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Motivation

Main Goal:
Simplification of a polygon P with a polygon Q.
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Motivation

Main Goal:
Simplification of a polygon P with a polygon Q.
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Requirements for Q:
• simple
• C-oriented
• contains P
• cannot be shrunk

(formalization follows on the next slides)

Optimization Goal:
few bends, small area, short length
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Motivation

Main Goal:
Simplification of a polygon P with a polygon Q.
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Application:
• schematization of plane graph drawings
• travel-time maps that visualize reachable

parts in a road network
• schematic representation of point sets,

instead of using bounding boxes as usually
done in data management systems
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This Paper
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Def: tight hull:
A simple polygon Q is a tight hull of
another polygon P if Q contains P and
there is no linear distortion of Q that lies in
Q and contains P.

Restriction to rectilinear simple input and output polygons.
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Formalization of Tight Hulls

Definition:
The polygon Q ′ is a linear distortion of Q if each edge of Q ′ can be
scaled and translated such that the polygon Q results.
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Formalization of Tight Hulls

Definition:
A simple polygon Q is a tight hull of another polygon P if Q contains P
and there is no linear distortion of Q that lies in Q and contains P.

Q = P

P P

Q = bounding box of P

P

What is a good tight hull?

Q



4 - 5

Formalization of Tight Hulls

Definition:
The tight hull Q of P is α-optimal if Q minimizes

cost(Q) = α1 · length(Q) + α2 · area(Q) + α3 · bends(Q)

over all tight hulls Q ′.
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Structural Properties

P

Lemma 1:
Every vertex of Q on P is a vertex of the
maximally subdivided P.

Idea of Proof:
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but then Q is not tight (scale e1 and e3)

v is not a vertex of Pv is a vertex of P
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Structural Properties

P

Lemma 1:
Every vertex of Q on P is a vertex of the
maximally subdivided P.

⇒ use vertices of P for the computation of Q

Q
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Structural Properties

Definition:
The polyline B is a bridge if,
• it consists of one or two incident line segments forming an “L”
• it starts and ends at vertices of P.

Definition:
The region enclosed by B and the polyline of P connecting the same
vertices as B is the bag of B.
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B bag B
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bag

bag
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Structural Properties

⇒ every tight hull can be represented by a set of bridges

Definition:
The polyline B is a bridge if,
• it consists of one or two incident line segments forming an “L”
• it starts and ends at vertices of P.
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Structural Properties

Lemma 2:
The bounding box B of P is a tight hull and
any other tight hull of P is contained in B.

P

B
Q

Idea:
carve into the bounding box B to generate any tight hull
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Decomposition

input P
tight hull Q

bounding box B
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Decomposition

B1 B2

B3B4

Decompose B into four independent subinstances defined by bridges B1,
B2, B3 and B4.
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Decomposition

B1 B2

B3B4

Q1 Q2

Q4

Q3

Decompose B into four independent subinstances defined by bridges B1,
B2, B3 and B4.

Idea:
Solve instances independently and compose solutions.
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Decomposition
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Decomposition
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Decomposition
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Decomposition
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Decomposition
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Decomposition
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Decomposition
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Decomposition Rules

C1

Decomposition of a bridge B into
• one to three connected bridges C1, C2, and C3,
• each C1, C2, and C3 lies in the bag of B
• the polyline defined by C1, C2, and C3 connects the start and

endpoint of B
• C1, C2, and C3 may not cross each other pairwise

B

B

B

C1

C2
C3

C1 C2
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Decomposition Rules

Note:
rules guarantee that Q is not self-intersecting
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Computation

Lemma:
For each tight hull there exists a decomposition tree.

Observation:
Each decomposition of a bridge can be described by two additional points
⇒ all possible decompositions can be enumerated in polynomial time.

Use dynamic programming approach to build a decomposition tree of an
α-optimal tight hull in O(n4) time.
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Non-Rectilinear Input Polygon

P

P

Problem:
vertices of Q are not necessarily vertices of the
maximally subdivided P

Simple Approximative Approach:
sample regularly distibuted vertices on the
edges of P
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Conclusion and Outlook

Conclusion:
• non-self intersecting α-optimal tight rectilinear hull in O(n4) time and
O(n2) space

Future Work:
• C-oriented tight hulls
• optimal solutions for arbitrary (simple) input polygons

P Q P

Q
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Questions? Feedback?

bonerath@igg.uni-bonn.de
niedermann@igg.uni-bonn.de
haunert@igg.uni-bonn.de


