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Motivation

Main Goal:
Simplification of a polygon P with a polygon Q.
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Requirements for Q:
® simple
® C-oriented
® contains P
® cannot be shrunk
(formalization follows on the next slides)
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Motivation

Main Goal:
Simplification of a polygon P with a polygon Q.

Requirements for Q:
® simple
® C-oriented
® contains P
® cannot be shrunk
(formalization follows on the next slides)

Optimization Goal:
few bends, small area, short length
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Motivation

Main Goal:
Simplification of a polygon P with a polygon Q.

Application:
® schematization of plane graph drawings
® travel-time maps that visualize reachable
parts in a road network
® schematic representation of point sets,
instead of using bounding boxes as usually 0
done in data management systems




| This Paper

Restriction to rectilinear simple input and output polygons.




‘Formalization of Tight Hulls

Definition:
The polygon Q' is a linear distortion of Q if each edge of Q' can be

scaled and translated such that the polygon Q results.
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‘Formalization of Tight Hulls

Definition:
A simple polygon Q is a tight hull of another polygon P if Q contains P
and there is no linear distortion of @ that lies in Q and contains P.
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Q=P Q Q = bounding box of P

What is a good tight hull?



‘Formalization of Tight Hulls

Definition:
The tight hull Q of P is a-optimal if ) minimizes

cost(Q) = a1 - length(Q) + ap - area( Q) + a3 - bends( Q)

over all tight hulls Q’.
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Structural Properties

Lemma 1:
Every vertex of ) on P is a vertex of the
maximally subdivided P.

Idea of Proof:

\/v Is a vertex of P X v IS not a vertex of P

P €3 P
Qlw Q

€ €2
€1 €1
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but then @ is not tight (scale e; and e3)
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Structural Properties

Lemma 1:
Every vertex of ) on P is a vertex of the
maximally subdivided P.

= use vertices of P for the computation of @
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Structural Properties

Definition:

The polyline B is a bridge if,
® it consists of one or two incident line segments forming an “L"
® it starts and ends at vertices of P.

Definition:
The region enclosed by B and the polyline of P connecting the same
vertices as B is the bag of B.
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Structural Properties

Definition:

The polyline B is a bridge if,
® it consists of one or two incident line segments forming an “L"
® it starts and ends at vertices of P.

= every tight hull can be represented by a set of bridges
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Structural Properties

Lemma 2:

The bounding box B of P is a tight hull and
any other tight hull of P is contained in BB.

Idea:
carve into the bounding box B to generate any tight hull



6-1

Decomposition

bounding box B
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Decomposition

Decompose B into four independent subinstances defined by bridges By,
BQ, Bg and B4.
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Decomposition

Decompose B into four independent subinstances defined by bridges By,
BQ, B3 and B4.

B1 B>
1

B3
ldea:

Solve instances independently and compose solutions.
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Decomposition

Decomposition
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Decomposition

Decomposition tree of B;.




7-3

Decomposition

Decomposition tree of B;.
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Decomposition

Decomposition tree of B;.
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Decomposition

Decomposition tree of B;.
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Decomposition

Decomposition tree of B;.
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Decomposition

Decomposition tree of B;. By
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Decomposition
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Decomposition tree of By
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Decomposition
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Decomposition

Decomposition tree of B;.
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Decomposition

Decomposition tree of B;.
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Decomposition Rules

Decomposition of a bridge B into
® one to three connected bridges C;, C,, and Cg,
® each (3, (,, and (3 lies in the bag of B
® the polyline defined by (i, (,, and (3 connects the start and
endpoint of B
® (1, (,, and (3 may not cross each other pairwise

B
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Decomposition Rules

Note:
rules guarantee that @ is not self-intersecting
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Computation

Lemma:
For each tight hull there exists a decomposition tree.

Observation:
Each decomposition of a bridge can be described by two additional points

= all possible decompositions can be enumerated in polynomial time.

Use dynamic programming approach to build a decomposition tree of an
a-optimal tight hull in O(n*) time.
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Non-Rectilinear Input Polygon

Problem:
vertices of @ are not necessarily vertices of the

maximally subdivided P

Simple Approximative Approach:
sample regularly distibuted vertices on the
edges of P
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Conclusion and Outlook

Conclusion:
® non-self intersecting a-optimal tight rectilinear hull in O(n*) time and
O(n?) space

Future Work:
® C-oriented tight hulls
® optimal solutions for arbitrary (simple) input polygons
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Questions? Feedback?

bonerath@igg.uni-bonn.de
niedermann@igg.uni-bonn.de
haunert@igg.uni-bonn.de



