
Declarative Web Programming with PROLOG and XUL

Christian Schneiker and Dietmar Seipel

Department of Computer Science

University of Würzburg, Am Hubland, D – 97074 Würzburg, Germany

{christian.schneiker,dietmar.seipel}@uni-wuerzburg.de

Abstract. Modern information systems are more often web-based than simple
single PC desktop applications. In the last few years, developers have used com-
mon frameworks like GWT, JSF or similar to produce thin or rich client applica-
tions with the use of Java server technology for the backend part.
This paper introduces a new way of implementing thin clients with declarative
web programming and PROLOG as a powerful server. The focus of the server
lies in the integration of databases. GUI scaffolding on the basis of the defined
data tables, database schema resolving for generic programming, and database
triggered event handling make it possible to develop easy-to-read and reliable
code.

1 Introduction

Before Tim Berners-Lee and fellows like Roy Fielding developed HTTP, HTML, and
the first browser named WorldWideWeb, working with terminal sessions to connect to
a mainframe were already a common scenario. High prices for single computers pushed
the users to connect via a terminal, consisting of a monitor and a keyboard, to a single
mainframe. These mainframes were high-performanced, and, of course, also very high-
priced, but they gave many scientists the possibility to get tuned in.

Over the years, with the reduced hardware costs, nearly every single office and also
homes have become equipped with a personal computer, not to mention mobile phones
and other gadgets. The need for mainframes for computing subsided, and everyone used
his own desktop version of the needed programs. With the introduction of the WWW in
1991 by Tim Berners-Lee, which started with a newsgroup message in alt.hypertext, the
possibilities were already there for rich or thin client applications, but the existing slow
bandwith made it impossible to fulfill the required user experience like speed, large
amount of data, and high computer graphics.

In these days, internet bandwiths with 100 MBit/s are becoming common, and
multi-user applications with simultaniously connected users all over the world made
it necessary to look for options. Based on HTTP, HTML, CSS and JavaScript and also
other technologies, many client/server frameworks have been developed in the recent
past. Java-based solutions have to be mentioned, like JSF [12] and GWT [3], as well
as libraries for PROLOG, like PROLOG Server Faces (PSF) [8], Type-Oriented Con-
struction of Web User Interfaces [4] or An ER-based Framework for Declarative Web
Programming [5].

The aim of this paper is to introduce a PROLOG-based approach to declaratively de-
sign thin client applications with the XML dialect XUL (XML User Interface Language)
and a few predefined JavaScript functions. Nearly all of the progam logic can rest on
the server, which is also PROLOG-based, and therefore the whole power of PROLOG
can be used. The client itself is OS independent and uses the standard look-and-feel of
the operating system. Figure 1 shows a screenshot of such a client.

Figure 1. Screenshot of a XUL4PL based client application.

The main focus of our framework is the integration of databases. With XUL4PL it is
possible to parse the involved database’s schema for GUI scaffolding and generic code
production. Thus, easy-to-read and highly reliable code could be developed. Another
feature are database triggered GUI updates; on a multi-user system, all clients will be
updated when a single user changes the data or even the structure of the database.

The rest of the paper is organized as follows: Section 2 gives an overview of XML-
based programming technologies like JSF and PSF, XUL, and SOAP, as well as FN-
QUERY, a framework for efficiently processing XML data. The main components of
XUL4PL will be described in Section 3. After a short overview of the implementation
of the HTTP server, database programming with connection handling, GUI scaffolding
and event triggers will be described in detail. Section 4 deals with the implementation
of a client/server application.

2 XML Based Web Programming

This section describes the technolgies on which our framework XUL4PL is based. The
framework itself relies on commonly used technologies, like JavaScript and HTTP con-
nections. These techniques can be found in a wide varity of rich and thin client/server
architectures. JSF and PSF are frameworks for Java and PROLOG for programming web
applications, and they are using the same functionality in some parts. XUL is an XML-

based library for graphical user interface design, and SOAP handles the communication
of data between the clients and the server. Both are extensivley used in our framework.

The following subsection describes the architectures on which XUL4PL relies as
well as the used frameworks.

2.1 Web Applications

In the last few years, with the modernisation of the network infrastructure in both in-
tranet and internet, it is common to develop new applications based on client/server
technologies. The gain in bandwith gives the opportunity to handle large amounts of
data by sending them over the net and to reduce the cost of high performance clients;
the server is computing most of the program logic. While in rich client applications
some of the logic still rests on the client, there are also a lot of thin clients, where nearly
all of the data processing is handled by the server.

Rich client applications are a modern type of software clients which often include
a unique framework for developing the client itself and also nested modules and plu-
gins. It is common to give the user the opportunity to modify and extend the standard
features. Depending on the used technology, the most used features of rich client appli-
cations are – with regard to above mentioned – OS independency, easy updateability,
and the possibility of complex user interfaces; they can be used online and offline, be-
cause the whole logic is implemented on the client side and can be assisted by a server,
if necessary. Data will be only transfered to the server for persistency and communi-
cation reasons. Widely used rich client applications are Eclipse and NetBeans for Java
development, or Microsoft Visual Studio.

Thin client applications, on the other hand, only implement often used features of
the backend logic, while most of the logic still rests on the server. Functions for GUI
updates and small calculations are implemented on the client side. The advantages of
thin client side applications are the huge scalability, OS independancy, and low costs for
the hardware for the clients. A disadvantage is of course the need for working network
connections. Common thin clients are, e.g., web browsers and terminal applications.

2.2 Common Web Frameworks

Implementing client applications from scratch is far away from state-of-the-art soft-
ware development. Instead, frameworks are used for, e.g., GUI design, for handling the
events sent by the server or the clients, and for the connection to any common database
management system. Many different frameworks are brought to the developer; espe-
cially Oracle and Sun – with their programming language Java – have focused on the
integration of their technologies with common HTML and JavaScript.

This section gives a short overview of Java Server Faces (JSF), implemented by
Oracle and Sun, as well as of our previously developed client/server framework Prolog
Server Faces (PSF). PSF also uses PROLOG for generating web applications, but with
less functionality.

JavaServer Faces (JSF). As a framework for server-side user interface components,
Sun Microsystems and other companies initially released JavaServer Faces in 2004,
using XML for implementing the view of web pages according to the MVC concept.
In contrast to static HTML pages or JSP, JSF provides stateful web applications, page
templating or even AJAX support and allows for developing server applications within
the object-oriented programming language Java.

In JSF one can process client-generated events and alter states of components, mak-
ing them event-oriented. It includes backing beans, which synchronize Java objects with
UI components. Unlike desktop programs, web-based applications are expected to be
accessed from different client types, such as desktop browsers, cell phones, and PDAs.
JSF provides a flexible architecture allowing it to display components in different ways,
and it also offers many validation techniques.

Since it is a server-side technology, all pages requested by the client are prepro-
cessed by the server. Via HTTP, every single requested XML document is transformed to
standard XHTML, and nested calls to Java objects formulated in an expression language
are processed. The following example shows a JSF-XML element which is transformed
to standard XHTML. The selectOneMenu element has an additional attribute value
with a Java expression for setting the right value which is read from a data container,
namely a Java Bean.

<h:selectOneMenu id="selectCar" value="#{carBean.currentCar}">
<f:selectItems value="#{carBean.carList}" />

</h:selectOneMenu>

In this example, a list of cars is read from the Bean, and according to the values, a
set of option elements is generated. The selectOneMenu element is transformed to a
normal XHTML select element, and necessary attributes like name and id are added.
The resulting valid XHTML page is transferred to the client and rendered by a browser.

<select id="selectCar">
<option value="corolla">Corolla</option> ...

</select>

The framework uses standard Java classes for transforming the documents with
common Java component tree operations. Even when the work with object-oriented
programming languages and XML tree operations is hard to read and to debug, it makes
it possible to extend the core libraries for the transformations (core taglib) by writing
new classes and by adding them to the library.

Prolog Server Faces (PSF). PSF is a stateful and event-driven framework, that inte-
grates logic programing in modern web applications. We are combining different tech-
niques for mixing PROLOG with XHTML to develop dynamic web pages with the ad-
vantages of JSF for writing condensed XML. This XML will be expanded to XHTML
with connection to XML documents and relational databases for data handling. We pro-
vide an application programming interface for combining an extended HTTP server im-
plemented in SWI PROLOG with a huge and easy-to-extend tag library for defining web
pages in a compact XML structure. For transforming XML elements, we extensively

use the XML transformation language FNTRANSFORM [10], which will be sketched in
Subsection 2.5.

Like in JSF, nearly every XHTML element can be written in a compact form with
additional attribute values, which read the data from complex term data structures, XML
documents, or even relational databases. In our PSF framework, we have implemented
the core tag library which consists of tags like HTML form, the different input element
types and, of course, radio buttons and select menus.

We want to exemplify the work with PSF-XML files with the following code of a
single select menu, whose data are stored in an additional XML file. The PSF-XML
page contains only two elements for defining the type of the select menu as well as an
element with an FNPATH expression, which handles the data for the different option
types, in this case the different car models.

<h:selectOneMenu id="selectCar">
<f:selectItems value="#{doc(cars.xml}/car-[@id, @model]}" />

</h:selectOneMenu>

The data can be either read from an XML document or from a PROLOG data struc-
ture. The transformation itself is handled by FNTRANSFORM, which is integrated in our
framework. When a client requests a PSF-XML file, the server automatically transforms
it to XHTML with one of its request handlers.

2.3 The XML User Interface Language

The XML User Interface Language XUL is an XML dialect for declaratively defining
graphical user interfaces. It has been developed by the Mozilla Foundation for im-
plementing platform independent GUI’s for their well-known browser Firefox and the
email client Thunderbird. It is also used by a wide spectrum of companies for OS inde-
pendent client/server applications like Google’s AdWords tool. The following example
shows a short code snippet of a modal dialog implemented in XUL.

<dialog id="newMessageDlg" ...>
<script type="text/javascript" src="xulfunctions.js"/>
<dialogheader title="Messages" description="new Messages"/>
<vbox>

<hbox>
<label value="Priority:"/> <menulist> ... </menulist>
<label value="Date:"/> <datepicker type="popup"/>
<label value="Time:"/> <timepicker/>

</hbox>
</vbox>

</dialog>

All XUL elements could be combined with JavaScript and CSS, like in normal HTML
webpages. Figure 2 shows the rendered dialog. XUL frames could either be rendered
by using the runtime xulrunner – this is the most common way and applications like
Firefox are startet like this – or by opening the XUL apps in Firefox.

Figure 2. Screenshot of a XUL-based dialog.

2.4 Message Handling with SOAP

SOAP (Simple Object Access Protocol) is a network protocal relying on XML for pass-
ing information over a network between clients and a server.

The SOAP specification defines a messaging framework which normally consists of
four parts:

– The processing model defining the rules for processing a SOAP message.
– The extensible model defining the concepts of features and modules.
– The underlying protocol binding for defining a binding to the underlying protocol

like HTTP.
– The message construct defining the structure of a SOAP message.

The following example shows a SOAP message that is used for calling a function
GetStockPrice – defined on the server side – with the parameter IBM. When the server
has called the function, it can send back an answer in another SOAP message which the
client can process, and based on which the client can, e.g., dynamically change the
content of the GUI.

POST /InStock HTTP/1.1
Host: www.example.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: 299
SOAPAction: "http://www.w3.org/2003/05/soap-envelope"

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope">

<soap:Header/>
<soap:Body>

<m:GetStockPrice xmlns:m="http://www.example.org/stock">
<m:StockName>IBM</m:StockName>

</m:GetStockPrice>
</soap:Body>

</soap:Envelope>

2.5 FNQUERY and FNTRANSFORM

For the transformations in our framework, we extensively use the XML query, trans-
formation and update language FNQUERY [10, 11], which is fully integrated in SWI
PROLOG. Like in XPATH, it is possible to query complex structures with path expres-
sions and axes. As an extension of XPATH, it is possible to select multiple branches
over deeply nested structures. The sublanguage FNTRANSFORM, which extends XSLT,
gives the user the feasibility to transform XML elements in PROLOG.

FNQUERY uses triples for representing XML documents. E.g., for the association
list As = [color:red, model:civic] of attribute/value pairs, cars:As:Es repre-
sents an XML element with the tag cars; the content Es can be a (possibly empty)
list of triples.

The path language FNPATH of FNQUERY is very similar to XPATH. Compound
terms with the functor “/” are used for selecting subelements. The functor “@” is used
for selecting the value of an attribute. E.g., the binary predicate “:=” in the call

?- M := doc(cars.xml)/car@model.

selects the value for the attribute model from the element car in the XML document
cars.xml below and binds the result to M.

<cars>
<car id="corolla" model="Corolla" />
<car id="civic" model="Civic" />
<car id="city" model="City" />

</cars>

It is even possible to query with multiple location paths. The following expression
selects the attributes id and model and forms pairs [Id, M] of the results:

?- Pair := doc(cars.xml)/car-[@id, @model].

3 The Framework XUL4PL for GUI Programming

For declarative GUI programming and native PROLOG rule implemantation, we have
developed XUL4PL as a thin client framework. It is fully integrated into our SWI PRO-
LOG framework, and it can be accessed online. The framework’s HTTP server itself is
implemented in PROLOG as well as functions for easy-to-use GUI and database han-
dling. The user interface is based on XUL, for which we are using an extended ver-
sion for communication and data exchange between client and server. We also use four
JavaScript functions for calling the server and for sending and retrieving information.
For defining the GUI, we use an extended version of XUL for which we have imple-
mented features for data communication and easy-to-use GUI programming.

The following subsections describe our framework XUL4PL in detail with respect to
the implementation of the HTTP server. After this, we give an overview of the database
support, database driven GUI scaffolding and updates to the user interface with database
triggers. An advanced method for message handling with SOAP is described afterwards.

3.1 HTTP Server Connection

The XUL4PL HTTP server is completely implemented in PROLOG using the HTTP sup-
port package of SWI PROLOG, implemented by Jan Wielemaker [13]. With the pack-
age, it is possible to handle data requests with GET and POST methods; even JSON data
structures are possible.

In our framework, we have implemented four different handlers for processing data
from the client or sending requested data, which are integrated into the DOM of the
XUL-GUI. Our approach is dealing with POST data, which the server can process with
the following handler:

handle(Request) :-
member(method(post), Request),
post_xml_to_fn_term(Request, FN),
format(’Content-type: text/xml; charset=utf-8˜n˜n’),
format(’<temp xmlns="http://www.mozilla.org/

keymaster/gatekeeper/there.is.only.xul">’),
apply_goal_from_fn(FN),
format(’</temp>’).

Whenever a JavaScript function for the communication with the server is called on the
client side, this handler parses the given information, i.e., the predicate to call with
all the parameters like values from GUI input fields or constant values. With this, it is
possible to call nearly all PROLOG rules from the client. The data from the client is sent
in an XML message envelope containing the data for the predicate which the server has
to call.

<message>
<goal>predicate name</goal>
<parameter>parameter 1</parameter>
<parameter>parameter 2</parameter>
...
<parameter>parameter n</parameter>

</message>

The predicate apply_goal_from_fn/1 reads the message and retrieves the infor-
mation for the goal, which it has to call, together with the additional parameters. The
parameters can be different values from the elements of the XUL file or complete XUL
documents, which can be processed themselves. We extensively use FNQUERY to parse
the information given by the message.

3.2 Database Programming

A more efficient way of defining thin clients with XUL4PL is to connect them with a
database. In this subsection, we describe how to connect our framework with a database,
GUI scaffolding and the use of database triggers.

Database Statements. We have extended the list valid of XUL attributes to specify ad-
ditional information needed like the database table name (db_table) and table column
(db_attribute) where the data has to be stored or read;

When a GUI update is generated or the data are submitted to the server, then the
XUL document structure will be parsed. E.g., to insert information into the database,
for all XUL elements with the extended database attributes, we automatically call the
predicate xul_item_to_insert_or_update_statement/4.

xul_item_to_insert_or_update_statements(
Connection, Database, Xul, Statements) :-

mysql_database_schema_to_xml(
Connection, Database, DB_Schema),

xul_form_to_inserts(Xul, Items),
maplist(

fn_item_to_insert_or_update_statement(
Connection, DB_Schema, Database),

Items, Statements).

The predicate reads the used database schema from the data dictionary and checks
the document with xul_form_to_inserts/2 for the used attributes db_database and
db_table and processes the data stored in the XUL file, e.g., input fields, radio buttons
and drop down menues.

<hbox>
<vbox>

<label value="UserID" />
<textbox width="80"

db_table="User" db_attribute="User_ID" />
</vbox>
<vbox>

<label value="First Name"/>
<textbox db_table="User" db_attribute="First_Name"/>

</vbox>
<vbox>

<label value="Last Name" />
<textbox db_table="User" db_attribute="Last_Name"/>

</vbox>
</hbox>

For XUL code above, the predicates parse the XML structure and generates SQL state-
ments. It also automatically checks for the defined primary key and the assigned values.

xul_form_to_inserts(Xul, Item) :-
D = descendant_or_self,
findall(B:V,

(X := Xul/D::’*’::[@db_table=Table],
Y := X/D::’*’::[@db_attribute=Attribute]/D::Tag,
Tags = [listitem, menuitem, richlistitem, radio],

(member(Tag, Tags) ->
true := Y@selected

; member(Tag, [checkbox]) ->
true := Y@checked

; true),
xul_element_to_table_and_attribute(

Y, Table->T, Attribute->A),
V := Y@value,
concat([T, ’:’, A], B)),

As),
xul_association_list_normalize(As, Bs),
Item = row:Bs:[],
!.

Afterwards, for all the processed data derived in the first step, the following predicate
fn_item_to_insert_or_update_statement/5 generates corresponding SQL state-
ments. If a database row with the given value for the primary key already exists, then
an update statement will be generated, otherwise an insert.

fn_item_to_insert_or_update_statement(
Connection, DB_Schema, Database, Item, Statement) :-

((\+ fn_item_includes_primary_key(DB_Schema, Item)
; \+ fn_item_primary_key_is_in_database(

Connection, DB_Schema, Database, Item)) ->
fn_item_to_insert_statement(

Connection, Database, Item, Statement)
; fn_item_to_update_statement(

Connection, DB_Schema, Database, Item, Statement)).

Reading data from the database and generating XUL elements is also possible with
XUL4PL and FNQUERY.

Database Driven GUI Scaffolding. An elegant way of defining user interfaces with
XUL4PL is to use GUI scaffolding. We have implemented many predicates to automati-
cally generate input elements based on the underlying database. In the following exam-
ple, we will explain such a predicate, namely odbc_attribute_to_fk_menulist/4.
Its arguments are the database, the table, and the attributes to be used. Attribute and
Table are given as PROLOG terms representing XML structures, so-called FN-triples,
because they can also be derived automatically for what we use XML in general.

odbc_attribute_to_fk_menulist(
Connection, Database, Table, Attribute, Menus) :-

A_Name := Attribute@name,
T_Name := Table@name,
[A_Name, Fk_Table] := Table/foreign_key-

[/attribute@name, /references@table],
mysql_use_database(Connection, Database),

concat([’SELECT ’, A_Name, ’ FROM ’, Fk_Table], Statement),
odbc_query_to_tuples(Connection, Statement, Tuples_1),
sort(Tuples_1, Tuples_2),
(foreach([Tuple], Tuples_2), foreach(Item, Items) do

Item = menuitem:[
db_attribute:A_Name, db_table:T_Name,
label:Tuple, value:Tuple]:[]),

Menus = row:[]:[
label:[value:A_Name]:[],
menulist:[]:[menupopup:[]:Items]].

The predicate resolves the foreign keys given in Table and generates a menulist with
all possible values. For these foreign key select menus, the referenced tables are read
and only valid values are presented in the menu; the user cannot enter wrong data. In
addition to the different foreign key values, it is also possible to include other values
from the referenced table in the menu; the generated dialog is more readable.

The range of implemented predicates is huge: we have, for example, implemented
the generation of trees used in applications like for file trees, complete input dialogs
and wizards, as well as simple input types like listboxes, radio buttons and checkboxes.

Figure 3 shows an automatically generated XUL dialog. For the dialog, the database
schema is read and drop-down menus with already assigned values corresponding to
the foreign keys and input dialog are derived by our rule set.

Figure 3. Automatically generated XUL dialog.

Database Triggered GUI Updates. Thin clients have the advantage, that they can be
used in multi-user environments. When more than one user is working with such an
application and data is transferred to the server, all the other apps have to recognize the
change of data and have to be updated. Therefore, we use database triggers to react on
such data changes.

When we insert into a database table, we call a predicate xul_odbc_insert/3,
which generates the necessary insert or update statements and triggers events for the
corresponding database table.

xul_odbc_insert(Connection, Database, Xul) :-
xul_item_to_insert_or_update_statements(

Connection, Database, Xul, Statements),
(foreach(Statement, Statements) do

(Statement = mysql_insert_tuple(
Connection, EventDB:EventTable, _)

; Statement = mysql_update_table(
Connection, EventDB:EventTable, _, _)),

call(Statement),
(xul_trigger_event(Connection, EventDB, EventTable),
!

; writeln(user, noeventspec))).

The xul_trigger_event predicate looks for registered listeners on all the acting
databases. If a listener is registered with the call

xul_register_event_listener(+Type, +Goal, +Options)

then it calls the named Goal with Options, if available. Type is used for consistency
like it is known from SQL: e.g., ON UPDATE CASCADE checks if nested GUI parts should
also be updated.

xul_trigger_event(Connection, Database, Table) :-
setof(Goal,

(xul_event_listener(Connection, Goal, Options),
member(db(Database), Options),
member(table(Table), Options)),

Goals),
(foreach(Goal, Goals) do call(Goal)).

3.3 Advanced Data Handling with SOAP

In the subsection above, we have described data handling with a short message envelope
for sending and retrieving data. In modern client/server applications, it is common to
use SOAP as a message format.

Therefore we have implemented a SOAP interface for the communication. The ex-
ample below shows such a possible message format:

<soap:Envelope
xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
<soap:Header/>
<soap:Body>

<m:calculate_storage_price

xmlns:m="http://www.uni-wuerzburg.de/xulpl">
<m:ID>245</m:ID>
<m:Date_From>2012-08-01</m:Date_From>
<m:Date_Rage_Duration>5</m:Date_Rage_Duration>

</m:calculate_storage_price>
</soap:Body>

</soap:Envelope>

The message lets the server call calculate_storage_price(2012-08-01, 5). The
server itself can now process the data, and if necessary it could answer with another
SOAP message.

4 Implementation of a Client/Server Application

For a case study on how to use XUL4PL and to test robustness and effectiveness, we
have implemented a client/server application for a multi-user environment. The server
itself is installed on a Ubuntu Linux machine, the clients are running under Windows,
Linux and Mac OS X.

Figure 4. An interface implemented with XUL. The data is derived from a MYSQL database. The
used OS is Mac OS Mountain Lion.

Figure 4 shows a part of a ressource planning system, which we have implemented
with XUL4PL. The application consists of about 40 different dialogs, tabs, and win-
dows – nearly all of them are generated automatically. The code for data retrieval could
also be reduced to a minimum with our extended version of XUL. The code for the
client/server application has about 2.800 lines of XUL code, the PROLOG code could be

reduced to only 3.000 lines with database techniques like GUI scaffolding. The lines of
code of the framework itself is here excluded.

We have performed a stress test, where the database stored about 80.000 rows and
20 different users worked simultanously with the client.

5 Conclusions and Future Work

In this paper, we have introduced our framework XUL4PL for generating declarative
thin client applications with a declarative GUI description language, and the combina-
tion of PROLOG as a backend-server.

With our framework, a developer has no need to implement new JavaScript func-
tions but can focus on the definition of the PROLOG predicates for handling the applica-
tion logic. The GUI can easily be defined with XML, and our extended version of XUL
gives the user – in combination with our predicates for easily handling the design and
behaviour – the opportunity to rapidly program user interfaces with the look-and-feel
of the client’s operating system. With the combination of XUL and ODBC, storage and
retrieval of information with databases are easy to use and fast to implement. GUI scaf-
folding and database triggered event handling are one of our main features, which help
to produce highly reliable code. Messages can be sent to both client and server with a
short message format as well as with SOAP.

We have tested our framework with a ressource planning system, which is now used
with a MYSQL and POSTGRESQL database and Linux as the server, the clients are
currently running under Windows, Mac OS and Linux.

In the future, we will test the database connectivity with other databases like Oracle,
DB2, and Microsoft SQL Server. Another feature will also be the integration of PROLOG
Server Faces (PSF), such that we can easily switch between different kinds of user
interfaces.

References

1. CABEZA, D., HERMENEGILDO M., VARMA S., The PILLOW/CIAO Library for Inter-
net/WWW Programming using Computational Logic Systems. Proc. 1st Workshop on Logic
Programming Tools for Internet Applications, JICSLP’96, 1996, Bonn, pp. 72–90.

2. DENTI, E., OMICINI, A., RICCI, A.: TUPROLOG: A Light-Weight Prolog for Internet Ap-
plications and Infrastructures. Proc. 3rd International Symposium on Practical Aspects of
Declarative Languages (PADL), LNCS 1990, Springer, 2001.

3. GOOGLE, INC. Google Web Toolkit - Developer’s Guide. Google, June 2012.
4. HANUS, M.: Type-Oriented Construction of Web User Interfaces. Proc. 8th International

ACM SIGPLAN Conference on Principles and Practice of Declarative Programming
(PPDP), 2006.

5. HANUS, M.; KOSCHNICKE, S.: An ER-based Framework for Declarative Web Programming.
Proc. 12th International Symposium on Practical Aspects of Declarative Languages (PADL),
LNCS 5937, Springer, 2010.

6. PAULSON, L. D.: Building Rich Web Applications with Ajax. IEEE Computer, vol. 38 (10):
1417, 2005.

7. PROTZENKO, J.: XUL Open Source Press, 2006.

8. SCHNEIKER, C.; SEIPEL, D.; KHAMIS, M.: Declarative Parsing and Annotation of Elec-
tronic Dictionaries. Proc. 24th Workshop on Logic Programming (WLP), 2010.

9. SEHMI, A., KROENING, M.: WEBLS: A Custom PROLOG Rule Engine for Providing Web-
Based Tech Support. Technical report, Amzi! inc.

10. SEIPEL, D.: Processing XML-Documents in Prolog. Proc. 17th Workshop on Logic Program-
ming (WLP), 2002.

11. SEIPEL, D.; PRÄTOR, K.: XML Transformations Based on Logic Programming. Proc. 18th
Workshop on Logic Programming (WLP), 2005.

12. SUN MICROSYSTEMS, INC. Mojarra Javaserver Faces - JSF 2.0 Datasheet Sun Microsys-
tems, 2009.

13. WIELEMAKER, J., HILDEBRAND, M., VAN OSSENBRUGGEN, J: Prolog as the Fundament
for Applications on the Semantic Web, Proc. ICLP Workshop on Applications of Logic Pro-
gramming to the Web, Semantic Web and Semantic Web Services (ALPSWS), 2007.

