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Abstract
We present a simple wavefront-like approach for computing multiplicatively weighted Voronoi
diagrams of points and straight-line segments in the Euclidean plane. If the input sites may be
assumed to be randomly weighted points then the use of a so-called overlay arrangement [Har-
Peled&Raichel, Discrete Comput. Geom., 2015] allows to achieve an expected runtime complexity
of O(n log4 n), while still maintaining the simplicity of our approach. We implemented the full
algorithm for weighted points as input sites, based on CGAL. The results of an experimental
evaluation of our implementation suggest O(n log2 n) as a practical bound on the runtime. Our
algorithm can be extended to handle also additive weights in addition to multiplicative weights.

1 Introduction and Preliminaries

Aurenhammer and Edelsbrunner [1] present a worst-case optimal algorithm for constructing
the multiplicatively weighted Voronoi diagram (MWVD) of a set of n points in O(n2) time
and space. Har-Peled and Raichel [2] show that a bound of O(n log2 n) holds on the expected
combinatorial complexity if the weights of all points are chosen randomly. They also sketch
how to compute MWVDs in expected time O(n log3 n), where linear-time triangulation and
the algorithm by Aurenhammer and Edelsbrunner [1] are used as subroutines.

Let S := {s1, s2, . . . , sn} denote a set of n distinct weighted points in R2 that are indexed
such that w(si) ≤ w(sj) for 1 ≤ i < j ≤ n, where w(si) ∈ R+ is the weight associated with
si. It is common to regard the weighted distance dw(p, si) from an arbitrary point p in R2

to si as the standard Euclidean distance d(p, si) from p to si divided by the weight of si.
The (weighted) Voronoi region VRw(si, S) of si relative to S is the set of all points of the
plane that are not farther to si than to any other site sj in S. A connected component of a
Voronoi region is called a face. For two distinct sites si and sj of S, the bisector bi,j of si

and sj models the set of points of the plane that are at the same weighted distance from si

and sj . The MWVD VDw(S) of S is the union of the boundaries of the individual Voronoi
regions; see Figure 1. Following common terminology, a connected component of such a set
is called a (Voronoi) edge of VDw(S). An end-point of an edge is called a (Voronoi) node. It
is known that the bisector between two unequally weighted sites forms a circle.

The wavefront WF(S, t) emanated by S at time t ≥ 0 is the set of all points p of the
plane whose minimal weighted distance from S equals t. The wavefront itself consists of
several circular arcs which we call wavefront arcs. A common end-point of two consecutive
wavefront arcs is called a wavefront vertex; see the blue dots in Figure 2. For t ≥ 0, the
offset circle ci(t) of the i-th site si is given by a circle centered at si with radius t ·w(si). We
specify a point of ci(t) relative to si by its polar angle α and its (weighted) polar radius t and
denote it by pi(α, t). Every pair of offset circles defines exactly two (moving) vertices vl

i,j
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Figure 1 Left: Standard Voronoi diagram of a set of points (depicted by dark-green dots). Right:
The numbers next to the points indicate their weights and the corresponding MWVD is shown.

and vr
i,j which can be interpreted as the traces of the intersections of the two offset circles

over time. We refer to vl
i,j(t) as the vertex married to vr

i,j(t), and vice versa; see Figure 3.

Figure 2 Wavefronts (in blue) for equally-spaced points in time for the input shown in Figure 1.

2 A Simple Event-Based Construction Scheme

In prior work [3], we introduced a wavefront-based strategy to compute VDw(S) on the basis
of which we made our improvements. Thus, we want to review its main ideas. For the sake
of descriptional simplicity, we assume that no point in the plane has the same weighted
distance to more than three elements of S. (This restriction can be waived.)

I Definition 2.1 (Active point). A point p on the offset circle ci(t) is called inactive at time
t (relative to S) if there exists j > i, with 1 ≤ i < j ≤ n, such that p lies strictly inside of
cj(t). Otherwise, p is active (relative to S) at time t. A vertex vi,j(t) is an active vertex if it
is an active point on both ci(t) and cj(t) at time t; otherwise, it is an inactive vertex.

I Lemma 2.2. If pi(α, t) is inactive at time t then pi(α, t′) will be inactive for all t′ ≥ t.

An inactive point pi(α, t) cannot be part of the wavefront WF(S, t). Lemma 2.2 ensures
that none of its future incarnations pi(α, t′) can become part of the wavefront WF(S, t′).



M. Held and S. de Lorenzo 15:3

sj

si

sj

si

sj

si

sj

si

Figure 3 Two married vertices (highlighted by the blue dots) trace out the bisector (in black).

I Definition 2.3 (Active arc). For 1 ≤ i ≤ n and t ≥ 0, an active arc of the offset circle ci(t)
at time t is a maximal connected set of points on ci(t) that are active at time t. The closure
of a maximal connected set of inactive points of ci(t) forms an inactive arc of ci(t) at time t.

Every end-point of an active arc of ci(t) is given by the intersection of ci(t) with some other
offset circle cj(t), i.e., by a moving vertex vi,j(t). This vertex is active, too. If i < j then one
active arc of ci(t) and two active arcs of cj(t) are incident to vi,j(t). The arc arrangement
(AA) of S at time t, A(S, t), is the arrangement induced by all active arcs of all offset
circles of S at time t; see Figure 4. As time t increases, the offset circles expand. This
causes the vertices of A(S, t) to move, but it will also result in topological changes of the arc
arrangement. Every such topological change can be classified as one of three event types.

IDefinition 2.4 (Collision event). Let pi(α, tmin
ij ) = pj(α+π, tmin

ij ) be the point of intersection
of the offset circles of si and sj at the collision time tmin

ij , for some fixed angle α. A collision
event occurs between these two offset circles at time tmin

ij if the points pi(α, t) and pj(α+π, t)
have been active for all times 0 ≤ t ≤ tmin

ij .

I Definition 2.5 (Domination event). Let pi(α, tmax
ij ) = pj(α, tmax

ij ) be the point of intersec-
tion of the offset circles of si and sj at the domination time tmax

ij , for some fixed angle α. A
domination event occurs between these two offset circles at time tmax

ij if the points pi(α, t)
and pj(α, t) have been active for all times 0 ≤ t ≤ tmax

ij .

I Definition 2.6 (Arc event). An arc event e occurs at time te when an active arc shrinks
to zero length as two unmarried vertices vi,j(te) and vi,k(te) meet in a point pe on ci(te).

Domination events and arc events are easy to detect. The point and time of a collision is
trivial to compute for any pair of offset circles, too. For the rest of this section we assume that
all collisions among all pairs of offset circles are computed prior to the actual arc expansion.
All events are stored in a priority queue Q. If the maximum weight of all sites is associated
with only one site then there will be a time t when the offset circle of this site dominates
all other offset circles, i.e., when WF(S, t) contains only this offset circle as one active arc.
Obviously, at this time no further event can occur and the arc expansion stops. If multiple
sites have the same maximum weight then Q can only be empty once WF(S, t) contains
only one loop of active arcs which all lie on offset circles of these sites and if all wavefront
vertices move along rays to infinity.

During the arc expansion O(n2) collision and domination events are computed. We know
that collision events create and domination events remove active vertices (and make them
inactive for good). A collapse of an entire active-arc triangle causes two vertices to become
inactive. During every other arc event at least one active vertex becomes inactive, but at
the same time one inactive vertex may become active again. In order to bound the number
of arc events it is essential to determine how many vertices can be active and how often a
vertex can undergo a reactivation, i.e., change its status from inactive to active.
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Figure 4 A snapshot of the arc expansion for the input shown in Figure 1. Active arcs that are
currently not part of the wavefront are drawn in orange.

I Lemma 2.7. Every reactivation of a moving vertex during an arc event forces another
moving vertex to become inactive and remain inactive for the rest of the arc expansion.

I Lemma 2.8. Let h be the number of different vertices that ever were active during the arc
expansion. Then O(h) arc events can take place during the arc expansion.

Our naïve approach computes all potential collision events between all pairs of input sites as
preprocessing. Thus, h ∈ Θ(n2), and we get an overall runtime of O(n2 logn).

3 Reducing the Number of Collisions Computed

Experiments quickly indicate that the vast majority of pairwise collisions computed a priori
does never end up on pairs of active arcs. Furthermore, the resulting Voronoi diagrams show
a quadratic combinatorial complexity only for contrived input data.

This observation is backed by a result by Har-Peled and Raichel [2]: They show that the
expected combinatorial complexity of VDw(S) for a set S of n randomly weighted point sites
is O(n log2 n). In order to keep our paper self-contained, we summarize their key principles.

Candidate set: Consider an arbitrary (but fixed) point q ∈ R2, and let s be its nearest
neighbor in S under the weighted distance. Let s′ ∈ S \ {s} be another site. Since s is
the nearest neighbor of q we know that either s has a higher weight than s′ or a smaller
Euclidean distance to q than s′. Thus, one can define a candidate set for a weighted
nearest neighbor of q which consists of all sites s ∈ S such that all other sites in S either
have a smaller weight or a larger Euclidean distance to q. Now assume that the sites are
weighted randomly. Then Har-Peled and Raichel [2] show that this candidate set for q
has a cardinality of O(logn) with high probability.
Gerrymandering the plane: The plane R2 is partitioned into a small number of regions
such that the candidate set stays the same for all points within a region.
Randomized incremental campaigning: Consider inserting the sites in order of decreasing
weight: Then the i-th site is in the candidate set of a point q ∈ R2 if and only if it is the
(unweighted) nearest neighbor of q among the first i sites. That is, if and only if q lies in
the Voronoi region of the i-th site within the Voronoi diagram of the first i sites.
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In more formal terms, we make use of the following results in order to determine all collision
events among elements of S in near-linear expected time.

I Lemma 3.1 (Har-Peled and Raichel [2]). For all points q ∈ R2, the candidate set for q
among S is of size O(logn) with high probability.

I Lemma 3.2 (Har-Peled and Raichel [2]). Let Ki denote the Voronoi cell of si in the
unweighted Voronoi diagram of the i-th suffix Si := {si, . . . , sn}. Let OA denote the arrange-
ment formed by the overlay of the regions K1, . . . ,Kn. Then, for every face f of OA, the
candidate set is the same for all points in f .

Therefore, the overlay arrangement can be generated by incrementally constructing the
unweighted Voronoi diagram of S in which the sites are inserted ordered by decreasing
weights; see Figure 5. Kaplan et al. [4] prove that this overlay arrangement has an expected
complexity of O(n logn). Note that their result is applicable since inserting the points in
sorted order of their randomly chosen weights corresponds to a randomized insertion. These
results allow us to derive better complexity bounds.

Figure 5 We insert the sites ordered by decreasing weights to generate OA.

I Lemma 3.3. If a collision event occurs between the offset circles of two sites si, sj ∈ S
then there exists at least one candidate set which includes both si and sj.

I Theorem 3.4. All collision events can be determined in O(n log3 n) expected time by
computing the overlay arrangement OA of a set S of n input sites.

Thus, the number h of vertices created during the arc expansion can be expected to
be bounded by O(n log3 n). Theorem 2.8 tells us that the number of arc events is in O(h).
Therefore, O(n log3 n) events happen in total.

I Theorem 3.5. A wavefront-based approach allows to compute the multiplicatively weighted
Voronoi diagram VDw(S) of a set S of n (randomly) weighted point sites in expected
O(n log4 n) time and expected O(n log3 n) space.

4 Extensions

Consider a set S′ of n disjoint weighted straight-line segments in R2. A wavefront propagation
among weighted line segments requires us to refine our notion of “collision”. We call an

EuroCG’20



15:6 On Implementing Multiplicatively Weighted Voronoi Diagrams

intersection of two offset circles a non-piercing collision event if it marks the initial contact
of the two offset circles. That is, it occurs when the first pair of moving vertices appear. We
call an intersection of two offset circles a piercing collision event if it takes place when two
already intersecting offset circles intersect in a third point for the first time; see Figure 6. In
this case, a second pair of moving vertices appear.

Figure 6 An example of a non-piercing (left) as well as a piercing collision event (right).

Hence, a minor modification of our event-based construction scheme is sufficient to extend
it to weighted straight-line segments: We only need to check whether a piercing collision
event that happens at a point pe at time te currently is part of WF(S′, te). In such a case
the two new vertices as well as the corresponding active arc between them need to be flagged
as part of WF(S′, te). See Figure 7.

Figure 7 The MWVD of a set of weighted points and weighted straight-line segments together
with a family of wavefronts for equally-spaced points in time.

An extension to additive weights can be integrated easily into our scheme by simply
giving every offset circle a head-start of wa(si) at time t = 0, where wa(si) ≥ 0 denotes the
real-valued additive weight that is associated with si.
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5 Experimental Evaluation

We implemented our full algorithm for multiplicatively weighted points as input sites1, based
on the Computational Geometry Algorithms Library (CGAL) and exact arithmetic. In
particular, we use CGAL’s Arrangement_2 package for computing the overlay arrangement
and its Voronoi_diagram_2 package for computing unweighted Voronoi diagrams. The
computation of the MWVD itself utilizes CGAL’s Exact_circular_kernel_2 package.
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(a) The left plot shows the total number of (valid and invalid) collision events (divided by n log n);
the right plot shows the number of arc events (divided by n) processed during the arc expansion.
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(b) The orange plot shows the runtime consumed by the computation of the overlay arrangement.
The green plot shows the time which it took to process all events, and the blue plot shows the overall
runtime. All runtimes were divided by n log2 n.

Figure 8 Each marker on the x-axes indicates the number n of input sites for one out of over
3800 test cases. All weights and all point coordinates were chosen randomly.

We used our implementation for an experimental evaluation and ran our code on over
3800 inputs ranging from 256 vertices to 524 288 vertices. For all inputs all weights were
chosen uniformly at random, and all point coordinates were chosen according to either a

1 Our code is publicly available on GitHub under https://github.com/cgalab/wevo. We do also have
a prototype implementation that handles both weighted points and weighted straight-line segments. It
was used to generate the diagram shown in Figure 7.
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uniform or a normal distribution. All tests were carried out with CGAL 4.11 on an Intel
Xeon E5-2687W v4 processor clocked at 3.0 GHz. (We carried out our tests before CGAL 5.0
was released. Sample runs obtained with CGAL 5.0 indicate that all results would be the
same for CGAL 5.0.) The numbers of collision events and arc events that occurred during
the arc expansion are plotted in Figure 8a. Our tests suggest that we can expect at most
c · n logn collision events to occur, for some small constant c. (We had c ≤ 3 in our tests.)
Furthermore, we observed at most 14n arc events.

In any case, the number of events is smaller than predicted by the theoretical analysis.
This is also reflected by our runtime statistics: In Figure 8b the runtime of the generation of
the overlay arrangement, the time that was consumed by the computation of the MWVD,
and the overall runtime are plotted. Summarizing, our tests suggest an average overall
runtime of O(n log2 n) if all weights are chosen randomly.
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