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k-Gons

a finite point set S in the plane is

in general position if @ collinear points in S
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k-Gons

a finite point set S in the plane is

in general position if @ collinear points in S

throughout this presentation, every set is in general position
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k-Gons

a k-gon (in S) is the vertex set of a convex k-gon

a finite point set S in the plane is

in general position if @ collinear points in S
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k-Gons

a k-gon (in S) is the vertex set of a convex k-gon

a finite point set S in the plane is

in general position if @ collinear points in S

Theorem (Erdős and Szekeres 1935).

∀ k ∈ N, ∃ a smallest integer ES(k) such that

every set of ES(k) points contains a k-gon.

2



k-Holes

a k-hole (in S) is the vertex set of a convex k-gon

containing no other points of S

5-hole not a 6-hole
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k-Holes

Erdős, 1970’s: For k fixed, does every sufficiently large

point set contain k-holes?

a k-hole (in S) is the vertex set of a convex k-gon

containing no other points of S
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k-Holes

Erdős, 1970’s: For k fixed, does every sufficiently large

point set contain k-holes?

• 10 points ⇒ ∃ 5-hole [Harborth ’78]

• ∃ arbitrarily large point sets with no 7-hole [Horton ’83]

• Sufficiently large point sets ⇒ ∃ 6-hole

[Gerken ’08 and Nicolás ’07, independently]

a k-hole (in S) is the vertex set of a convex k-gon

containing no other points of S

• 3 points ⇒ ∃ 3-hole

• 5 points ⇒ ∃ 4-hole
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Counting k-Holes

• h3(n) and h4(n) both in Θ(n2)

• h6(n) in Ω(n) and O(n2)

• hk(n) = 0 for k ≥ 7

[Gerken ’08, Nicolás ’07]

[Bárány and Füredi ’87, Bárány and Valtr ’04]

hk(n) := minimum # of k-holes among all sets of n points

[Horton ’83]

• h5(n) in Ω(n log4/5 n) and O(n2)

[Aichholzer, Balko, Hackl, Kynčl,

Parada, S., Valtr, and Vogtenhuber ’17]
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Holes in Higher Dimensions

• ∃ d-dimensional Horton sets not containing k-holes for

sufficiently large k = k(d) [Valtr ’92]

• minimum number of empty simplices (d+ 1)-holes)

in n-point set in Rd is in Θ(nd) [Bárány and Füredi ’92]
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Random Point Sets

• Random point sets give the upper bound O(nd)
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Random Point Sets

• Random point sets give the upper bound O(nd)

• EHK
d,k(n) := expected number of k-holes in sets of n

points chosen independently and uniformly at random

from convex shape K ⊂ Rd

6



Random Point Sets

• Random point sets give the upper bound O(nd)

• EHK
d,k(n) := expected number of k-holes in sets of n

points chosen independently and uniformly at random

from convex shape K ⊂ Rd

• Bárány and Füredi (1987) showed

EHK
d,d+1(n) ≤ (2d)2d2

·
(
n

d

)
O(nd)
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Our Results I

• extend bound to larger holes, and even to islands

• I ⊆ S is an island (in S) if S ∩ conv(I) = I

island hole

• “hole = gon + island”

gon
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Our Results I

• extend bound to larger holes, and even to islands

Theorem 1. Let d ≥ 2 and k ≥ d+ 1 be integers,

and let K be a convex body in Rd. If S is a set of n points

chosen uniformly and independently at random from K,
then the expected number of k-islands in S is at most

2d−1·

(
2d2d−1

(
k

bd/2c

))k−d−1

·(k−d)·n(n− 1) · · · (n− k + 2)

(n− k + 1)k−d−1

O(nd)
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Our Results I

• extend bound to larger holes, and even to islands

Theorem 1. Let d ≥ 2 and k ≥ d+ 1 be integers,

and let K be a convex body in Rd. If S is a set of n points

chosen uniformly and independently at random from K,
then the expected number of k-islands in S is at most

2d−1·

(
2d2d−1

(
k

bd/2c

))k−d−1

·(k−d)·n(n− 1) · · · (n− k + 2)

(n− k + 1)k−d−1

• In particular:

∃ sets of n points in Rd with O(nd) k-islands
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Our Results II

• the bound from Theorem 1 is asymptotically optimal,

but the leading constant can be improved for k-holes

• for empty simplices in Rd, we have a better bound

EHK
d,d+1(n) ≤ 2d−1 · d! ·

(
n

d

)
• for 4-holes in R2, we have EHK

2,4(n) ≤ 12n2 + o(n2)
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Our Results II

• the bound from Theorem 1 is asymptotically optimal,

but the leading constant can be improved for k-holes

• for empty simplices in Rd, we have a better bound

EHK
d,d+1(n) ≤ 2d−1 · d! ·

(
n

d

)

• very recently, Reitzner and Temesvari proved an

asymptotically tight bound for EHK
d,d+1(n)

if d = 2 or if d ≥ 3 and K is an ellipsoid

• for 4-holes in R2, we have EHK
2,4(n) ≤ 12n2 + o(n2)
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Our Results III

• In the plane, the O(n2) bound is achieved by

Horton sets [Fabila-Monroy and Huemer ’12]

• however, d-dimensional Horton sets with d > 2

do not give the O(nd) bound on k-islands

• Theorem 1 is the first nontrivial bound for k-islands

in Rd for d > 2
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Our Results III

• In the plane, the O(n2) bound is achieved by

Horton sets [Fabila-Monroy and Huemer ’12]

• however, d-dimensional Horton sets with d > 2

do not give the O(nd) bound on k-islands

Theorem 3. Let d ≥ 2 and let k be fixed positive integers.

Then every d-dimensional Horton set H with n points

contains at least Ω(nmin{2d−1,k}) k-islands.

If k ≤ 3 · 2d−1, then H even contains at least

Ω(nmin{2d−1,k}) k-holes.

• Theorem 1 is the first nontrivial bound for k-islands

in Rd for d > 2
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Our Results IV

• we cannot have O(nd) for k-islands if k is not fixed

Theorem 3. Let d ≥ 2 and let K be a convex body in Rd.

Then, for every set S of n points chosen uniformly and

independently at random from K,

the expected number of islands in S is 2Θ(n(d−1)/(d+1)).
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Idea of the proof of Theorem 1

Rest of this presentation:

idea how to prove the bound O(n2) on the expected

number of k-islands in a set S of n points chosen uniformly

and independently at random from convex body K ⊂ R2

with area λ(K) = 1
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• We prove an O(1/nk−2) bound on the probability that a k-tuple

I = (p1, . . . , pk) determines k-island with 2 additional properties:

◦ (P1) p1, p2, p3 form largest triangle 4 in I

◦ (P2) p4, . . . , p3+a inside 4; rest outside & incr. dist. to 4

p1

p2

p3

p4

p5

p6

p7

p8

p9

p11

p10 p12
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• We prove an O(1/nk−2) bound on the probability that a k-tuple

I = (p1, . . . , pk) determines k-island with 2 additional properties:

◦ (P1) p1, p2, p3 form largest triangle 4 in I
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• We prove an O(1/nk−2) bound on the probability that a k-tuple

I = (p1, . . . , pk) determines k-island with 2 additional properties:

◦ (P1) p1, p2, p3 form largest triangle 4 in I

◦ (P2) p4, . . . , p3+a inside 4; rest outside & incr. dist. to 4

• First, 4 contains precisely p4, . . . , p3+a with prob. O(1/na+1)

⇐⇒ p1, . . . , p3+a form an island in S satisfying (P1) and (P2)
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• We prove an O(1/nk−2) bound on the probability that a k-tuple

I = (p1, . . . , pk) determines k-island with 2 additional properties:

◦ (P1) p1, p2, p3 form largest triangle 4 in I

◦ (P2) p4, . . . , p3+a inside 4; rest outside & incr. dist. to 4

• First, 4 contains precisely p4, . . . , p3+a with prob. O(1/na+1)

p1 p2

p3
height h

distance `

area λ(4) = h`
2
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• We prove an O(1/nk−2) bound on the probability that a k-tuple

I = (p1, . . . , pk) determines k-island with 2 additional properties:

◦ (P1) p1, p2, p3 form largest triangle 4 in I

◦ (P2) p4, . . . , p3+a inside 4; rest outside & incr. dist. to 4

• First, 4 contains precisely p4, . . . , p3+a with prob. O(1/na+1)

p1 p2

p3
height h

distance `

area λ(4) = h`
2

∫ 2/`

h=0

(
h`

2

)a(
1− h`

2

)n−3−a

dh

a points inside n− 3− a outside

because λ(4) ≤ λ(K) = 1
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• We prove an O(1/nk−2) bound on the probability that a k-tuple

I = (p1, . . . , pk) determines k-island with 2 additional properties:

◦ (P1) p1, p2, p3 form largest triangle 4 in I

◦ (P2) p4, . . . , p3+a inside 4; rest outside & incr. dist. to 4

• First, 4 contains precisely p4, . . . , p3+a with prob. O(1/na+1)

∫ 2/`

h=0

(
h`

2

)a(
1− h`

2

)n−3−a

dh

∫ 1

x=0

xa(1− x)n−3−adx =
a! · (n− 3− a)!

(a+ n− 3− a+ 1)!
≈ a! · n(n−3−a)−(n−2)

(Beta-function)
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• We prove an O(1/nk−2) bound on the probability that a k-tuple

I = (p1, . . . , pk) determines k-island with 2 additional properties:

◦ (P1) p1, p2, p3 form largest triangle 4 in I

◦ (P2) p4, . . . , p3+a inside 4; rest outside & incr. dist. to 4

• First, 4 contains precisely p4, . . . , p3+a with prob. O(1/na+1)

• Next, conditioned on the fact that

p1, . . . , pi−1 determines island satisfying (P1) and (P2),

p1, . . . , pi determines island sat. (P1) and (P2) with prob. O(1/n)
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p1 p2

pi

y
z
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p1 p2

pi
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z
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p1 p2

pi

y
z

height
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• We prove an O(1/nk−2) bound on the probability that a k-tuple

I = (p1, . . . , pk) determines k-island with 2 additional properties:

◦ (P1) p1, p2, p3 form largest triangle 4 in I

◦ (P2) p4, . . . , p3+a inside 4; rest outside & incr. dist. to 4

• First, 4 contains precisely p4, . . . , p3+a with prob. O(1/na+1)

• Next, conditioned on the fact that

p1, . . . , pi−1 determines island satisfying (P1) and (P2),

p1, . . . , pi determines island sat. (P1) and (P2) with prob. O(1/n)

• ⇒ I determines k-island with (P1) and (P2) prob. at most

O
(

1/na+1 · (1/n)k−(3+a)
)

= O(1/nk−2)
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• We prove an O(1/nk−2) bound on the probability that a k-tuple

I = (p1, . . . , pk) determines k-island with 2 additional properties:

◦ (P1) p1, p2, p3 form largest triangle 4 in I

◦ (P2) p4, . . . , p3+a inside 4; rest outside & incr. dist. to 4

• First, 4 contains precisely p4, . . . , p3+a with prob. O(1/na+1)

• Next, conditioned on the fact that

p1, . . . , pi−1 determines island satisfying (P1) and (P2),

p1, . . . , pi determines island sat. (P1) and (P2) with prob. O(1/n)

• ⇒ I determines k-island with (P1) and (P2) prob. at most

O
(

1/na+1 · (1/n)k−(3+a)
)

= O(1/nk−2)

• Finally, since there are n · (n− 1) · · · (n− k + 1) possibilities to

select I, we obtain the desired bound O(nk · n2−k) = O(n2) on

the expected number of k-islands in S 12
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