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Abstract
A polygon is called C-oriented if the orientations of all its edges stem from a pre-defined set C.
The schematization of a polygon is then a C-oriented polygon that describes and simplifies the
shape of the input polygon with respect to given hard and soft constraints. We study the case
that the C-oriented polygon needs to contain the input polygon such that it is tight in the sense
that it cannot be shrunk without starting to overlap with the input polygon; we call this a tight C-
hull of the polygon. We restrict the tight C-hull to be a simple polygon. We aim at a tight C-hull
that optimally balances the number of bends, the total edge length and the enclosed area. For
the case that both polygons are rectilinear, we present a dynamic-programming approach that
yields such a tight hull in polynomial time. For arbitrary simple polygons we can use the same
approach to obtain approximate tight rectilinear hulls.

1 Introduction

Schematization has become a common tool for creating simplified visualizations of geometric
objects such as paths, networks and regions. The purpose of this technique is to reduce the
visual complexity of an object by describing its geometry based on a restricted and pre-defined
set C of orientations. Most prominently, it is used for drawing maps of metro systems [10, 12],
in which each edge is drawn either vertically, horizontally or diagonally; those maps became
known as octilinear maps. An important core problem is the simplification of a polyline
such that the result is C-oriented, i.e., each edge of the resulting polyline has an orientation
that stems from C. Finding C-oriented paths between two points in a polygon [1, 6, 9] or
homotopic C-oriented paths between obstacles [11] is closely related.

In this paper, we study the schematization of simple polygons, i.e., for a given simple
polygon P we aim for a C-oriented simple polygon Q that describes the shape of P with
respect to pre-defined hard and soft constraints. For constructing C-oriented polygons several
approaches have been presented, e.g., [2, 3, 4, 5, 7, 8].

We present a novel approach for schematizing a given simple polygon P by a C-oriented
simple polygon Q. In contrast to previous work, we construct Q such that it encloses P .
Further, Q should mimic the shape of P without having too many bends and without using
unnecessarily much space; see Fig. 1. As application we have the schematization of plane
graph drawings in mind whose outer faces we want to roughly sketch. We plan to use our
approach for travel-time maps visualizing the reachable part within a road network (see
Fig. 2) as well as for schematic representations of point sets. In the latter case the idea
is to compute a planar graph representing a geometric spanner of the points and then to
schematize the graph drawing.

We formalize the constraint that the original polygon P must be contained in the
schematized polygon Q and mimics the shape of P in such a way that Q cannot be shrunk
without intersecting P . More specifically, let Q and Q′ be two simple polygons with edges
e1, . . . , en and e′

1, . . . , e
′
n, respectively. Further, let ~v1, . . . , ~vn and ~v′

1, . . . , ~v
′
n be the vectors

that describe the directions and lengths of e1, . . . , en and e′
1, . . . , e

′
n, respectively. The
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Figure 1 A rectilinear polygon P (blue) and a tight rectilinear hull of P (lilac).

s

(a) rectilinear tight hull

s

(b) octilinear tight hull

Figure 2 A sketch of tight hulls enclosing the road network reachable from s within a given time.
The input polygon is the outer face of the reachable sub-graph. We note that we can adapt the
definition of tight hulls to also respect the non-reachable part.

polygon Q′ is a linear distortion of Q if there are positive constants c1, . . . , cn such that
~v′

1 = c1 · ~v1, . . . , ~v
′
n = cn · ~vn, i.e., each edge of Q can be scaled and translated such that the

polygon Q′ results; see Fig. 3a. A simple polygon Q is a tight hull of another polygon P if Q
contains P and there is no linear distortion of Q that lies in Q and contains P . We emphasize
that a tight hull has no self-intersections. In case that edges of Q only use orientations from
C we call Q a tight C-hull of P . Altogether, we formalize the schematization problem as
finding a tight C-hull of P . In the special case that C only contains diagonal, vertical and
horizontal orientations, we call Q a tight octilinear hull of P ; see Fig. 3b. If it only contains
vertical and horizontal orientations, we call Q a tight rectilinear hull of P ; see Fig. 3c.

We aim at a tight C-hull Q of P that is a good compromise between its edge length,
its area and its number of bends, where a vertex is counted as bend if its incident edges
have different orientations. More formally, for α = (α1, α2, α3) with αi ≥ 0 we define the
cost of Q as cost(Q) = α1 · length(Q) + α2 · area(Q) + α3 · bends(Q), where length(Q) is
the total edge length of Q, area(Q) is the area of Q and bends(Q) is the number of bends
of Q. We call a tight C-hull Q of P α-optimal if for any other tight C-hull Q′ of P we have
cost(Q′) ≥ cost(Q). Throughout the rest of this paper we study the special case in which
we aim for a tight rectilinear hull Q of a rectilinear polygon P ; see Fig. 3c. We use this
fairly strong restriction to conduct a proof of concept for schematized tight hulls of polygons.
Finally, we sketch how to use the approach for approximate tight hulls of not necessarily
rectilinear polygons. We are currently extending our approach to more general settings, e.g.,
octilinear orientations as well as arbitrary polygons that are schematized.
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Figure 3 (a) The polygon Q is a linear distortion of the polygon P . For each edge of Q the
according scaling factor is shown. (b) Q is a tight octilinear hull of P . The polygon R is not a tight
hull of P , as Q is a linear distortion of R contained in R. (c) Q is a tight rectilinear hull of P .

P

Figure 4 Example of a maximally subdivided polygon.

2 Structural Properties of Tight Rectilinear Hulls

Let P be a rectilinear polygon with n vertices and let Q be a tight rectilinear hull of P .
We call a rectilinear polygon maximally subdivided if for each vertical and horizontal ray
emanating from any vertex of P into its exterior the first contact point with P is again a
vertex; see Fig. 4. In the remainder, we assume the input polygon P is maximally subdivided.

I Lemma 2.1. Every vertex of Q on P is also a vertex of P .

In the proof of Lemma 2.1 we assume that there is a vertex v of Q on P that is not a
vertex of P ; see Fig. 5. We show that this contradicts the assumptions that P is maximally
subdivided (Fig. 5a) and Q is tight (see Fig. 5b–5c). Thus, Lemma 2.1 shows that we can
build the solution based on the vertices of P . The next lemma shows that Q lies in the
bounding box of P . The proof uses similar arguments as the proof of Lemma 2.1.

I Lemma 2.2. The bounding box B of P is a tight rectilinear hull and any other tight
rectilinear hull of P is contained in B.

In the following we describe how any tight rectilinear hull Q can be successively derived
from the bounding box B. Figuratively, this process can be understood as carving Q out of B.
More precisely, we obtain Q from B by successively refining the edges of B by replacing them
with more and more complex polylines. As basic building block for this replacement procedure
we use L-shaped polylines, which we call bridges. More specifically, a rectilinear polyline B
is a bridge of P if B starts and ends at vertices of P and B can be partitioned into a prefix
and a (possibly empty) suffix such that the edges of the prefix have the same orientation and
the edges of the suffix have the same orientation. Hence, each bridge corresponds to a line
segment or two incident line segments forming an “L”; see Fig. 6. The region enclosed by B
and the polyline of P connecting the same vertices as B is the bag of B. We observe that B
may consist of multiple regions and have multiple edges with P in common; see Fig. 6c.
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Figure 5 Illustration of the proof of Lemma 2.1. (a) At the end point of e1 the polygon P has a
vertex. (b)–(c) The edges e1 and e3 can be scaled such that Q shrinks but contains P .
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Figure 6 Examples of rectlinear polylines (green) forming bridges of P (blue).

I Lemma 2.3. Every tight rectilinear hull of P can be partitioned into a sequence of bridges.

The bounding box B of P can be partitioned into four bridges B1, B2, B3 and B4 such that
they contain the top-left, top-right, bottom-right and bottom-left vertices of B, respectively;
see Fig. 7. The starting and end points of the four bridges lie on Q such that they split Q
into four polylines Q1, Q2, Q3 and Q4 that are contained in the bags of B1, B2, B3 and B4,
respectively. Our approach is based on the idea that each bridge Bi defines a sub-instance Ii

that is solved independently from the others. The sub-instance Ii is defined by Bi and its
bag; see Fig. 7c.

We now sketch a recursive procedure that creates Qi from Bi. In general we can describe
this setting by a bridge B that contains a subpath H of Qi; when the recursion starts we
have B = Bi and H = Qi. In the base case of the recursion the bridge B equals H. In the
general case we recursively describe H by bridges; see Fig. 8. More specifically for B we can
find up to three connected bridges C1, C2, and C3 in the bag of B such that the polyline
that is defined by these bridges connects the start and end point of B. Each bridge Cj forms
a geometrically independent instance, i.e., the bridges C1, C2, and C3 have pairwise disjoint
bags. Further, the end points of C1, C2, and C3 partition H into three subpaths H1, H2 and
H3 that lie in the bags of C1, C2, and C3, respectively. Hence, the three bridges C1, C2, and
C3 partition the bag of B into smaller sub-instances defined by C1, C2, and C3 containing
the paths H1, H2 und H3, respectively.

This provides us with the possibility of recursively describing Qi; Figure 9 shows the
recursion tree T for B1 and Q1 of the polygon presented in Fig. 7. We call T the derivation
tree of B1 and Q1 the derivative path of B1. In general we show the following theorem.

I Theorem 2.4. For every bridge B and every path H of bridges that is contained in the
bag of B and connects the start and end point of B, there is a derivation tree TB such that
H is the derivative path of TB.
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Figure 7 (a) A rectilinear polygon P (blue) and a tight rectilinear hull of P (lilac). (b) The
bounding box of P is partitioned into the four bridges B1, B2, B3 and B4. (c) Each bridge defines
an instance that is considered independently from the other instances.
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Figure 8 The bag of the bridge B defines an sub-instance. Further, there is a sub-path H

(lilac) of Q that goes through the bag of B. If B is not part of Q, we can construct up to three
bridges C1, C2 and C3 whose bag form three geometrically independent instances that partition H.

To prove Theorem 2.4 we distinguish nineteen geometrical settings of the bridge B and the
path H. We use six different methods for the construction of the child nodes C1, . . . , Ck

with 1 ≤ k ≤ 3; see Fig. 10. We can show for each construction that the path H can be split
into subpaths H1, . . . ,Hk so that each Hj with 1 ≤ j ≤ k is contained in the bag of Cj . For
example, we use Construction M in the case that B and P share more than two vertices; see
Fig. 10. In that case, we insert two child nodes for B in TB containing the bridges C1 and C2,
where C1 is the path of B from the beginning to the first shared vertex u with P and C2
contains the remaining part. We show that if we split H at u into subpaths H1 and H2,
the path H1 is contained in the bag of C1 and the path H2 is contained in the bag of C2.
The Constructions A-E assume that B shares exactly two vertices with P , and yield bridges
C1, . . . , Ck that not only lie on B but also in the interior of the bag of B without crossing H.

The constructions are more general than necessary such that they also work for any
rectilinear polygon Q that consists of bridges of P . We conjecture that when exploiting the
tightness only two children per node is sufficient, which later on would lead to an improvement
of the running time by a linear factor. However, at latest when generalizing the result to the
case that P is not rectilinear, we can show that three children are necessary.

Altogether, due to the construction of the decomposition tree its derivative path H does
not intersect itself. In particular, two bridges B1 and B3 that intersect as shown in Fig. 11
can not belong to the same decomposition tree as neither one bag contains the other nor
their bags are disjoint.
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Figure 9 A recursion tree for the top-left part of the polygon shown in Fig. 7. On each level
the bags of the bridges (orange) form geometrically independent sub-instances that are solved
independently. Composing the bridges of the child nodes yields a path that connects the starting
with the end point of the bridge of the parent node. Collecting the bridges of the leaves in pre-order
yields the path Q1 (lilac), which is part of Q.
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Figure 10 Construction types for the proof of Theorem 2.4.

3 Algorithm for Tight Rectilinear Hulls

We present an algorithm that consists of three steps. In the first step, we build an orthogonal
grid G based on the vertices of P such that G lies in the interior of B and the exterior of P ;
see Fig. 12a. In the second step, we create the set B of all valid bridges based on G using
depth-first searches; see Fig. 12b. In the third step, we compute an α-optimal tight rectilinear
hull Q of P as follows. We split the bounding box B into the four bridges B1, B2, B3 and B4
as described in Section 2. These bridges split Q into four paths Qi contained in the bags
of Bi (with 1 ≤ i ≤ n), respectively. We compute each Qi by constructing its derivation
tree Ti over B using dynamic programming. We finally assemble Qi to Q. From a technical
point of view we need to take special care about correctly accounting for the bends at the
vertices connecting two sub-instances. We prove that the dynamic programming approach,
which is the most time consuming part of the algorithm, needs O(n4) time and O(n2) space.

I Theorem 3.1. The α-optimal tight rectilinear hull of a rectilinear polygon P can be
computed in O(n4) time and O(n2) space.

We observe that our approach is only based on the bridges that we compute using the
grid G. On that account a simple approach to support arbitrary simple polygons is discretizing
P by subdividing each edge of P with additional vertices; see Fig. 13. We then build G based
on the new and old vertices of P . As one can show, the result is a (not necessarily α-optimal)
tight hull of P . Depending on the desired quality, we choose the degree of discretization.

4 Conclusion

We have introduced the concept of tight hulls of polygons. In contrast to previous schemati-
zation techniques, we require that the input polygon is contained in the schematization. We
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Figure 11 Decompositions of a bridge B. (a) The bridge B. (b) A decomposition of B into three
bridges B1, B2 and B3 such that B1 and B3 intersect. Such decompositions are excluded from the
decomposition tree by construction. (c) A valid decomposition tree for B.

(a) (b)

Figure 12 Step 1 and Step 2 of the algorithm. (a) The grid G in the exterior of P is created
based on the vertices of P . (b) For each vertex of P all possible bridges to its successors are created.

have undertaken a proof of concept for rectilinear polygons and tight rectilinear hulls sketch-
ing a generic algorithm based on a dynamic programming approach. For simple polygons
our approach yields approximate tight hulls. We are currently extending the algorithm to
tight octilinear hulls as well as to α-optimal tight hulls of general simple polygons.
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Figure 13 Tight rectilinear hulls of a simple maximal subdivided polygon P (vertices of P are
black points). (a) Lemma 2.1 is not true any more as Q has fixed vertices (lilac squares) that are
not vertices of P . (b) The tight hull of P is based on the vertices of P and additional vertices (lilac
squares) subdividing the edges of P .
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