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Abstract
The predominant approach to find decent solutions for hard optimization problems is to compute an
approximation. An alternative approach is resource augmentation (a form of problem relaxation),
where you consider an optimal solution subject to slightly weaker problem constraints. This alterna-
tive approach has considerably less traction in theoretical computer science than approximation algo-
rithms have. We study optimization problems with natural resource augmentations and show that the
bit-precision of their optimal solution can be bounded using smoothed analysis of their augmentation.
Our results imply that for realistic problem constraints, the optimal solution to a augmented version
of a problem yields an optimal solution for the original problem. We hope our results help solidify
the traction that resource augmentation has in theoretical computer science.

1 Introduction

This paper is an extended abstract from [14]. The RAM is a mathematical model of a computer
which emulates how a computer can manipulate data. Within computational geometry, algorithms
are often analyzed within the real RAM [15,18,23] where values with infinite precision can be
stored and compared in constant space and time. By allowing these infinite precision computations,
it becomes possible to verify geometric primitives in constant time, which simplifies the analysis
of geometric algorithms. Mairson and Stolfi [19] point out that “without this assumption it is
virtually impossible to prove the correctness of any geometric algorithms.” The downside of the
real RAM is that it neglects the bit-precision of the underlying algorithms. If an algorithm can be
correctly executed with a limited bit-precision then the algorithm is called robust. Many classical
examples in computational geometry are inherently nonrobust [23].

Often inputs which require excessive bit-precision are contrived and do not resemble realistic
inputs. A natural way to theoretically model this is smoothed analysis, which interpolates smoothly
between worst case analysis and average case analysis [28]. Practical inputs are constructed
inherently with small amount of noise and random perturbation. This perturbation helps to show
performance guarantees in terms of the input size and and the magnitude of the perturbation. By
now smoothed analysis is well-established, for instance Spielman and Teng received the Gödel
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Figure 1. The dominant model in computational geometry is the real RAM. It consists of a central
processing unit, which can operate on real and word registers in constant time, following a set of instructions.
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Figure 2. The x-axis symbolizes all inputs. The red line indicates the worse case running time or
required bit-precision. The blue line indicates the average however, typical instances are not always average.
Smoothed analysis considers the average of inputs near some worst instance (shown in green).

Prize for it. However, within computational geometry its application is limited to smoothed
analysis of the bit-precision of the art gallery problem [10] and order type realisability [29], and
smoothed analysis of the runtime of k-means clustering [3, 20], Euclidean TSP [12, 21], and
partitioning algorithms for Euclidean functionals [5].

In this paper, we introduce a framework applicable to a wide class of real RAM optimization
problems and show that under smoothed analysis of their resource augmentation, the optimal
solution to these problems can be computed with logarithmic bit-precision. This is an extended
abstract of Section 3 of [14].

Smoothed analysis. In smoothed analysis, the performance of an algorithm is studied for worst
case input which is randomly perturbed by a magnitude of δ. Intuitively, smoothed analysis
interpolates between average case and worst case analysis (Figure 2). The smaller δ, the closer
we are to true worst case input. Correspondingly larger δ is closer to the average case analysis.

Formally, for smoothed analysis we fix some δ ∈ [0,1], which describes the magnitude of
perturbation. In this paper, we consider an array I = (a, b) ∈ Rn ×Zm of n real numbers and m
integers as the input of the optimization problem (for an extensive overview of the real RAM
model that takes both real and integer input refer to [14], A.1). We assume that each real number
is perturbed independently and that the integers stay as they are. We denote by (Ωδ, µδ) the
probability space where each x ∈ Ωδ defines for each instance I a new ‘perturbed’ instance
Ix = (a+ x , b). We denote by C (Ix) the cost of instance Ix (note that traditionally, smoothed
analysis is applied to algorithms where the cost of an instance is the runtime required by that
algorithm on the instance. In this paper, the cost is the required number of bits to represent the
optimal solution of the instance). The smoothed expected cost of instance I equals:

Cδ(I) = Ex∈Ωδ
C (Ix) =

∫

Ωδ

C (Ix)µδ(x) dx .

If we denote by Γn the set of all instances of size n, then the smoothed complexity equals:

Csmooth(n,δ) =max
I∈Γn
E

x∈Ωδ
[C (Ix)] .

Intuitively smoothed analysis shows that not only do the majority of instances behave nicely,
but actually in every neighborhood (bounded by the maximal perturbation δ) the majority of
instances behave nicely. The smoothed complexity is measured in terms of n and δ. If the expected
complexity is small in terms of 1/δ then we have a theoretical verification of the hypothesis
that worst case examples are well-spread. Following [8,28] we perceive an algorithm to have
polynomial cost in practice, if the expected cost of the algorithm is polynomial in n and in 1/δ.
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Figure 3. Left: given a set of segments S, they define a segment intersection graph GS .
Right: given a graph G, is there a set of segments S′ such that GS′ = G?

Spielman and Teng explain smoothed analysis by applying it to the simplex algorithm, which
was known for a particularly good performance in practice that was seemingly impossible to verify
theoretically [16]. Since the introduction of smoothed analysis, it has been applied to numerous
problems. Most relevant for us is the recent smoothed analysis of the art gallery problem [10]
and of order types [29]. Both papers deal with the required bit-precision needed in computations
under slight perturbations. In the worst case, both problems need an exponential bit-precision,
as both problems are complete for the existential theory of the reals.

The Existential Theory of the Reals. The required precision of an algorithm plays an important
role if we want to show that a problem lies in the class NP. It is often easy to describe a potential
witness to an NP-hard problem, but the bit-precision of the witness is unknown. A concrete
example is the recognition of segment intersection graphs (Figure 3): given a graph, can we
represent it as the intersection graph of segments? The canonical witness is the set of segments,
but the required bit-precision is unclear. Matoušek [22] comments on this as follows:

Serious people seriously conjectured that the number of digits can be polynomially bounded—but it cannot.

Indeed, there are examples which require an exponential number of bits in any numerical
representation. This exponential bit-precision phenomenon occurs not only for segment intersection
graphs, but also for many other natural algorithmic problems [1,2,4,6,7,9,11,13,24–27]. It turns
out that all of those algorithmic problems do not accidentally require exponential bit-precision,
but are closely linked, as they are all complete for a certain complexity class called ∃R. Thus
either all of those problems belong to NP, or none of them do. Using our results on smoothed
analysis, we show that for many ∃R-hard optimization problems the exponential bit-precision
phenomenon only occurs for near-degenerate input.

The complexity class ∃R can be defined as the set of decision problems that are polynomial-
time equivalent to deciding if a formula of the Existential Theory of the Reals (ETR) is true or not.
An ETR formula has the form:

Ψ = ∃x1, . . . , xn Φ(x1, . . . , xn),

where Φ is a well-formed sentence over the alphabet

Σ= {0,1, x1, . . . ,+, ·,=,≤,<,∧,∨,¬}.

More specifically, Φ is quantifier-free and x1, . . . , xn are all variables of Φ. We say Ψ is true if and
only if there are real numbers x1, . . . , xn ∈ R such that Φ(x1, . . . , xn) is true.

2 Results of Smoothed Analysis of Resource Augmentation

Under the resource augmentation of an algorithmic problem, you try to find an optimal solution
to a problem formulation with weaker problem constraints. Resource augmentation does not
compromise on optimality: the aim is to find an optimal solution to the newly augmented problem.
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Figure 4.We augment the container from left to right. This extra space can lead to a better solution. If
the optimal solution value does not change, the extra space allows for a solution with low bit-precision.

Using smoothed analysis, we argue that studying slight augmentations of algorithmic problems is
justifiable for practical applications of the algorithm as we show that the problem conditions that
make the problem hard are brittle.

An example of resource augmentation exists for the geometric packing problem (Figure 4)
where an algorithm needs to pack a set of convex objects into a unit-size square container.
To pack the optimal number of objects into this container is ∃R-complete [2] and therefore a
word RAM algorithm cannot hope to correctly find an optimal solution with limited time or
memory. A resource augmentation algorithm looks to find a way to pack as many objects into a
container C ′ which is larger by a factor (1+α) (α being the augmentation parameter). We apply
smoothed analysis to resource augmentation problems, where we study these problems under
a slight perturbation of such an augmentation parameter. We prove in [14] that the resource
augmentation problems that we study have an optimal solution with expected logarithmic bit-
precision.

É Theorem 2.1. Let P be a resource augmentation problem that is monotonous, moderate and
smoothable. Under perturbations of the augmentation of magnitude δ, the problem P has an optimal
solution with an expected bit-precision of O(log(n/δ)).

In the proof of this theorem (see full version) we argue about the solution space of the problem P
and we define three natural properties of this solution space. The monotonous property demands
that as we augment P more and more, the solution space only gains more candidate solutions. The
moderate property demands that as we continuously augment the problem, we do not encounter
more than a polynomial number of new optimums. In many hard optimization problems, the
optimum is a value between 1 and n and the moderate property is then immediately implied.
The smoothable property is the least intuitive of the three, it demands if you augment a problem P
by ε, then it contains a solution which is optimal for the original problem and has a bit-precision
of O (log(n/ε)). It might appear as though the third property immediately implies the theorem,
yet recall that we look for an optimal solution for the newly augmented problem. The other two
properties, together with common bounds in probability theory, bound the expected bit-precision
of an optimal solution to the perturbed problem.

Implications of Theorem 2.1. To illustrate the applicability of our findings, we give 3 corollaries:
The art gallery problem has been shown to be ∃R-complete [1] which (assuming ∃R 6= N P)

prohibits a compact representation for all art gallery solutions. Yet our corollary states that under
realistic conditions, the solution to the art gallery problem can be represented using logarithmic
bit-precision. This result was already shown in [10], however with Theorem 2.1 this result can
be re-proven by showing that the art gallery problem, with a resource augmentation of edge
inflation is in fact monotonous, moderate and smoothable.

Recently Kostitsyna et al. showed that an optimal solution to the minimum-link path in a
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Figure 5.We increase a container of size (1+α) to size (1+α+ ε). This extra space allows us to take
the original solution, and space each object by a distance of O(ε/n), which in turn allows us to find a more
favourable rotation and / or translation for the object.

simple polygon has linear bit-precision in the worst case [17]. Just as the art gallery problem, this
problem can be augmented by inflating the edges of the simple polygon. With a similar analysis,
it then swiftly follows that the problem of computing the minimum-link path in a simple polygon
is monotonous, moderate and smoothable.

The proof for ∃R-completeness of the packing problems is in preparation [2] and just as for
the art gallery problem this implies that the optimal solution to a packing problem cannot always
be compactly represented. The packing problem has a natural resource augmentation, where one
simply increases the size of the container. In the full version we show that the packing problem
with container augmentation is monotonous, moderate and smoothable in the following way: if
a container of size 1 can fit a collection I of items then a container of size (1+α) can also fit I
and possibly more, thereby the monotonous property is trivial. If the input is a set of n elements
that need to be packed in a container, then an optimal solution can pack at most k elements with
k ∈ [n]. Therefore as we increase the container size continuously, there can be at most O(n) new
optimal solutions which implies the moderate property. The monotonous property is the hardest
to show (Figure 5). In a solution to the packing problem, every object is rotated and translated
and especially describing the rotation of an object is hard if you have to use limited bit-precision.
In the full version we consider an optimal solution to a given container size, and show that if that
container size increases by a value ε, then all the convex objects in the container can freely move
and rotate a distance of O(ε/n). This in turn, allows us to describe the translation and rotation of
each object with a bit-precision of O (log(n/ε)). Note that computing an embedding of an object
with such a translation and rotation, might require more bit-precision.

É Corollary 2.2. Under perturbations of the augmentation of magnitude δ, the following problems
have an optimal solution with an expected bit-precision of O(log(n/δ)).

the art gallery problem under perturbation of edge inflation [10].
packing polygonal objects into a square container under perturbation of the container width.
computing the minimum-link path in a simple polygon under perturbation of edge inflation.

Limitations. We hope that Corollary 2.2 provides a convincing argument that our framework
applies to a wide set of algorithmic problems that have a natural resource augmentation. Yet,
our result is not wihout limiations: given an algorithmic problem, it is not clear a priori whether
there is a way to augment resources such that it is both mathematically sound, satisfying, as
well as practically plausible. For example, if we search for the smallest square container that fits
a given set of items, the number of changes in the optimum is unbounded thus the moderate
property does not hold.
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