Enumerating tilings of triply-periodic minimal surfaces

Benedikt Kolbe and Myfanwy Evans

INRIA, Nancy - Grand Est and Technical University Berlin

benedikt.kolbe@inria.fr
Overview

Preliminaries
 Motivation

Minimal surfaces and orbifolds
 Triply periodic minimal surfaces
 Orbifolds

Enumerating isotopy classes of tilings
 Isotopic tiling theory
 Theoretical results
 Algorithm
 Implementations

Conclusion
Graphs in nature and materials science

- Chemical structures are often modelled as (locally finite, simple) graphs in \mathbb{R}^3.
Graphs in nature and materials science

- Chemical structures are often modelled as (locally finite, simple) graphs in \mathbb{R}^3.
Graphs in nature and materials science

- Chemical structures are often modelled as (locally finite, simple) graphs in \mathbb{R}^3.

Sodalite, an aluminosilicate, a real Zeolite in \mathbb{R}^3. Image courtesy of Stephen Hyde.
Chemical structures are often modelled as (locally finite, simple) graphs in \mathbb{R}^3. Many molecular structures grow in restricted environments, modelled as neighbourhoods of surfaces of CMC or minimal surfaces.
Chemical structures are often modelled as (locally finite, simple) graphs in \mathbb{R}^3.

Many molecular structures grow in restricted environments, modelled as neighbourhoods of surfaces of CMC or minimal surfaces.
Chemical structures are often modelled as (locally finite, simple) graphs in \mathbb{R}^3.

Many molecular structures grow in restricted environments, modelled as neighbourhoods of surfaces of CMC or minimal surfaces.
Chemical structures are often modelled as (locally finite, simple) graphs in \mathbb{R}^3. Many molecular structures grow in restricted environments, modelled as neighbourhoods of surfaces of CMC or minimal surfaces.

Figure: Sodalite on the primitive surface
The central idea of the EPINET approach

- Study entangled graphs by explicit constructions of graphs on surfaces.
- **The EPINET approach**: Investigate nets by drawing graphs symmetrically on an embedded hyperbolic surface in \mathbb{R}^3. Then forget about the surface.
- Use special surfaces so that produced graphs are symmetric in $\mathbb{R}^3 \implies H^2$
The central idea of the EPINET approach

- Study entangled graphs by explicit constructions of graphs on surfaces.
- **The EPINET approach:** Investigate *nets* by drawing graphs symmetrically on an embedded hyperbolic surface in \mathbb{R}^3. Then forget about the surface.
- Use special surfaces so that produced graphs are symmetric in $\mathbb{R}^3 \Rightarrow \mathbb{H}^2$.
Our avenue of approach

The central idea of the EPINET approach

- Study entangled graphs by explicit constructions of graphs on surfaces.
- **The EPINET approach:** Investigate *nets* by drawing graphs symmetrically on an embedded hyperbolic surface in \mathbb{R}^3. Then forget about the surface.
- Use special surfaces so that produced graphs are symmetric in $\mathbb{R}^3 \Rightarrow \mathbb{H}^2$.
The central idea of the EPINET approach

- Study entangled graphs by explicit constructions of graphs on surfaces.
- **The EPINET approach:** Investigate *nets* by drawing graphs symmetrically on an embedded hyperbolic surface in \mathbb{R}^3. Then forget about the surface.
- Use special surfaces so that produced graphs are symmetric in $\mathbb{R}^3 \Rightarrow \mathbb{H}^2$.
The central idea of the EPINET approach

- Study entangled graphs by explicit constructions of graphs on surfaces.
- **The EPINET approach:** Investigate *nets* by drawing graphs symmetrically on an embedded hyperbolic surface in \mathbb{R}^3. Then forget about the surface.
- Use special surfaces so that produced graphs are symmetric in $\mathbb{R}^3 \rightarrow \mathbb{H}^2$.
The central idea of the EPINET approach

- Study entangled graphs by explicit constructions of graphs on surfaces.
- **The EPINET approach:** Investigate *nets* by drawing graphs symmetrically on an embedded hyperbolic surface in \mathbb{R}^3. Then forget about the surface.
- Use special surfaces so that produced graphs are symmetric in $\mathbb{R}^3 \rightarrow \mathbb{H}^2$
The central idea of the EPINET approach

- Study entangled graphs by explicit constructions of graphs on surfaces.
- **The EPINET approach:** Investigate *nets* by drawing graphs symmetrically on an embedded hyperbolic surface in \mathbb{R}^3. Then forget about the surface.
- Use special surfaces so that produced graphs are symmetric in $\mathbb{R}^3 \Rightarrow \mathbb{H}^2$
The central idea of the EPINET approach

- Study entangled graphs by explicit constructions of graphs on surfaces.
- **The EPINET approach:** Investigate *nets* by drawing graphs symmetrically on an embedded hyperbolic surface in \(\mathbb{R}^3 \). Then forget about the surface.
- Use special surfaces so that produced graphs are symmetric in \(\mathbb{R}^3 \) \(\implies \mathbb{H}^2 \)
Example of a tiling of the hyperbolic plane and the resulting net
Example of a tiling of the hyperbolic plane and the resulting net
Example of a tiling of the hyperbolic plane and the resulting net

Figure: Hyperbolic Tiling and the corresponding drawing on the diamond surface in \mathbb{R}^3.
Example of a tiling of the hyperbolic plane and the resulting net

Figure: The corresponding net in \mathbb{R}^3, representing a molecular structure grown on the diamond surface with two distinct strands.
Minimal Surfaces

- Locally minimize their surface area relative to the boundary of a small neighbourhood of any point.
- The soap film bounded by a wire is a minimal surface; many equipotential surfaces in nature are (close to) minimal; many membranes found in living tissue.

Figure: Minimal surfaces as soap films between wires left (Paul Nylander) and chips right
Minimal Surfaces

- Locally minimize their surface area relative to the boundary of a small neighbourhood of any point.
- The soap film bounded by a wire is a minimal surface; many equipotential surfaces in nature are (close to) minimal; many membranes found in living tissue.

Figure: Minimal surfaces as soap films between wires left (Paul Nylander) and chips right.
Minimal Surfaces

- Locally minimize their surface area relative to the boundary of a small neighbourhood of any point.
- The soap film bounded by a wire is a minimal surface; many equipotential surfaces in nature are (close to) minimal; many membranes found in living tissue.
Minimal Surfaces

- Locally minimize their surface area relative to the boundary of a small neighbourhood of any point.
- The soap film bounded by a wire is a minimal surface; many equipotential surfaces in nature are (close to) minimal; many membranes found in living tissue.

Figure: Minimal surfaces as soap films between wires left (Paul Nylander) and chips right.
Minimal Surfaces

- Locally minimize their surface area relative to the boundary of a small neighbourhood of any point.

- The soap film bounded by a wire is a minimal surface; many equipotential surfaces in nature are (close to) minimal; many membranes found in living tissue.

Figure: Minimal surfaces as soap films between wires left (Paul Nylander) and chips right
Minimal Surfaces

- Locally minimize their surface area relative to the boundary of a small neighbourhood of any point.
- The soap film bounded by a wire is a minimal surface; many equipotential surfaces in nature are (close to) minimal; many membranes found in living tissue.

Figure: Minimal surfaces as soap films between wires left (Paul Nylander) and chips right
Triply periodic minimal surfaces (TPMS)
Triply periodic minimal surfaces (TPMS)

- TPMS such as the Gyroid, the diamond or the primitive surface are particularly important in nature.
 - Minimize various energies and complexity.
Triply periodic minimal surfaces (TPMS)

- TPMS such as the Gyroid, the diamond or the primitive surface are particularly important in nature.
 - Minimize various energies and complexity.
Triply periodic minimal surfaces (TPMS)

- TPMS such as the Gyroid, the diamond or the primitive surface are particularly important in nature.
- Minimize various energies and complexity.

Triply periodic minimal surfaces

Minimize various energies and complexity.
Triply periodic minimal surfaces (TPMS)

- TPMS such as the Gyroid, the diamond or the primitive surface are particularly important in nature.
 - Minimize various energies and complexity.
Triply periodic minimal surfaces (TPMS)

- TPMS such as the Gyroid, the diamond or the primitive surface are particularly important in nature.
 - Minimize various energies and complexity.

- The translations are a result of more refined symmetries.
- These symmetries yield a hyperbolic orbifold (∗246).
Central definition - Orbifolds

Definition - developable orbifolds for equivariant tiling theory

Let $X = \mathbb{H}^2, \mathbb{E}^2$ and $\Gamma \subset \text{Iso}(X)$ discrete. The set of data (X, Γ) associated with the quotient map $\pi : X \to X/\Gamma$ is a (metric) orbifold.

Figure: Hyperbolic and Euclidean Developable Orbifolds
Central definition - Orbifolds

Definition - developable orbifolds for equivariant tiling theory

Let $X = \mathbb{H}^2, \mathbb{E}^2$ and $\Gamma \subset \text{Iso}(X)$ discrete. The set of data (X, Γ) associated with the quotient map $\pi : X \to X/\Gamma$ is a (metric) orbifold.

Figure: Hyperbolic and Euclidean Developable Orbifolds
Central definition - Orbifolds

Definition - developable orbifolds for equivariant tiling theory

Let $X = \mathbb{H}^2, \mathbb{E}^2$ and $\Gamma \subset \text{Iso}(X)$ discrete. The set of data (X, Γ) associated with the quotient map $\pi : X \to X/\Gamma$ is a (metric) orbifold.
Central definition - Orbifolds

Definition - developable orbifolds for equivariant tiling theory

Let $\mathbb{X} = \mathbb{H}^2, \mathbb{E}^2$ and $\Gamma \subset \text{Iso}(\mathbb{X})$ discrete. The set of data (\mathbb{X}, Γ) associated with the quotient map $\pi : \mathbb{X} \to \mathbb{X}/\Gamma$ is a (metric) orbifold.

Figure: Hyperbolic and Euclidean Developable Orbifolds
Take-Home Message I

- Graphs in \mathbb{R}^3 can be studied (effectively) by exploring graphs on TPMS.
- These are covered by the hyperbolic plane \mathbb{H}^2.
- Prominent TPMS exhibit a high degree of symmetry.
- Orbifolds are generalisations of surfaces that account for symmetries.
- Orbifolds with quotient space of finite area are determined, up to homeomorphism, by the isomorphism class of their symmetry group.
Take-Home Message I

- Graphs in \mathbb{R}^3 can be studied (effectively) by exploring graphs on TPMS.
- These are covered by the hyperbolic plane \mathbb{H}^2.
- Prominent TPMS exhibit a high degree of symmetry.
- Orbifolds are generalisations of surfaces that account for symmetries.
- Orbifolds with quotient space of finite area are determined, up to homeomorphism, by the isomorphism class of their symmetry group.
Take-Home Message I

- Graphs in \mathbb{R}^3 can be studied (effectively) by exploring graphs on TPMS.
- These are covered by the hyperbolic plane \mathbb{H}^2.
- Prominent TPMS exhibit a high degree of symmetry.
- Orbifolds are generalisations of surfaces that account for symmetries.
- Orbifolds with quotient space of finite area are determined, up to homeomorphism, by the isomorphism class of their symmetry group.
Take-Home Message I

- Graphs in \mathbb{R}^3 can be studied (effectively) by exploring graphs on TPMS.
- These are covered by the hyperbolic plane \mathbb{H}^2.
- Prominent TPMS exhibit a high degree of symmetry.
- Orbifolds are generalisations of surfaces that account for symmetries.
- Orbifolds with quotient space of finite area are determined, up to homeomorphism, by the isomorphism class of their symmetry group.
Take-Home Message I

- Graphs in \mathbb{R}^3 can be studied (effectively) by exploring graphs on TPMS
- These are covered by the hyperbolic plane \mathbb{H}^2.
- Prominent TPMS exhibit a high degree of symmetry.
- Orbifolds are generalisations of surfaces that account for symmetries.
- Orbifolds with quotient space of finite area are determined, up to homeomorphism, by the isomorphism class of their symmetry group.
Take-Home Message I

- Graphs in \mathbb{R}^3 can be studied (effectively) by exploring graphs on TPMS.
- These are covered by the hyperbolic plane \mathbb{H}^2.
- Prominent TPMS exhibit a high degree of symmetry.
- Orbifolds are generalisations of surfaces that account for symmetries.
- Orbifolds with quotient space of finite area are determined, up to homeomorphism, by the isomorphism class of their symmetry group.
Tilings

A tiling of a metric space X is a partitioning of X into closed and bounded disks such that their interiors are mutually disjoint. For simplicity, we consider each edge orbit to be coloured with a different colour, for distinguishability.
Tilings

A tiling of a metric space X is a partitioning of X into closed and bounded disks such that their interiors are mutually disjoint. For simplicity, we consider each edge orbit to be coloured with a different colour, for distinguishability.
Tilings

A tiling of a metric space X is a partitioning of X into closed and bounded disks such that their interiors are mutually disjoint. For simplicity, we consider each edge orbit to be coloured with a different colour, for distinguishability.
Tilings

A tiling of a metric space X is a partitioning of X into closed and bounded disks such that their interiors are mutually disjoint. For simplicity, we consider each edge orbit to be coloured with a different colour, for distinguishability.
Tilings

A tiling of a metric space X is a partitioning of X into closed and bounded disks such that their interiors are mutually disjoint. For simplicity, we consider each edge orbit to be coloured with a different colour, for distinguishability.
Tilings

A tiling of a metric space X is a partitioning of X into closed and bounded disks such that their interiors are mutually disjoint. For simplicity, we consider each edge orbit to be coloured with a different colour, for distinguishability.
Isotopic tiling theory

- Observation: One can construct tilings with a combinatorial description depending on given special generators of a symmetry group.
- Description only defines tiling up to symmetry preserving isotopies.
Isotopic tiling theory

Observation: One can construct tilings with a combinatorial description depending on given special generators of a symmetry group.

Description only defines tiling up to symmetry preserving isotopies.
Isotopic tiling theory

Observation: One can construct tilings with a combinatorial description depending on given special generators of a symmetry group.

Description only defines tiling up to symmetry preserving isotopies.

Figure: Tilings with symmetry group 22222 and same combinatorial structure.
Isotopic tiling theory

- Observation: One can construct tilings with a combinatorial description depending on given special generators of a symmetry group.
- Description only defines tiling up to symmetry preserving isotopies.

Figure: Tilings with symmetry group 22222 and same combinatorial structure.
Isotopic tiling theory

- Observation: One can construct tilings with a combinatorial description depending on given special generators of a symmetry group.
- Description only defines tiling up to symmetry preserving isotopies.

Figure: Tilings with symmetry group 22222 and same combinatorial structure.
Isotopic tiling theory

- Observation: One can construct tilings with a combinatorial description depending on given special generators of a symmetry group.
- Description only defines tiling up to symmetry preserving isotopies.

Figure: Tilings with symmetry group 22222 and same combinatorial structure.
Central definition - Mapping class groups

Mapping class group (MCG)

The MCG of a surface S is defined as $\text{Mod}(S) = \text{Diff}^+(S)/\text{Diff}_0(S)$.
Central definition - Mapping class groups

Mapping class group (MCG)

The MCG of a surface S is defined as $\text{Mod}(S) = \text{Diff}^+(S)/\text{Diff}_0(S)$.
Central definition - Mapping class groups

Mapping class group (MCG)

The MCG of a surface S is defined as $\text{Mod}(S) = \text{Diff}^+(S)/\text{Diff}_0(S)$.

- Simple example of a nontrivial mapping class:
Central definition - Mapping class groups

Mapping class group (MCG)

The MCG of a surface S is defined as $\text{Mod}(S) = \text{Diff}^+(S)/\text{Diff}_0(S)$.

- Simple example of a nontrivial mapping class: Dehn twist of green curve around simple closed red curve

(a) Twist on an annulus.

Figure: Two views on the effect of a right Dehn twist.
Central definition - Mapping class groups

Mapping class group (MCG)

The MCG of a surface S is defined as $\text{Mod}(S) = \frac{\text{Diff}^+(S)}{\text{Diff}_0(S)}$.

- Simple example of a nontrivial mapping class: Dehn twist of green curve around simple closed red curve

(a) Twist on an annulus.

(b) Twist on a cylinder.

Figure: Two views on the effect of a right Dehn twist.
Central theoretical result for enumerations

Generalized Dehn-Nielsen-Baer theorem (K.)

The MCG of a finite volume hyperbolic orbifold \mathcal{O} with fundamental group Γ is isomorphic to a certain subgroup of $\text{Out}(\Gamma)$, the group of outer automorphisms.
Central theoretical result for enumerations

Generalized Dehn-Nielsen-Baer theorem (K.)

The MCG of a finite volume hyperbolic orbifold \mathcal{O} with fundamental group Γ is isomorphic to a certain subgroup of $\text{Out}(\Gamma)$, the group of outer automorphisms.

- This means that the MCG $\text{Mod}^{\pm}(\mathcal{O})$ corresponds to special sets of generators of Γ.
Algorithm for enumerations

Input

- Symmetry group Γ of interest
- Highest complexity of the combinatorial tiling class up to which to enumerate
- Presentation of MCG of the orbifold associated to Γ and word length up to which we enumerate the tilings as representatives of MCG elements
Algorithm for enumerations

Input

- Symmetry group Γ of interest
- Highest complexity of the combinatorial tiling class up to which to enumerate
- Presentation of MCG of the orbifold associated to Γ and word length up to which we enumerate the tilings as representatives of MCG elements
Algorithm for enumerations

Input

- Symmetry group Γ of interest
- Highest complexity of the combinatorial tiling class up to which to enumerate
- Presentation of MCG of the orbifold associated to Γ and word length up to which we enumerate the tilings as representatives of MCG elements
Algorithm for enumerations

Input

- Symmetry group Γ of interest
- Highest complexity of the combinatorial tiling class up to which to enumerate
- Presentation of MCG of the orbifold associated to Γ and word length up to which we enumerate the tilings as representatives of MCG elements
Algorithm for enumerations

Input
- Symmetry group Γ of interest
- Highest complexity of the combinatorial tiling class up to which to enumerate
- Presentation of MCG of the orbifold associated to Γ and word length up to which we enumerate the tilings as representatives of MCG elements

Output
- List of combinatorial tiling classes, represented as a colored graph (D-symbol).
- List of sets of generators of Γ as isometries
- List of representatives of the corresponding isotopy classes
Algorithm for enumerations

Input
- Symmetry group Γ of interest
- Highest complexity of the combinatorial tiling class up to which to enumerate
- Presentation of MCG of the orbifold associated to Γ and word length up to which we enumerate the tilings as representatives of MCG elements

Output
- List of combinatorial tiling classes, represented as a colored graph (D-symbol).
- List of sets of generators of Γ as isometries
- List of representatives of the corresponding isotopy classes
Algorithm for enumerations

Input
- Symmetry group Γ of interest
- Highest complexity of the combinatorial tiling class up to which to enumerate
- Presentation of MCG of the orbifold associated to Γ and word length up to which we enumerate the tilings as representatives of MCG elements

Output
- List of combinatorial tiling classes, represented as a colored graph (D-symbol).
- List of sets of generators of Γ as isometries
- List of representatives of the corresponding isotopy classes
Algorithm for enumerations

Input
- Symmetry group Γ of interest
- Highest complexity of the combinatorial tiling class up to which to enumerate
- Presentation of MCG of the orbifold associated to Γ and word length up to which we enumerate the tilings as representatives of MCG elements

Output
- List of combinatorial tiling classes, represented as a colored graph (D-symbol).
- List of sets of generators of Γ as isometries
- List of representatives of the corresponding isotopy classes
Main obstacles for enumerations of isotopy classes of tilings onto TPMS

For (useful) implementations of enumerations of tilings in \mathbb{H}^2, we need:

- Explicit (and nice) action of MCG on sets of generators
- Combinatorial description of tiling in terms of generators for symmetry group
Main obstacles for enumerations of isotopy classes of tilings onto TPMS

For (useful) implementations of enumerations of tilings in \mathbb{H}^2, we need:

- Explicit (and nice) action of MCG on sets of generators
- Combinatorial description of tiling in terms of generators for symmetry group
Main obstacles for enumerations of isotopy classes of tilings onto TPMS

For (useful) implementations of enumerations of tilings in \mathbb{H}^2, we need:

- Explicit (and nice) action of MCG on sets of generators
- Combinatorial description of tiling in terms of generators for symmetry group
Main obstacles for enumerations of isotopy classes of tilings onto TPMS

For (useful) implementations of enumerations of tilings in \mathbb{H}^2, we need:

▶ Explicit (and nice) action of MCG on sets of generators
▶ Combinatorial description of tiling in terms of generators for symmetry group

Figure: Two inverse twists applied to the tilings with symmetry group 2224 on the left.
Main obstacles for enumerations of isotopy classes of tilings onto TPMS

For (useful) implementations of enumerations of tilings in \mathbb{H}^2, we need:

- Explicit (and nice) action of MCG on sets of generators
- Combinatorial description of tiling in terms of generators for symmetry group

Figure: Two inverse twists applied to the tilings with symmetry group 2224 on the left.
Main obstacles for enumerations of isotopy classes of tilings onto TPMS

For (useful) implementations of enumerations of tilings in \mathbb{H}^2, we need:

- Explicit (and nice) action of MCG on sets of generators
- Combinatorial description of tiling in terms of generators for symmetry group

Figure: Two inverse twists applied to the tilings with symmetry group 2224 on the left.
Main obstacles for enumerations of isotopy classes of tilings onto TPMS

Furthermore, we require:

- Derivations of presentations of MCGs
- Algorithm for word problems of MCGs
- Data structure for tilings
Main obstacles for enumerations of isotopy classes of tilings onto TPMS

Furthermore, we require:

- Derivations of presentations of MCGs
- Algorithm for word problems of MCGs
- Data structure for tilings
Main obstacles for enumerations of isotopy classes of tilings onto TPMS

Furthermore, we require:

- Derivations of presentations of MCGs
- Algorithm for word problems of MCGs
- Data structure for tilings
Main obstacles for enumerations of isotopy classes of tilings onto TPMS

Furthermore, we require:

- Derivations of presentations of MCGs
- Algorithm for word problems of MCGs
- Data structure for tilings
Main obstacles for enumerations of isotopy classes of tilings onto TPMS

Furthermore, we require:

- Derivations of presentations of MCGs
- Algorithm for word problems of MCGs
- Data structure for tilings

For symmetry groups generated by rotational symmetries in \mathbb{H}^2, these problems can be solved explicitly, with

- A rather lengthy presentation of the MCG in terms of 'half-twists'.
- Using the package KBmag for the programming language GAP, which provides experimental algorithms.
- By connecting the rotational centers for the generators with inserted points according to an appropriate adjacency matrix.
Main obstacles for enumerations of isotopy classes of tilings onto TPMS

Furthermore, we require:

- Derivations of presentations of MCGs
- Algorithm for word problems of MCGs
- Data structure for tilings

For symmetry groups generated by rotational symmetries in \mathbb{H}^2, these problems can be solved explicitly, with

- A rather lengthy presentation of the MCG in terms of 'half-twists'.
- Using the package KBmag for the programming language GAP, which provides experimental algorithms.
- By connecting the rotational centers for the generators with inserted points according to an appropriate adjacency matrix.
Main obstacles for enumerations of isotopy classes of tilings onto TPMS

Furthermore, we require:

- Derivations of presentations of MCGs
- Algorithm for word problems of MCGs
- Data structure for tilings

For symmetry groups generated by rotational symmetries in \(\mathbb{H}^2 \), these problems can be solved explicitly, with

- A rather lengthy presentation of the MCG in terms of 'half-twists'.
- Using the package KBmag for the programming language GAP, which provides experimental algorithms.

- By connecting the rotational centers for the generators with inserted points according to an appropriate adjacency matrix.
Main obstacles for enumerations of isotopy classes of tilings onto TPMS

Furthermore, we require:

- Derivations of presentations of MCGs
- Algorithm for word problems of MCGs
- Data structure for tilings

For symmetry groups generated by rotational symmetries in \mathbb{H}^2, these problems can be solved explicitly, with

- A rather lengthy presentation of the MCG in terms of 'half-twists'.
- Using the package KBmag for the programming language GAP, which provides experimental algorithms.
- By connecting the rotational centers for the generators with inserted points according to an appropriate adjacency matrix.
Final Take-Home Message and Summary

- The mapping class group generates different decorations of a surface or orbifold starting from a given one.
- The MCG is very complicated in general, but has a nice set of generators.
- The complexity ordering for isotopy classes of tilings, given nice generators for the MCG, is ‘in line with our intuition’.
- One can overcome most computational challenges for rotational symmetry groups.
- The enumeration of isotopy classes of symmetric graph embeddings is feasible.
- Potential uses include systematically checking structures for certain physical properties, for possible synthetic materials.
Final Take-Home Message and Summary

- The mapping class group generates different decorations of a surface or orbifold starting from a given one.
- The MCG is very complicated in general, but has a nice set of generators.
- The complexity ordering for isotopy classes of tilings, given nice generators for the MCG, is ‘in line with our intuition’.
- One can overcome most computational challenges for rotational symmetry groups.
- The enumeration of isotopy classes of symmetric graph embeddings is feasible.
- Potential uses include systematically checking structures for certain physical properties, for possible synthetic materials.
Final Take-Home Message and Summary

- The mapping class group generates different decorations of a surface or orbifold starting from a given one.
- The MCG is very complicated in general, but has a nice set of generators.
- The complexity ordering for isotopy classes of tilings, given nice generators for the MCG, is ‘in line with our intuition’.
- One can overcome most computational challenges for rotational symmetry groups.
- The enumeration of isotopy classes of symmetric graph embeddings is feasible.
- Potential uses include systematically checking structures for certain physical properties, for possible synthetic materials.
Final Take-Home Message and Summary

- The mapping class group generates different decorations of a surface or orbifold starting from a given one.
- The MCG is very complicated in general, but has a nice set of generators.
- The complexity ordering for isotopy classes of tilings, given nice generators for the MCG, is ‘in line with our intuition’.
- One can overcome most computational challenges for rotational symmetry groups.
- The enumeration of isotopy classes of symmetric graph embeddings is feasible.
- Potential uses include systematically checking structures for certain physical properties, for possible synthetic materials.
Final Take-Home Message and Summary

- The mapping class group generates different decorations of a surface or orbifold starting from a given one.
- The MCG is very complicated in general, but has a nice set of generators.
- The complexity ordering for isotopy classes of tilings, given nice generators for the MCG, is ‘in line with our intuition’.
- One can overcome most computational challenges for rotational symmetry groups.
- The enumeration of isotopy classes of symmetric graph embeddings is feasible.
- Potential uses include systematically checking structures for certain physical properties, for possible synthetic materials.
Final Take-Home Message and Summary

- The mapping class group generates different decorations of a surface or orbifold starting from a given one.
- The MCG is very complicated in general, but has a nice set of generators.
- The complexity ordering for isotopy classes of tilings, given nice generators for the MCG, is ‘in line with our intuition’.
- One can overcome most computational challenges for rotational symmetry groups.
- The enumeration of isotopy classes of symmetric graph embeddings is feasible.
- Potential uses include systematically checking structures for certain physical properties, for possible synthetic materials.
Final Take-Home Message and Summary

- The mapping class group generates different decorations of a surface or orbifold starting from a given one.
- The MCG is very complicated in general, but has a nice set of generators.
- The complexity ordering for isotopy classes of tilings, given nice generators for the MCG, is ‘in line with our intuition’.
- One can overcome most computational challenges for rotational symmetry groups.
- The enumeration of isotopy classes of symmetric graph embeddings is feasible.
- Potential uses include systematically checking structures for certain physical properties, for possible synthetic materials.
Different isotopy classes of tilings and resulting structures in \mathbb{R}^3
Thank you for your attention
Thank you for your attention

Thanks to my collaborator
Myfanwy Evans, Technical University Berlin