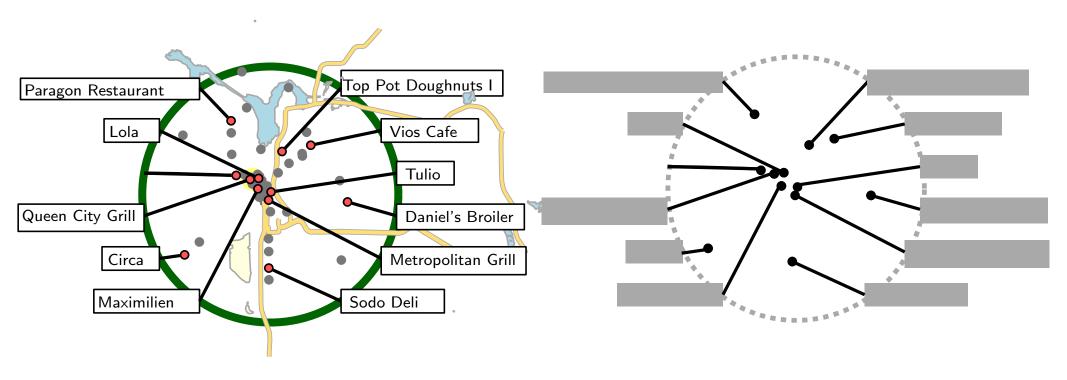


Balanced Independent Sets on Colored Interval Graphs

Sujoy Bhore, Jan-Henrik Haunert, Fabian Klute, Guangping Li, Martin Nöllenburg

Institut für Geodäsie und Geoinformation

Boundary labeling



- labels are at the boundary of the focus region
- a leader connects a label with its corresponding POI
- task: select a large conflict-free labeling

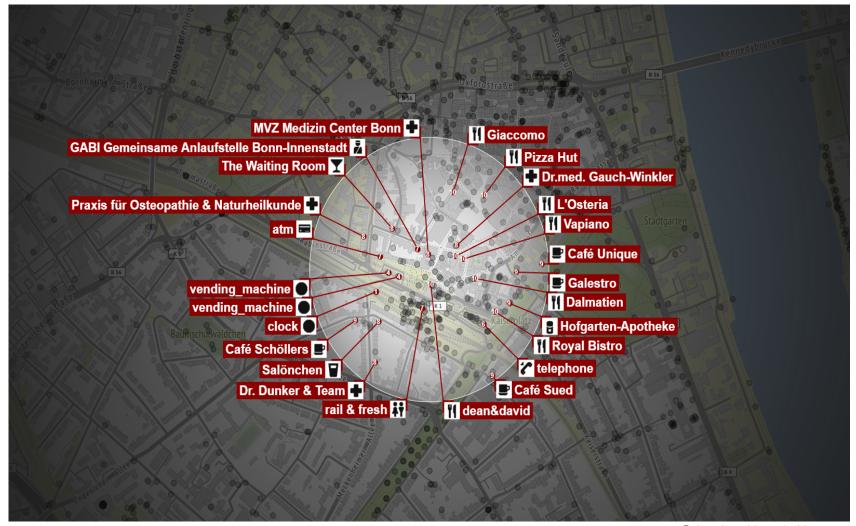
M. Fink, J.-H. Haunert, A. Schulz, J. Spoerhase und A. Wolff.

Algorithms for labeling focus regions.

IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis'12),

18(12):2583–2592, 2012.

Boundary labeling

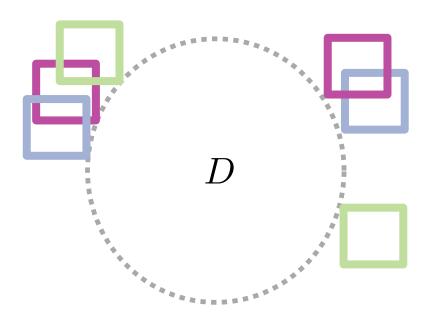


© by Jan-Henrik Haunert

- labels represent objects of multiple categories
- task: select a good mixture of different object types

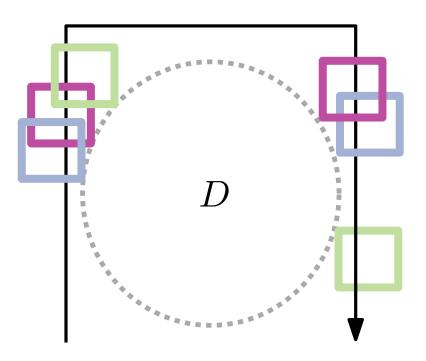
input:

- lacktriangle a set of n colored axis-parallel unit squres touching a disk D
 - rectangle: icon



input:

- lacktriangle a set of n colored axis-parallel unit squres touching a disk D
 - rectangle: icon



interval representation of its intersection model

input:

- lacksquare a set I of n intervals on the real line
- lacksquare each interval is colored by a coloring $c{:}I
 ightarrow \{1,\ldots,k\}$

input:

- lacksquare a set I of n intervals on the real line
- lacksquare each interval is colored by a coloring $c{:}I
 ightarrow \{1,\ldots,k\}$

goal: f-Balanced Independent Set (f-BIS)

- lacksquare an independent set $M\subseteq I$
- lacksquare M contains exactly f elements from each of k color classes

input:

- lacksquare a set I of n intervals on the real line
- lacksquare each interval is colored by a coloring $c{:}I
 ightarrow \{1,\ldots,k\}$

goal: f-Balanced Independent Set (f-BIS)

- lacksquare an independent set $M\subseteq I$
- lacksquare M contains exactly f elements from each of k color classes

1-BIS

reduction from 3-bounded 3SAT

lacktriangle each variable x_i appears in ≤ 3 clauses each clause C_i has 2 or 3 literals

$$(x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_3 \vee \overline{x_4}) \wedge (x_3 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_2} \vee x_3)$$

$$C_1 \qquad C_2 \qquad C_3 \qquad C_4$$

- lacktriangle each variable x_i appears in ≤ 3 clauses each clause C_j has 2 or 3 literals
- gadgets:

$$(x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_3 \vee \overline{x_4}) \wedge (x_3 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_2} \vee x_3)$$

$$C_1 \qquad C_2 \qquad C_3 \qquad C_4$$

- lacksquare each variable x_i appears in ≤ 3 clauses each clause C_j has 2 or 3 literals
- gadgets:
 - clause: color

$$(x_1 ee \overline{x_2} ee x_4) \wedge (\overline{x_1} ee x_3 ee \overline{x_4}) \wedge (x_3 ee x_4) \wedge (\overline{x_1} ee \overline{x_2} ee x_3)$$
 C_1
 C_2
 C_3

- lacktriangle each variable x_i appears in ≤ 3 clauses each clause C_j has 2 or 3 literals
- gadgets:
 - clause: color
 - variable: one (colored) interval for each occurence
 - intersection: each pair of opposite literals

$$+$$
 x_1 x_2

$$(x_1 \lor \overline{x_2} \lor x_4) \land (\overline{x_1} \lor x_3 \lor \overline{x_4}) \land (x_3 \lor x_4) \land (\overline{x_1} \lor \overline{x_2} \lor x_3)$$

$$C_1 \qquad C_2 \qquad C_3 \qquad C_4$$

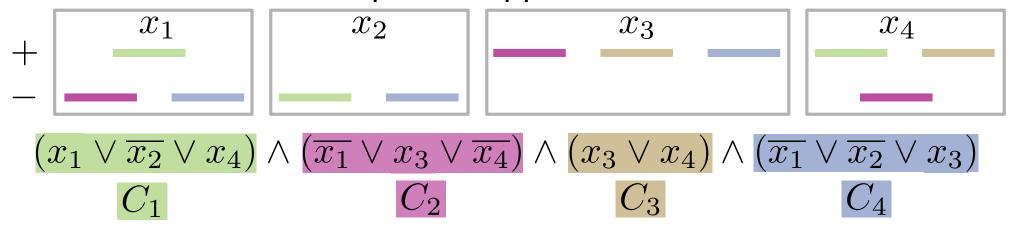
- lacktriangle each variable x_i appears in ≤ 3 clauses each clause C_j has 2 or 3 literals
- gadgets:
 - clause: color
 - variable: one (colored) interval for each occurence
 - intersection: each pair of opposite literals

$$+$$

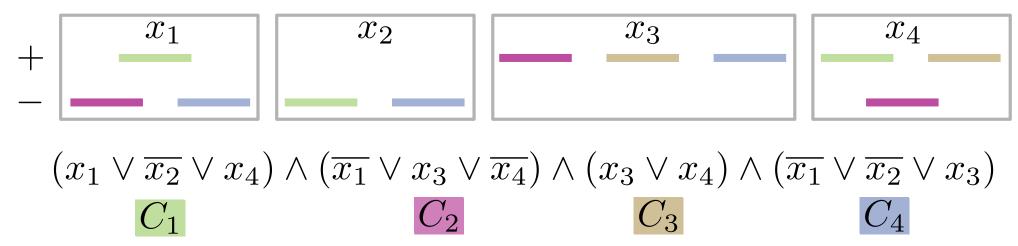
$$(x_1 \vee \overline{x_2} \vee x_4) \wedge (\overline{x_1} \vee x_3 \vee \overline{x_4}) \wedge (x_3 \vee x_4) \wedge (\overline{x_1} \vee \overline{x_2} \vee x_3)$$

$$C_1 \qquad C_2 \qquad C_3 \qquad C_4$$

- lacktriangle each variable x_i appears in ≤ 3 clauses each clause C_j has 2 or 3 literals
- gadgets:
 - clause: color
 - variable: one (colored) interval for each occurence
 - intersection: each pair of opposite literals

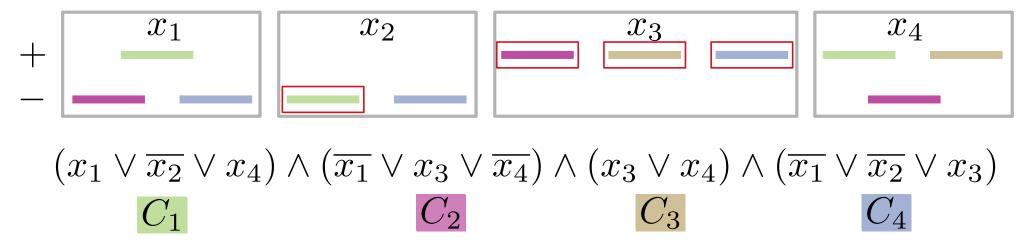


Correctness



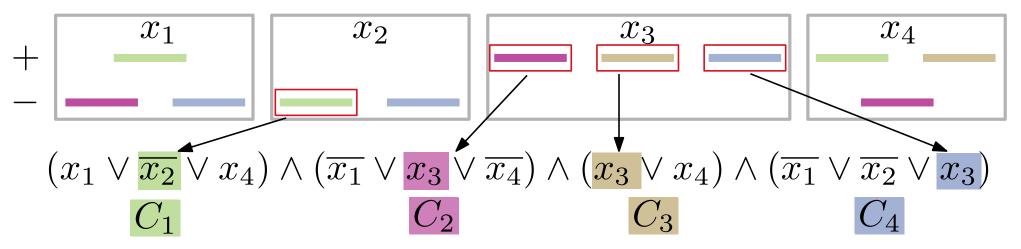
■ 1-BIS ⇒:

Correctness

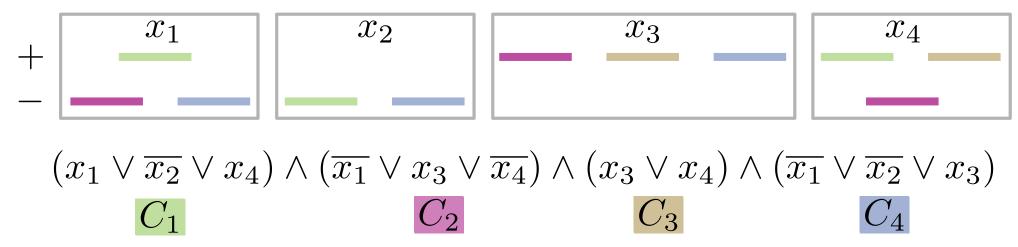


■ 1-BIS ⇒:

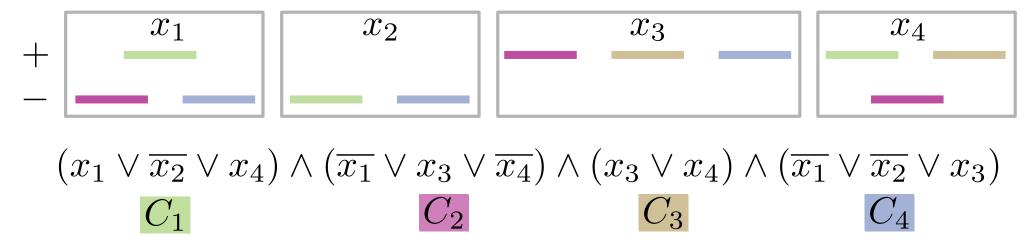
Correctness



■ 1-BIS \Rightarrow : evaluate the chosen literals as true

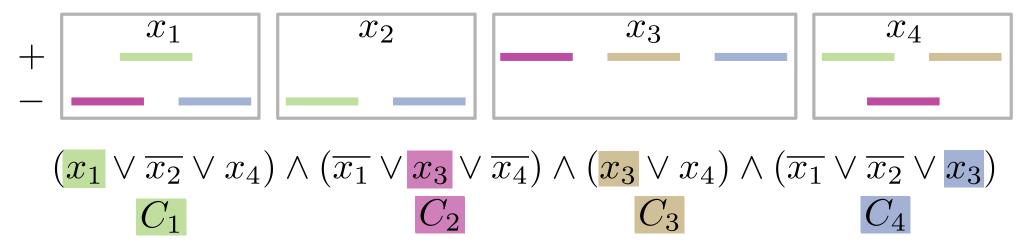


- 1-BIS \Rightarrow : evaluate the chosen literals as true
- ← assignment:

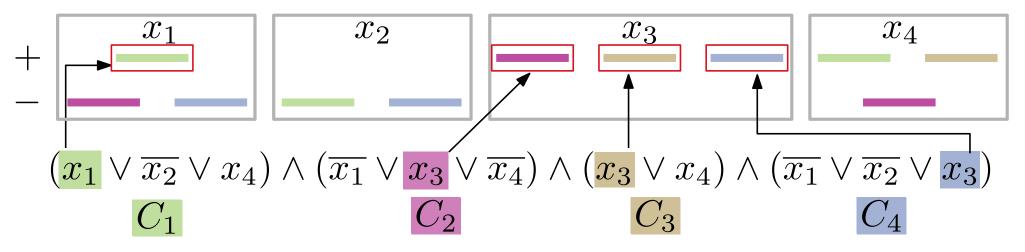


- 1-BIS \Rightarrow : evaluate the chosen literals as true

$$\{x_1: T, x_2: F, x_3: T, x_4: F\}$$



- 1-BIS \Rightarrow : evaluate the chosen literals as true
- lacktriangle = assignment: choose a positive evaluated literal in each C_i $\{x_1\colon T,\,x_2\colon F,\,x_3\colon T,\,x_4\colon F\}$

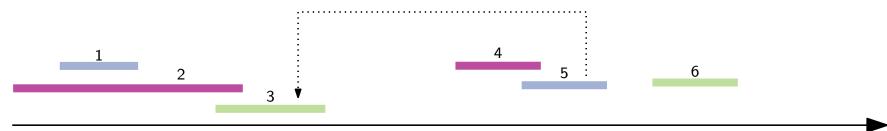


- 1-BIS \Rightarrow : evaluate the chosen literals as true
- lacktriangle \Leftarrow assignment: choose a positive evaluated literal in each C_i $\{x_1\colon \ T,\ x_2\colon \ F,\ x_3\colon \ T,\ x_4\colon \ F\}$

lacksquare sorted set of intervals $\mathcal{I} = \{I_1, \dots, I_n\}$

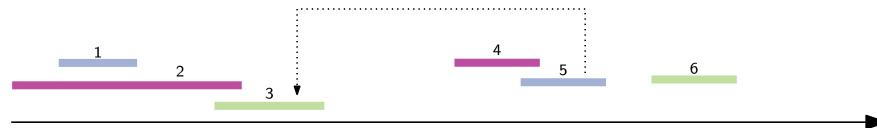
sorted by right-endpoints

lacksquare sorted set of intervals $\mathcal{I} = \{I_1, \dots, I_n\}$



 $ightharpoonup pred(I_j)$: rightmost interval completely left to I_j (if it exists)

lacksquare sorted set of intervals $\mathcal{I} = \{I_1, \dots, I_n\}$



- $lacktriangledown pred(I_j)$: rightmost interval completely left to I_j (if it exists)
- lacktriangle cardinality vector $C_{\mathcal{I}'}$: k-dimensional vector $(c_1,\ldots,c_i,\ldots,c_k)$ cardinality of intervals of color i in \mathcal{I}'
 - lacksquare $C_{\mathcal{I}'}$ is valid: \mathcal{I}' is independent and $c_i \leq f$

lacksquare sorted set of intervals $\mathcal{I} = \{I_1, \dots, I_n\}$

- $pred(I_j)$: rightmost interval completely left to I_j (if it exists)
- lacktriangle cardinality vector $C_{\mathcal{I}'}$: k-dimensional vector $(c_1,\ldots,c_i,\ldots,c_k)$ cardinality of intervals of color i in \mathcal{I}'
 - lacksquare $C_{\mathcal{I}'}$ is valid: \mathcal{I}' is independent and $c_i \leq f$
- U_j : union of valid cardinarlity vectors of $\{I_1, \ldots, I_j\}$
 - $U_0 = \{(0, \dots, 0)\}$
 - $U_j = U_{j-1} \cup \{ u \oplus \hat{e}_{c(I_j)} \mid u \in U_{pred(I_j)} \}$

sorted set of intervals $\mathcal{I} = \{I_1, \dots, I_n\}$

- $ightharpoonup pred(I_i)$: rightmost interval completely left to I_i (if it exists)
- cardinality vector $C_{\mathcal{I}'}$: k-dimensional vector $(c_1, \ldots, c_i, \ldots, c_k)$ cardinality of intervals of color i in \mathcal{I}'
 - lacksquare $C_{\mathcal{I}'}$ is valid: \mathcal{I}' is independent and $c_i \leq f$
- U_i : union of valid cardinarlity vectors of $\{I_1, \ldots, I_i\}$
 - $U_0 = \{(0, \dots, 0)\}$
 - $U_j = U_{j-1} \cup \{ u \oplus \hat{e}_{c(I_i)} \mid u \in U_{pred(I_i)} \}$ $(0\ldots,1,\ldots,0)$ $c(I_{i})$

6/7

lacksquare sorted set of intervals $\mathcal{I} = \{I_1, \dots, I_n\}$

- lacksquare $pred(I_j)$: rightmost interval completely left to I_j (if it exists)
- lacktriangledown cardinality vector $C_{\mathcal{I}'}$: k-dimensional vector $(c_1,\ldots,c_i,\ldots,c_k)$ cardinality of intervals of color i in \mathcal{I}'
 - lacksquare $C_{\mathcal{I}'}$ is valid: \mathcal{I}' is independent and $c_i \leq f$
- U_j : union of valid cardinarlity vectors of $\{I_1, \ldots, I_j\}$
 - $U_0 = \{(0, \dots, 0)\}$
 - $U_j = U_{j-1} \cup \{ u \oplus \hat{e}_{c(I_j)} \mid u \in U_{pred(I_j)} \}$

lacksquare sorted set of intervals $\mathcal{I} = \{I_1, \dots, I_n\}$

- $lacktriangledown pred(I_j)$: rightmost interval completely left to I_j (if it exists)
- lacktriangle cardinality vector $C_{\mathcal{I}'}$: k-dimensional vector $(c_1,\ldots,c_i,\ldots,c_k)$ cardinality of intervals of color i in \mathcal{I}'
 - lacksquare $C_{\mathcal{I}'}$ is valid: \mathcal{I}' is independent and $c_i \leq f$
- U_j : union of valid cardinarlity vectors of $\{I_1, \ldots, I_j\}$
 - $U_0 = \{(0, \dots, 0)\}$
 - $U_j = U_{j-1} \cup \{u \oplus \hat{e}_{c(I_j)} \mid u \in U_{pred(I_j)} \} \qquad O(|U_n| \times \alpha(|U_n|))$

lacksquare sorted set of intervals $\mathcal{I} = \{I_1, \dots, I_n\}$

- $ightharpoonup pred(I_j)$: rightmost interval completely left to I_j (if it exists)
- lacktriangle cardinality vector $C_{\mathcal{I}'}$: k-dimensional vector $(c_1,\ldots,c_i,\ldots,c_k)$ cardinality of intervals of color i in \mathcal{I}'
 - lacksquare $C_{\mathcal{I}'}$ is valid: \mathcal{I}' is independent and $c_i \leq f$
- $lacksquare U_j$: union of valid cardinarlity vectors of $\{I_1,\ldots,I_j\}$ $|U_j|=O(f^k)$
 - $U_0 = \{(0, \dots, 0)\}$
 - $U_j = U_{j-1} \cup \{u \oplus \hat{e}_{c(I_j)} \mid u \in U_{pred(I_j)} \} \qquad O(|U_n| \times \alpha(|U_n|))$

lacksquare sorted set of intervals $\mathcal{I} = \{I_1, \dots, I_n\}$

- $lacktriangledown pred(I_j)$: rightmost interval completely left to I_j (if it exists)
- lacktriangle cardinality vector $C_{\mathcal{I}'}$: k-dimensional vector $(c_1,\ldots,c_i,\ldots,c_k)$ cardinality of intervals of color i in \mathcal{I}'
 - lacksquare $C_{\mathcal{I}'}$ is valid: \mathcal{I}' is independent and $c_i \leq f$
- $lacksquare U_j$: union of valid cardinarlity vectors of $\{I_1,\ldots,I_j\}$ $|U_j|=O(f^k)$
 - $U_0 = \{(0, \dots, 0)\}$
 - $U_j = U_{j-1} \cup \{u \oplus \hat{e}_{c(I_j)} \mid u \in U_{pred(I_j)} \} \qquad O(|U_n| \times \alpha(|U_n|))$
- \blacksquare runtime: $O(n \log n + n f^k \alpha(f^k))$

- our results
 - *f*-Balanced Independent Set:
 - *№ NP*-hardness
 - \nearrow **FPT** by (f, k)

- our results
 - *f*-Balanced Independent Set:
 - NP-hardness
 - ightharpoonup FPT by (f,k)
 - FPT by the Vertex Cover Number
 - relevant problems:
 - 2-approximation for 1-Max-Colored Independent Sets
 - \blacksquare *NP*-hardness of f-Balanced Dominating Set

- our results
 - *f*-Balanced Independent Set:
 - *№ NP*-hardness
 - ightharpoonup FPT by (f,k)
 - FPT by the Vertex Cover Number
 - relevant problems:
 - 2-approximation for 1-Max-Colored Independent Sets
 - \blacksquare *NP*-hardness of f-Balanced Dominating Set
- open problems:
- Palanced set on intersection graphs (e.g. boxicity graphs)

- our results
 - f-Balanced Independent Set:

 - ightharpoonup FPT by (f,k)
 - FPT by the Vertex Cover Number
 - relevant problems:
 - 2-approximation for 1-Max-Colored Independent Sets
 - \blacksquare *NP*-hardness of f-Balanced Dominating Set
- open problems:
- ? balanced set on intersection graphs (e.g. boxicity graphs)

guangping@ac.tuwien.ac.at