

Lemma 1:

Every vertex of Q on P is a vertex of the maximally subdivided P.

 \Rightarrow use vertices of P for the computation of Q

Definition:

The polyline B is a bridge if,

- it consists of one or two incident line segments forming an "L"
- it starts and ends at vertices of P.

Definition:

The region enclosed by B and the polyline of P connecting the same vertices as B is the bag of B.

Definition:

The polyline B is a bridge if,

- it consists of one or two incident line segments forming an "L"
- it starts and ends at vertices of P.
- ⇒ every tight hull can be represented by a set of bridges

Lemma 2:

The bounding box \mathbb{B} of P is a tight hull and any other tight hull of P is contained in \mathbb{B} .

Idea:

carve into the bounding box $\mathbb B$ to generate any tight hull

Decompose \mathbb{B} into four independent subinstances defined by bridges B_1 , B_2 , B_3 and B_4 .

Decompose \mathbb{B} into four independent subinstances defined by bridges B_1 , B_2 , B_3 and B_4 .

Idea:

Solve instances independently and compose solutions.

Decomposition tree of B_1 .

Decomposition Rules

Decomposition of a bridge B into

- one to three connected bridges C_1 , C_2 , and C_3 ,
- each C_1 , C_2 , and C_3 lies in the bag of B
- the polyline defined by C_1 , C_2 , and C_3 connects the start and endpoint of B
- C_1 , C_2 , and C_3 may not cross each other pairwise

Decomposition Rules

Note:

rules guarantee that Q is not self-intersecting

Computation

Lemma:

For each tight hull there exists a decomposition tree.

Observation:

Each decomposition of a bridge can be described by two additional points \Rightarrow all possible decompositions can be enumerated in polynomial time.

Use dynamic programming approach to build a decomposition tree of an α -optimal tight hull in $O(n^4)$ time.

Non-Rectilinear Input Polygon

Problem:

vertices of Q are not necessarily vertices of the maximally subdivided P

Simple Approximative Approach:

sample regularly distibuted vertices on the edges of P

Conclusion and Outlook

Conclusion:

• non-self intersecting α -optimal tight rectilinear hull in $O(n^4)$ time and $O(n^2)$ space

Future Work:

- *C*-oriented tight hulls
- optimal solutions for arbitrary (simple) input polygons

Questions? Feedback?

bonerath@igg.uni-bonn.de niedermann@igg.uni-bonn.de haunert@igg.uni-bonn.de