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Abstract. We describe a PROLOG tool for slicing source code. We assume that
there exists an XML representation of the parse tree of the code. Then, we can
perform an analysis of the extended call graph based on methods from the tool
VISUR/RAR to determine the relevant predicates for the slice.
User–defined policies reflecting the different styles of programming of different
users can be plugged into the system; they are formulated in a declarative way
using the XML query language FNQUERY.
We have implemented VISUR/RAR and FNQUERY as part of the DISLOG devel-
opers toolkit DDK. So far we have applied slicing to extract several subsystems
of the DDK.
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1 Introduction

In a large software system it often becomes difficult to keep an overview of the entire
system, even if it consists of classes, modules, and methods. For debugging a system, or
for porting a subsystem to another language or dialect, it is important – but sometimes
very difficult – to extract the relevant entities. A slice for a certain target method consists
of all methods of the considered software system which are necessary to correctly run
the subsystem in focus [9, 10].

We have implemented a PROLOG slicing tool for extracting source code for a certain
functionality from a software system. Our approach is based on the extended predicate
dependency graph (call graph for predicates) of the source code, which can be handled
using the system VISUR/RAR [6], and on some further policies for handling special-
ities of the source language. We use an XML representation of the parse tree of the
considered source code.

So far we have developed an extensible collection of extraction policies for the
source language SWI PROLOG, cf. [11], which are specified declaratively as PROLOG
predicates using the library FNQUERY for XML [5], but we could also extract methods
from source code of other languages, provided that we have an XML representation of
the parse tree and corresponding slicing policies for it.

We have in mind several reasons for slicing a software system:



– We can use slicing for debugging and for extracting certain functionality of a large
software system to use it in a foreign application. One can obtain an overview of the
relevant methods much more easily, and one does not need to read and understand
unnecessary source code.

– Although in general it is very difficult to port PROLOG systems to other PROLOG
dialects, porting becomes much easier if we can focus on slices of the systems,
which could have only a small fraction of the size of the entire system.

– The integration of the slice into a foreign application becomes easier, since the
probability that some methods and global variables of the application conflict with
methods from the slice is reduced.

The rest of this paper is organized as follows: In Section 2 we give an overview
of the slicing tool. In Section 3 we present a collection of basic policies for slicing
PROLOG source code. User–defined slicing policies reflecting the programming styles
of further users can be added using the language FNQUERY, which we also describe
shortly. If slicing is done as a first step for porting a subsystem to another language or
dialect of the same language, then it often is accompanied by refactoring; in Section 4
we mention some types of refactorings that could be useful in this context. Finally, in
Section 5 we present two case studies applying the proposed slicing approach to the
toolkit DDK,

2 An Overview of the Slicing Tool

In this section we give an overview of the slicing tool, and we list some problems that
arise when we slice PROLOG source code. Moreover, we describe the XML represen-
tation of the source code and the XML query language called FNQUERY, on which the
slicing tool is based.

2.1 Slicing PROLOG Source Code

Usually, we slice at the granularity of predicates, but we can also slice at the granularity
of files. The result of the slicing process is the following:

– an archive, i.e., a directory with subdirectories containing the files with the selected
predicates in the same structure as in the file hierarchy of the source system, and

– an index file containing some settings and consult statements for the files in the
archive.

Consulting the index file from a foreign PROLOG application causes all necessary files
from the archive to be properly consulted.

The following problems arise during the slicing of PROLOG source code: Firstly, it
can be very complicated to determine the relevant predicates and files from the predicate
dependency graph, if there are meta–call predicates calling other predicates. Secondly,
we have to handle external libraries and dynamic loadings, and the consulting order



of the files in the slice needs to be the same as in the original source code. Thirdly,
some generic predicates might be defined in many files, and not all of their clauses are
relevant for the slice. Finally, the handling of predicate properties (such as dynamic or
multifile) and of global variables is difficult. In Section 3 we will discuss how we have
solved these problems based on the XML representation of the source code.

2.2 Source Code in Field Notation / XML

In the following we will briefly describe the used XML representation of PROLOG
source code, the corresponding PROLOG structure, which we call field notation, and
the XML query language FNQUERY; a more detailed introduction to the DDK library
FNQUERY can be found in [5]. E.g., we can parse a PROLOG file inc.pl consisting
of the single clause

increment(X, Y) :-
Y is 1 + X.

into the following XML representation:

<file path="inc.pl" module="user">
<rule operator=":-">

<head>
<atom module="user" predicate="increment" arity="2">

<var name="X"/> <var name="Y"/>
</atom>

</head>
<body>
<atom module="user" predicate="is" arity="2">

<var name="Y"/>
<term functor="+">
<term functor="1"/> <var name="X"/>

</term>
</atom>

</body>
</rule>

</file>

We represent an XML element as a PROLOG term structure T:As:C, which we call
FN triple: it consists of the tag T, an association list As for the attribute/value pairs, and
a list C containg the subelements. E.g., the PROLOG statement Y is 1 + X becomes
the term structure atom:As:C shown below. Our parser from XML to field notation is
based on the XML parser of SWI PROLOG, and we derive the field notation as a slightly
more compact variant of the XML data structure of SWI PROLOG.

For obtaining the representation Code of a PROLOG program in field notation we
use the predicate program_file_to_xml/2 – without converting to an XML file
first. From the FN triple Code we can select a body atom with the predicate symbol is
using the infix predicate :=/2 of FNQUERY:



?- program_file_to_xml(’inc.pl’, Code),
Atom := Code^rule^body^atom::[@predicate=is].

Code = ...,
Atom =

atom:[module:user, predicate:is, arity:2]:[
var:[name:’Y’]:[],
term:[functor:+]:[

term:[functor:1]:[], var:[name:’X’]:[]]]

Yes

Every component ^T of the used path expression selects a corresponding subelement
with the tag T, and the condition [@predicate=is] checks that the value of the
attribute predicate is equal to is.

3 Basic Policies for Slicing PROLOG Source Code

For slicing a PROLOG system w.r.t. to a target predicate we have to take into account
the special aspects of PROLOG. The set of potentially relevant files includes files that
are loaded using statements such as consult, use_module, or ensure_loaded.
Within this set of potentially relevant files we search for the transitive definition of the
target predicate. Here, we can use the well–known concept of the predicate dependency
graph, cf. Figure 1, but we have to pay special attention to meta–call predicates [1, 2].

Assume, e.g., that we would like to extract the predicate increment/2, which is
defined in the file my_arithmetic.pl:

:- use_module(arithmetic).
:- consult([portray_predicates, test_predicates]).

increment(X, Y) :-
call(add(1, X, Y)),
portray(increment(X, Y)).

test(my_arithmetic, increment) :-
increment(3, 4),
message(sucessful_test, increment(3, 4)).

Then, the following file arithmetic.pl, which exports the predicate add/3, is
potentially relevant, and it can be found due to the use_module–statement:

:- module(arithmetic, [add/3]).

add(U, V, W) :-
W is U + V.



Fig. 1. Extended Predicate Dependency Graph in VISUR/RAR

But, at first sight it is not clear that increment/2 transitively depends on add, which
can only be inferred since we know that call is a meta–call predicate. Moreover, due
to the consult–statements in my_arithmetic.pl, two further files are poten-
tially relevant. Since portray_predicates.pl defines the pretty–printing predi-
cate portray/1 on which increment/2 depends, this file needs to be in the slice.
For ensuring the correctness of the produced slice, the test clause needs to be in the
slice, i.e., we include the file test_predicates.pl containing the test suite, too.

3.1 The Potentially Relevant Files

The collection of potentially relevant files cannot be determined from the directory
structure. All files that are loaded using consult/1 from other potentially relevant
files are also potentially relevant. But, moreover, the files must be consulted in the
correct order. Sometimes, consulting a file calls a predicate that depends on other predi-
cates. Then, it must be ensured that these predicates are available, before the depending
predicates are called. We determine the order of the files using a call

code_to_sequence(Code, Sequence).

The predicate code_to_sequence/2 has to be defined for each style of program-
ming. For the DDK, it can be based on the file dislog_units.

All files that are consulted from other potentially relevant files are potentially rele-
vant for the slice. E.g., external libraries are frequently loaded using use_module/1,
and the further modules that they require are loaded using ensure_loaded/1.



3.2 Dependency Graphs with Meta–Call Predicates

The transitive definition of a predicate p consists of all predicates q, which are a member
of the definition of the predicate p together with the transitive definition of these pred-
icates q. In the previous example, the transitive definition of increment/2 consists
of the predicates call/1, portray/1, add/3, and is/2. The latter two predicates
are reached, since the meta–call predicate call/1 calls add/3.

Meta–Call Predicates We need to know which predicates are meta–call predicates and
are able to call other predicates in one or more of their arguments. This is important in
order to obtain the entire transitive definition of a predicate.

– In general it is impossible to automatically determine the predicates (and their ar-
ities) that are called from meta–call predicates. Then, such information has to be
provided by the user by specifying the meta–call predicates in a configuration file.
Otherwise, the slice will not be complete/correct. However, we can analyze many
calls to meta–call predicates using some heuristics.

– For user–defined meta–call predicates, we additionally have to determine the ar-
guments containing potential goals. In order to support the user in collecting the
user–defined meta–call predicates, the system is able to automatically generate a
list of possible meta–call predicates by searching for rules that call other already
known meta–call predicates, such that one of the arguments in the call is connected
to an argument of the head of the rule by a sequence of body atoms.

– For built–in meta–call predicates, we already know the arguments containing the
goals that will be called, and in many cases we can infer their predicate symbol
and arity. If the goal arguments are variables, then we track their bindings. E.g.,
if we can determine the predicate p and arity N of Goal, then we know that
checklist(Goal, Xs) calls p with the arity N + 1; similarly, maplist/3
adds 2 to the arity of the called goal.

Extended Dependency Graphs The call calls_pp(Code, P1/A1, P2/A2) de-
termines the predicates P2/A2 that are called by P1/A1 in the PROLOG code repre-
sented by the FN triple Code. If we implement our policies correctly as clauses for
calls_pp/3, then the transitive definition of the target predicate can be computed as
the transitive closure of calls_pp/3.

E.g., for an atom call(Goal), we try to determine the predicate and the arity of
Goal. If the goal is created at runtime, then this is not always possible. But often, Goal
is bound by statements such as Goal = add(1,X,Y) or Goal =.. [P,1,X,Y],
where Pwas assigned to add before. The following rule for the predicatecalls_pp/3
determines a rule Rule with the head predicate P1/A1, such that there exists a body
atom of the form call(Goal). In XML this atom is encoded as

<atom module="user" predicate="call" arity="1">
<var name="Goal"/>

</atom>



Rule and Goal are selected from the FN triple Code using suitable path expressions
in FNQUERY. Within Rule we search for the predicate P2/A2 of Goal using the
predicate goal_to_predicate/4:

calls_pp(Code, P1/A1, P2/A2) :-
Rule := Code^rule::[

^head@predicate=P1, ^head@arity=A1],
Goal := Rule

^body^atom::[
@module=user, @predicate=call, @arity=1]

^var@name,
goal_to_predicate(Rule, Goal, [], P2/A2).

goal_to_predicate(Rule, Goal, Goals, P/A) :-
Atom := Rule^body^_^atom::[^var@name=Goal],
[user, =, 2] := Atom@[module, predicate, arity],
( [P, A] := Atom^term@[functor, arity]
; G := Atom^var@name,
not(member(G, Goals)),
goal_to_predicate(Rule, G, [Goal|Goals], P/A) ).

It could happen that P2/A2 becomes the predicate of Goal by a sequence of assign-
ments. E.g., for the following rule for the predicate P1/A1=increment/2, the predi-
cate goal_to_predicate/4 determines P2/A2=add/3 by subsequently looking
at Goal and G, respectively:

increment(X, Y) :-
G = add(1, X, Y),
Goal = G,
call(Goal).

The second call to goal_to_predicate/2 determines the atom Atom representing
the equality G = add(1, X, Y), and then it selects the functor add and the arity 3
of the term argument of Atom.

3.3 Slicing of Individual Clauses

For some predicates the slice should only include individual clauses rather than all of
the defining clauses. E.g., the defining clauses of generic predicates might be spread
over many different files; examples from the DDK are dislog_help_index/0, the
pretty–printer portray/1, and the test predicate test/2. In a slice we only need
some of the clauses, and including all of them would be highly redundant.

We do not consider these generic predicates when we compute the set of potentially
relevant files. But, when we include individual clauses into the slice, then we have to
include the transitive definitions of all predicates that are called from them as well.



E.g., in the DDK many files contain some tests – which are usually located at the
end of the files. For ensuring that the slice works correctly, the slice should include all
clauses for test/2 calling sliced predicates; in practice, most of these clauses will be
contained in the potentially relevant files. In our example, for testing increment/2,
we obviously need to include the definition of message/2 in the slice.

3.4 Declarations of Predicate Properties

We have to detect the properties of all predicates in the slice, i.e., the corresponding dec-
larations of the types dynamic, multifile, or discontiguous. Some of these
declarations will be located in centralized files of the system, others are contained in
separate files for each unit. Since these files might not be reached by the file depen-
dency graph, the properties for these predicates have to be extracted using a special
policy, such that they can be included into the slice.

predicate_to_property(Code, Pred/Arity, Property) :-
Atom := Code^rule^body

^atom::[@predicate=Property],
( Term := Atom^term::[@functor=’/’]
; Term := Atom^_^term::[@functor=’/’] ),
Pred := Term-nth(1)^term@functor,
Arity := Term-nth(2)^term@functor.

E.g., in the DDK the declaration :- multifile test/2. for the test predicate
can be found in the file test_predicates.pl.

3.5 Global Variables

In the DDK we have a generic concept of global variables, which are implemented using
assert and retract. The global variables are accessed using the calls

dislog_variable_get(+Variable, ?Value),
dislog_variable_set(+Variable, +Value).

It might happen that the value of a relevant global variable is set in a file – either at con-
sultation time or at runtime – that is not contained in the slice. Thus, the following pred-
icate determines – on backtracking – the assignments of all variables Variable that
are set in a file File using a call dislog_variable_set(Variable, Value):

file_to_assignment(Code, File, Variable:Value) :-
Variable := Code^rule::[@file=File]^body

^atom::[@predicate=dislog_variable_get]
-nth(1)^term@functor,

Atom := Code^rule^body
^atom::[@predicate=dislog_variable_set],

Variable := Atom-nth(1)^term@functor,
Value := Atom-nth(2)^term@functor.



In this rule, the path expression -nth(N)^term selects the N–th subelement (for
N=1,2) with the tag term of an FN triple.

In the DDK, there also exist further similar concepts for global variables of subsys-
tems, and we use the well–known predicate gensym/2, cf. [2].

4 Refactoring and Slicing

Refactoring methods [3] provide an effective tool in the context of slicing source code:
Such methods modify source code without changing its external behavior. Refactoring
methods have demonstrated their practical impact in numerous object–oriented soft-
ware projects. They are strongly connected with appropriate test methods that are ap-
plied before and after performing the refactoring; thus, the preservation of the external
behavior can be monitored.

Slicing is frequently accompanied or followed by refactoring. In order to adapt the
slice to the software system in which it will be integrated, sometimes it is necessary
to move or rename predicates, or to remove consult–statements. In the following,
we briefly discuss some refactoring methods that are suitable in the context of slicing
PROLOG code.

4.1 Predicate–Based Refactorings

– Move Predicate: A predicate is moved into a module. This refactoring may be
useful for test predicates which are located in distributed modules. It is reasonable
to apply this refactoring before performing the slicing procedure.

– Rename Predicate: This refactoring is usually performed after the slicing operation
in order to adapt the slice to the target language, which will usually be a different
PROLOG dialect. It is especially useful when slicing source code in order to allow
for a simpler porting to another language dialect.

– Extract Predicate: Similar to the previous refactoring, this method is also useful,
when we want to prepare the slice for the adaptation to another language dialect.
Then, we extract hostile predicate blocks from the slice. In a subsequent step, the
extracted blocks are replaced by suitable predicate calls from the target language.

– Remove Unused Predicates: If we slice at the granularity of files, then we may think
of removing unused predicates from the files in the slice.

4.2 Module–Based Refactorings

Schrijvers et al. [8] also discuss useful refactorings based on the granularity of modules:
merge modules, remove dead code intra–module, rename module, split module. In the
context of slicing source code at the granularity of files these refactorings can be useful,
if the sliced system does not need to allow for file–based updates.



5 Case Studies

We present two case studies applying the proposed slicing approach to the DISLOG De-
velopment Kit DDK, which we are developing using XPCE /SWI PROLOG [4]. The func-
tionality ranges from (non–monotonic) reasoning in disjunctive deductive databases to
various PROLOG applications, such as a PROLOG software engineering tool, and a tool
for the management and the visualization of stock information.

Currently, the DDK consists of about 14.000 clauses; they are located in 440 files
containing a total of about 100.000 LoC (lines of code). We have sliced out two subsys-
tems, Minesweeper and FNQUERY. Slicing at the granularity of files has reduced the
size of the system to subsystems of 16% (Minesweeper) and 4% (FNQUERY), respec-
tively, of the original size, and slicing at the granularity of predicates has further reduced
the size of the system to subsystems of 5% and 0.8%, respectively, of the original size.

The computation time is divided in a preprocessing time and the slicing time. The
preprocessing takes about 0.6 msec per LoC on an Intel Pentium 1.1 GHz, 512 MB
RAM. For the DDK the preprocessing took about 10 minutes. The preprocessing has to
be done only once; its result can be used for each slicing operation, and for further op-
erations like computing dependency graphs. The slicing operations took about 28.4 sec
for Minesweeper and about 6.6 sec for FNQUERY, respectively.

Tests were also extracted and did sucessfully pass after slicing.

5.1 The Game Minesweeper

The slice for the game Minesweeper, which is a part of the DDK, should contain all files
that are needed for a stand–alone version including the graphical user interface. Thus,
we have extracted the transitive definition of the target predicate create_board/0,
which creates the GUI of the game, cf. Figure 2.

In addition, we have included the transitive definition of all predicates called by
the buttons New Game, Show, Help, Help*, and Quit, of the GUI. Clicking on
these buttons calls a meta–call predicate, which calls another predicate, namely the
predicates new_game/0, show_board/0, clear_board/0, and twice the help
predicate mine_sweeper_decision_support/1, respectively. Since the syntax
for meta–calls is often used in different ways, every user can write his own policies
for obtaining the transitive definition of these calls, but one can also manually add
predicates to the list of relevant predicates.

The consult file index.pl for the slice – a fragment is shown below – declares the
predicate properties, sets all necessary global variables and consults the relevant files:

:- dynamic ...
:- multifile test/2, ...

:- dislog_variable_set(
smodels_in, ’results/smodels_in’).



Fig. 2. Minesweeper

:- consult([
’library/loops.pl’,
’library/ordsets.pl’, ...
’sources/basic_algebra/basics/operators’,
’sources/basic_algebra/basics/meta_predicates’,
...]).

test(minesweeper, create_board) :-
create_board.

5.2 The Field Notation and FNQUERY

In the second case study we have created a slice for the target predicate :=/2 of FN-
QUERY, which is defined in the DDK module xml/field_notation. This slice
consists only of about 800 LoC, which are extracted from 21 files of the DDK. 19 of
these files are from regular DDK modules, which are located in the directory sources,
and two of the files are library files from the directory library. The slice is derived
from

– 8, i.e. 50%, of the files of the module xml/field_notation,
– 7, i.e. 25%, of the files of the module basic_algebra/basics,
– 3 files from the unit development, e.g., the file
development/refactoring/extract_method,

– one file from the module basic_algebra/utilities, and
– the library files lists_sicstus.pl and loops.pl from the separate direc-

tory library.



6 Final Remarks

The slicing tool has been built based on two modules of the toolkit DDK: the sys-
tem VISUR/RAR for visualizing and reasoning about source code, and the XML query
and transformation language FNQUERY. It can be used for extracting slices from large
software packages, provided that we have an XML representation for the considered
language. So far we have applied it for extracting several subsystems of the DDK.

The tool can be extended by plugging in further user–defined slicing policies reflect-
ing different styles of programming. Since the source code is represented in XML, slic-
ing policies can be specified declaratively using the XML query language FNQUERY,
which is fully interleaved with PROLOG.

We have used XML representations of PROLOG or JAVA source code for other pur-
poses as well: for comprehending and visualising software with VISUR/RAR [6], for
refactoring PROLOG programs and knowledge bases [5, 7], and for clone detection in
PROLOG and JAVA source code.
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