Enumerating tilings of triply-periodic minimal surfaces

Benedikt Kolbe and Myfanwy Evans

INRIA, Nancy - Grand Est and Technical University Berlin

benedikt.kolbe@inria.fr

Overview

Preliminaries

Motivation

Minimal surfaces and orbifolds

Triply periodic minimal surfaces Orbifolds

Enumerating isotopy classes of tilings

Isotopic tiling theory Theoretical results Algorithm Implementations

Conclusion

Graphs in nature and materials science

ightharpoonup Chemical structures are often modelled as (locally finite, simple) graphs in \mathbb{R}^3 .

Graphs in nature and materials science

ightharpoonup Chemical structures are often modelled as (locally finite, simple) graphs in \mathbb{R}^3 .

Graphs in nature and materials science

 \triangleright Chemical structures are often modelled as (locally finite, simple) graphs in \mathbb{R}^3 .

Sodalite, an aluminosilicate, a real Zeolite in \mathbb{R}^3 . Image courtesy of Stephen Hyde.

- ightharpoonup Chemical structures are often modelled as (locally finite, simple) graphs in \mathbb{R}^3 .
- Many molecular structures grow in restricted environments, modelled as neighbourhoods of surfaces of CMC or minimal surfaces.

- ightharpoonup Chemical structures are often modelled as (locally finite, simple) graphs in \mathbb{R}^3 .
- ► Many molecular structures grow in restricted environments, modelled as neighbourhoods of surfaces of CMC or minimal surfaces.

- ightharpoonup Chemical structures are often modelled as (locally finite, simple) graphs in \mathbb{R}^3 .
- Many molecular structures grow in restricted environments, modelled as neighbourhoods of surfaces of CMC or minimal surfaces.

- \triangleright Chemical structures are often modelled as (locally finite, simple) graphs in \mathbb{R}^3 .
- Many molecular structures grow in restricted environments, modelled as neighbourhoods of surfaces of CMC or minimal surfaces.

Figure: Sodalite on the primitive surface

- ▶ Study entangled graphs by explicit constructions of graphs on surfaces.
- ▶ The EPINET approach: Investigate *nets* by drawing graphs symmetrically on an embedded hyperbolic surface in \mathbb{R}^3 . Then forget about the surface.
- \blacktriangleright Use special surfaces so that produced graphs are symmetric in $\mathbb{R}^3 \implies \mathbb{H}^2$

Preliminaries

- ▶ Study entangled graphs by explicit constructions of graphs on surfaces.
- The EPINET approach: Investigate *nets* by drawing graphs symmetrically on an embedded hyperbolic surface in \mathbb{R}^3 . Then forget about the surface.
- ightharpoons Use special surfaces so that produced graphs are symmetric in $\mathbb{R}^3 \implies \mathbb{H}^2$

- Study entangled graphs by explicit constructions of graphs on surfaces.
- ▶ The EPINET approach: Investigate *nets* by drawing graphs symmetrically on an embedded hyperbolic surface in \mathbb{R}^3 . Then forget about the surface.

 \triangleright Use special surfaces so that produced graphs are symmetric in $\mathbb{R}^3 \implies \mathbb{H}^2$

- ▶ Study entangled graphs by explicit constructions of graphs on surfaces.
- ▶ The EPINET approach: Investigate nets by drawing graphs symmetrically on an embedded hyperbolic surface in \mathbb{R}^3 . Then forget about the surface.

- Study entangled graphs by explicit constructions of graphs on surfaces.
- ▶ The EPINET approach: Investigate *nets* by drawing graphs symmetrically on an embedded hyperbolic surface in \mathbb{R}^3 . Then forget about the surface.
- ightharpoonup Use special surfaces so that produced graphs are symmetric in $\mathbb{R}^3 \implies \mathbb{H}^2$

- ▶ Study entangled graphs by explicit constructions of graphs on surfaces.
- ▶ The EPINET approach: Investigate *nets* by drawing graphs symmetrically on an embedded hyperbolic surface in \mathbb{R}^3 . Then forget about the surface.
- ightharpoonup Use special surfaces so that produced graphs are symmetric in $\mathbb{R}^3 \implies \mathbb{H}^2$

- ▶ Study entangled graphs by explicit constructions of graphs on surfaces.
- ▶ The EPINET approach: Investigate *nets* by drawing graphs symmetrically on an embedded hyperbolic surface in \mathbb{R}^3 . Then forget about the surface.
- lacktriangle Use special surfaces so that produced graphs are symmetric in $\mathbb{R}^3 \implies \mathbb{H}^2$

- ▶ Study entangled graphs by explicit constructions of graphs on surfaces.
- ▶ The EPINET approach: Investigate nets by drawing graphs symmetrically on an embedded hyperbolic surface in \mathbb{R}^3 . Then forget about the surface.
- ightharpoonup Use special surfaces so that produced graphs are symmetric in $\mathbb{R}^3 \implies \mathbb{H}^2$

Figure: Hyperbolic Tiling and the corresponding drawing on the diamond surface in \mathbb{R}^3 .

Figure: The corresponding net in \mathbb{R}^3 , representing a molecular structure grown on the diamond surface with two distinct strands.

- Locally minimize their surface area relative to the boundary of a small

Figure: Minimal surfaces as soap films between wires left (Paul Nylander), and chips right a soap

- Locally minimize their surface area relative to the boundary of a small neighbourhood of any point.
- The soap film bounded by a wire is a minimal surface; many equipotential surfaces in nature are (close to) minimal; many membranes found in living tissue.

Figure: Minimal surfaces as soap films between wires left (Paul Nylander), and chips right a soap

8 of 21

- ► Locally minimize their surface area relative to the boundary of a small neighbourhood of any point.
- ► The soap film bounded by a wire is a minimal surface; many equipotential surfaces in nature are (close to) minimal; many membranes found in living tissue.

Figure: Minimal surfaces as soap films between wires left (Paul Nylander) and chips right 💂 🥱 🔊

- ► Locally minimize their surface area relative to the boundary of a small neighbourhood of any point.
- ► The soap film bounded by a wire is a minimal surface; many equipotential surfaces in nature are (close to) minimal; many membranes found in living tissue.

Figure: Minimal surfaces as soap films between wires left (Paul Nylander) and chips right 💂 🥱 🔊

- ► Locally minimize their surface area relative to the boundary of a small neighbourhood of any point.
- ► The soap film bounded by a wire is a minimal surface; many equipotential surfaces in nature are (close to) minimal; many membranes found in living tissue.

Figure: Minimal surfaces as soap films between wires left (Paul Nylander) and chips right

- ► Locally minimize their surface area relative to the boundary of a small neighbourhood of any point.
- ► The soap film bounded by a wire is a minimal surface; many equipotential surfaces in nature are (close to) minimal; many membranes found in living tissue.

Figure: Minimal surfaces as soap films between wires left (Paul Nylander) and chips right

Triply periodic minimal surfaces

- ► TPMS such as the Gyroid, the diamond or the primitive surface are particularly important in nature.
 - Minimize various energies and complexity.

Triply periodic minimal surfaces

- ► TPMS such as the Gyroid, the diamond or the primitive surface are particularly important in nature.
 - Minimize various energies and complexity.

Triply periodic minimal surfaces

- ► TPMS such as the Gyroid, the diamond or the primitive surface are particularly important in nature.
 - Minimize various energies and complexity.

- ► TPMS such as the Gyroid, the diamond or the primitive surface are particularly important in nature.
 - ► Minimize various energies and complexity.

- ► TPMS such as the Gyroid, the diamond or the primitive surface are particularly important in nature.
 - ► Minimize various energies and complexity.

- ▶ The translations are a result of more refined symmetries.
- ► These symmetries yield a hyperbolic orbifold (*246).

Central definition - Orbifolds

Definition - developable orbifolds for equivariant tiling theory Let $X = \mathbb{H}^2$, \mathbb{E}^2 and $\Gamma \subset \mathrm{Iso}(X)$ discrete. The set of data (X,Γ) associated with the quotient map $\pi: X \to X/\Gamma$ is a (metric) orbifold.

Figure: Hyperbolic and Euclidean Developable Orbifolds

Central definition - Orbifolds

Definition - developable orbifolds for equivariant tiling theory

Let $X = \mathbb{H}^2$, \mathbb{E}^2 and $\Gamma \subset Iso(X)$ discrete. The set of data (X, Γ) associated with the quotient map $\pi : X \to X/\Gamma$ is a (metric) orbifold.

Figure: Hyperbolic and Euclidean Developable Orbifolds

Central definition - Orbifolds

Definition - developable orbifolds for equivariant tiling theory

Let $X = \mathbb{H}^2$, \mathbb{E}^2 and $\Gamma \subset Iso(X)$ discrete. The set of data (X, Γ) associated with the quotient map $\pi : X \to X/\Gamma$ is a (metric) orbifold.

Figure: Hyperbolic and Euclidean Developable Orbifolds

Central definition - Orbifolds

Definition - developable orbifolds for equivariant tiling theory

Let $X = \mathbb{H}^2, \mathbb{E}^2$ and $\Gamma \subset Iso(X)$ discrete. The set of data (X, Γ) associated with the quotient map $\pi : X \to X/\Gamma$ is a (metric) orbifold.

Figure: Hyperbolic and Euclidean Developable Orbifolds

- ightharpoonup Graphs in \mathbb{R}^3 can be studied (effectively) by exploring graphs on TPMS
- ▶ These are covered by the hyperbolic plane \mathbb{H}^2 .
- Prominent TPMS exhibit a high degree of symmetry.
- Orbifolds are generalisations of surfaces that account for symmetries
- Orbifolds with quotient space of finite area are determined, up to homeomorphism, by the isomorphism class of their symmetry group

- ightharpoonup Graphs in \mathbb{R}^3 can be studied (effectively) by exploring graphs on TPMS
- ► These are covered by the hyperbolic plane H²
- Prominent TPMS exhibit a high degree of symmetry
- Orbifolds are generalisations of surfaces that account for symmetries
- Orbifolds with quotient space of finite area are determined, up to homeomorphism, by the isomorphism class of their symmetry group

- ightharpoonup Graphs in \mathbb{R}^3 can be studied (effectively) by exploring graphs on TPMS
- ▶ These are covered by the hyperbolic plane \mathbb{H}^2 .
- Prominent TPMS exhibit a high degree of symmetry.
- Orbifolds are generalisations of surfaces that account for symmetries
- Orbifolds with quotient space of finite area are determined, up to homeomorphism, by the isomorphism class of their symmetry group.

- ightharpoonup Graphs in \mathbb{R}^3 can be studied (effectively) by exploring graphs on TPMS
- ▶ These are covered by the hyperbolic plane \mathbb{H}^2 .
- Prominent TPMS exhibit a high degree of symmetry.
- Orbifolds are generalisations of surfaces that account for symmetries
- Orbifolds with quotient space of finite area are determined, up to homeomorphism, by the isomorphism class of their symmetry group.

- ightharpoonup Graphs in \mathbb{R}^3 can be studied (effectively) by exploring graphs on TPMS
- ▶ These are covered by the hyperbolic plane \mathbb{H}^2 .
- Prominent TPMS exhibit a high degree of symmetry.
- Orbifolds are generalisations of surfaces that account for symmetries.
- Orbifolds with quotient space of finite area are determined, up to homeomorphism, by the isomorphism class of their symmetry group

- ightharpoonup Graphs in \mathbb{R}^3 can be studied (effectively) by exploring graphs on TPMS
- ▶ These are covered by the hyperbolic plane \mathbb{H}^2 .
- Prominent TPMS exhibit a high degree of symmetry.
- Orbifolds are generalisations of surfaces that account for symmetries.
- Orbifolds with quotient space of finite area are determined, up to homeomorphism, by the isomorphism class of their symmetry group.

Tiling

Tilings

Tilings

Tilings

Tilings

Tilings

- Observation: One can construct tilings with a combinatorial description depending on given special generators of a symmetry group.
- Description only defines tiling up to symmetry preserving isotopies.

- Observation: One can construct tilings with a combinatorial description depending on given special generators of a symmetry group.
- Description only defines tiling up to symmetry preserving isotopies

Figure: Tilings with symmetry group 22222 and same combinatorial contacture.

- ▶ Observation: One can construct tilings with a combinatorial description depending on given special generators of a symmetry group.
- Description only defines tiling up to symmetry preserving isotopies.

Figure: Tilings with symmetry group 22222 and same combinational content.

- Observation: One can construct tilings with a combinatorial description depending on given special generators of a symmetry group.
- Description only defines tiling up to symmetry preserving isotopies.

Figure: Tilings with symmetry group 22222 and same combinatorial structure.

13 of 21

- Observation: One can construct tilings with a combinatorial description depending on given special generators of a symmetry group.
- Description only defines tiling up to symmetry preserving isotopies.

Figure: Tilings with symmetry group 22222 and same combinatorial structure.

13 of 21

- ▶ Observation: One can construct tilings with a combinatorial description depending on given special generators of a symmetry group.
- Description only defines tiling up to symmetry preserving isotopies.

Figure: Tilings with symmetry group 22222 and same combinatorial structure.

Mapping class group (MCG)

The MCG of a surface S is defined as $Mod(S) = Diff^+(S)/Diff_0(S)$

Mapping class group (MCG)

The MCG of a surface S is defined as $Mod(S) = Diff^+(S)/Diff_0(S)$.

Mapping class group (MCG)

The MCG of a surface S is defined as $Mod(S) = Diff^+(S) / Diff_0(S)$.

► Simple example of a nontrivial mapping class:

Mapping class group (MCG)

The MCG of a surface S is defined as $Mod(S) = Diff^+(S)/Diff_0(S)$.

➤ Simple example of a nontrivial mapping class: Dehn twist of green curve around simple closed red curve

(a) Twist on an annulus.

Figure: Two views on the effect of a right Dehn twist.

Mapping class group (MCG)

The MCG of a surface S is defined as $Mod(S) = Diff^+(S)/Diff_0(S)$.

➤ Simple example of a nontrivial mapping class: Dehn twist of green curve around simple closed red curve

(a) Twist on an annulus.

(b) Twist on a cylinder.

Figure: Two views on the effect of a right Dehn twist.

Central theoretical result for enumerations

Generalized Dehn-Nielsen-Baer theorem (K.)

The MCG of a finite volume hyperbolic orbifold \mathcal{O} with fundamental group Γ is isomorphic to a certain subgroup of Out(Γ), the group of outer automorphisms.

Central theoretical result for enumerations

Generalized Dehn-Nielsen-Baer theorem (K.)

The MCG of a finite volume hyperbolic orbifold \mathcal{O} with fundamental group Γ is isomorphic to a certain subgroup of Out(Γ), the group of outer automorphisms.

This means that the MCG $Mod^{\pm}(\mathcal{O})$ corresponds to special sets of generators of Γ.

Input

- Symmetry group Γ of interest
- ► Highest complexity of the combinatorial tiling class up to which to enumerate
- Presentation of MCG of the orbifold associated to Γ and word length up to which we enumerate the tilings as representatives of MCG elements

Input

- Symmetry group Γ of interest
- ▶ Highest complexity of the combinatorial tiling class up to which to enumerate
- Presentation of MCG of the orbifold associated to Γ and word length up to which we enumerate the tilings as representatives of MCG elements

Input

- Symmetry group Γ of interest
- Highest complexity of the combinatorial tiling class up to which to enumerate
- ightharpoonup Presentation of MCG of the orbifold associated to Γ and word length up to which we enumerate the tilings as representatives of MCG elements

Input

- Symmetry group Γ of interest
- ▶ Highest complexity of the combinatorial tiling class up to which to enumerate
- Presentation of MCG of the orbifold associated to Γ and word length up to which we enumerate the tilings as representatives of MCG elements

- List of combinatorial tiling classes, represented as a colored graph (D-symbol).
- List of sets of generators of Γ as isometries
- List of representatives of the corresponding isotopy classes

Input

- Symmetry group Γ of interest
- ▶ Highest complexity of the combinatorial tiling class up to which to enumerate
- Presentation of MCG of the orbifold associated to Γ and word length up to which we enumerate the tilings as representatives of MCG elements

- List of combinatorial tiling classes, represented as a colored graph (D-symbol).
- List of sets of generators of Γ as isometries
- List of representatives of the corresponding isotopy classes

Input

- Symmetry group Γ of interest
- Highest complexity of the combinatorial tiling class up to which to enumerate
- Presentation of MCG of the orbifold associated to Γ and word length up to which we enumerate the tilings as representatives of MCG elements

- List of combinatorial tiling classes, represented as a colored graph (D-symbol).
- List of sets of generators of Γ as isometries
- List of representatives of the corresponding isotopy classes

Input

- Symmetry group Γ of interest
- Highest complexity of the combinatorial tiling class up to which to enumerate
- Presentation of MCG of the orbifold associated to Γ and word length up to which we enumerate the tilings as representatives of MCG elements

- List of combinatorial tiling classes, represented as a colored graph (D-symbol).
- List of sets of generators of Γ as isometries
- List of representatives of the corresponding isotopy classes

Main obstacles for enumerations of isotopy classes of tilings onto TPMS

For (useful) implementations of enumerations of tilings in \mathbb{H}^2 , we need:

- Explicit (and nice) action of MCG on sets of generators
- Combinatorial description of tiling in terms of generators for symmetry group

Main obstacles for enumerations of isotopy classes of tilings onto TPMS

For (useful) implementations of enumerations of tilings in \mathbb{H}^2 , we need:

- Explicit (and nice) action of MCG on sets of generators
- Combinatorial description of tiling in terms of generators for symmetry group

For (useful) implementations of enumerations of tilings in \mathbb{H}^2 , we need:

- Explicit (and nice) action of MCG on sets of generators
- Combinatorial description of tiling in terms of generators for symmetry group

For (useful) implementations of enumerations of tilings in \mathbb{H}^2 , we need:

- Explicit (and nice) action of MCG on sets of generators
- Combinatorial description of tiling in terms of generators for symmetry group

Figure: Two inverse twists applied to the tilings with symmetry group 2224 on the left.

For (useful) implementations of enumerations of tilings in \mathbb{H}^2 , we need:

- Explicit (and nice) action of MCG on sets of generators
- ► Combinatorial description of tiling in terms of generators for symmetry group

Figure: Two inverse twists applied to the tilings with symmetry group 2224 on the left.

For (useful) implementations of enumerations of tilings in \mathbb{H}^2 , we need:

- Explicit (and nice) action of MCG on sets of generators
- ► Combinatorial description of tiling in terms of generators for symmetry group

Figure: Two inverse twists applied to the tilings with symmetry group 2224 on the left.

17 of 21

Furthermore, we require

- Derivations of presentations of MCGs
- Algorithm for word problems of MCGs
- Data structure for tilings

Furthermore, we require:

- Derivations of presentations of MCGs
- Algorithm for word problems of MCGs
- Data structure for tilings

Furthermore, we require:

- Derivations of presentations of MCGs
- Algorithm for word problems of MCGs
- Data structure for tilings

Furthermore, we require:

- Derivations of presentations of MCGs
- Algorithm for word problems of MCGs
- Data structure for tilings

Furthermore, we require:

- Derivations of presentations of MCGs
- Algorithm for word problems of MCGs
- Data structure for tilings

- A rather lengthy presentation of the MCG in terms of 'half-twists'.
- ▶ Using the package KBmag for the programming language GAP, which provides experimental algorithms.
- By connecting the rotational centers for the generators with inserted points according to an appropriate adjacency matrix.

Furthermore, we require:

- Derivations of presentations of MCGs
- Algorithm for word problems of MCGs
- Data structure for tilings

- ▶ A rather lengthy presentation of the MCG in terms of 'half-twists'.
- Using the package KBmag for the programming language GAP, which provides experimental algorithms.
- By connecting the rotational centers for the generators with inserted points according to an appropriate adjacency matrix.

Furthermore, we require:

- Derivations of presentations of MCGs
- Algorithm for word problems of MCGs
- Data structure for tilings

- ▶ A rather lengthy presentation of the MCG in terms of 'half-twists'.
- ▶ Using the package KBmag for the programming language GAP, which provides experimental algorithms.
- By connecting the rotational centers for the generators with inserted points according to an appropriate adjacency matrix.

Furthermore, we require:

- Derivations of presentations of MCGs
- Algorithm for word problems of MCGs
- Data structure for tilings

- ▶ A rather lengthy presentation of the MCG in terms of 'half-twists'.
- ▶ Using the package KBmag for the programming language GAP, which provides experimental algorithms.
- ▶ By connecting the rotational centers for the generators with inserted points according to an appropriate adjacency matrix.

- ► The mapping class group generates different decorations of a surface or orbifold starting from a given one.
- ▶ The MCG is very complicated in general, but has a nice set of generators.
- ► The complexity ordering for isotopy classes of tilings, given nice generators for the MCG, is 'in line with our intuition'.
- One can overcome most computational challenges for rotational symmetry groups.
- ▶ The enumeration of isotopy classes of symmetric graph embeddings is feasible.
- Potential uses include systematically checking structures for certain physical properties, for possible synthetic materials.

- The mapping class group generates different decorations of a surface or orbifold starting from a given one.
- The MCG is very complicated in general, but has a nice set of generators.

- Potential uses include systematically checking structures for certain physical

- The mapping class group generates different decorations of a surface or orbifold starting from a given one.
- ▶ The MCG is very complicated in general, but has a nice set of generators.

- Potential uses include systematically checking structures for certain physical

Conclusion

- The mapping class group generates different decorations of a surface or orbifold starting from a given one.
- ▶ The MCG is very complicated in general, but has a nice set of generators.
- ▶ The complexity ordering for isotopy classes of tilings, given nice generators for the MCG, is 'in line with our intuition'.

- Potential uses include systematically checking structures for certain physical

- The mapping class group generates different decorations of a surface or orbifold starting from a given one.
- ▶ The MCG is very complicated in general, but has a nice set of generators.
- ▶ The complexity ordering for isotopy classes of tilings, given nice generators for the MCG, is 'in line with our intuition'.
- One can overcome most computational challenges for rotational symmetry groups.
- Potential uses include systematically checking structures for certain physical

- ► The mapping class group generates different decorations of a surface or orbifold starting from a given one.
- ▶ The MCG is very complicated in general, but has a nice set of generators.
- ► The complexity ordering for isotopy classes of tilings, given nice generators for the MCG, is 'in line with our intuition'.
- One can overcome most computational challenges for rotational symmetry groups.
- ▶ The enumeration of isotopy classes of symmetric graph embeddings is feasible.
- Potential uses include systematically checking structures for certain physical properties, for possible synthetic materials.

- ► The mapping class group generates different decorations of a surface or orbifold starting from a given one.
- ▶ The MCG is very complicated in general, but has a nice set of generators.
- ► The complexity ordering for isotopy classes of tilings, given nice generators for the MCG, is 'in line with our intuition'.
- ▶ One can overcome most computational challenges for rotational symmetry groups.
- ▶ The enumeration of isotopy classes of symmetric graph embeddings is feasible.
- Potential uses include systematically checking structures for certain physical properties, for possible synthetic materials.

Different isotopy classes of tilings and resulting structures in \mathbb{R}^3

Thank you for your attention

21 of 21

Thank you for your attention

Thanks to my collaborator Myfanwy Evans, Technical University Berlin

