
XML Transformations Based on Logic Programming

Dietmar Seipel1 and Klaus Prätor2

1 University of Würzburg, Institute for Computer Science
Am Hubland, D – 97074 Würzburg, Germany

seipel@informatik.uni-wuerzburg.de
2 Berlin–Brandenburg Academy of Sciences and the Humanities

Jägerstr. 22–23, D – 10117 Berlin, Germany
praetor@bbaw.de

Abstract. Critical or scientific editions are a promising field for the application
of declarative programming, which can facilitate the parsing and the markup of
texts, and the transformation of XML documents.
We have used a logic programming–based approach for the production of critical
editions: In particular, we propose a transformation of XML documents based on
a compact and intuitive substitution formalism. Moreover, we have developed a
new XML update language FNUPDATE for adding navigation facilities.
We have implemented a transformation tool in SWI–PROLOG, which integrates
and interleaves PROLOG’s well–known definite clause grammars and the new
substitution formalism.

Keywords. PROLOG, grammars, critical editions, XSLT

1 Introduction

The mainstream approach to XML processing is based on concepts such as the Ex-
tensible Style Sheet Language for Transformations (XSLT), the XML query language
XQuery, and the underlying path language XPATH. Originally, XSLT was meant as an
advanced sort of Cascading Style Sheets (CSS), but then it developed into a tool for the
transformation of markup – the real formatting tool was delivered afterwards as XSL
Formatting Objects (XSL–FO).

The way XSLT works resembles remarkably the way of PROLOG. The transforma-
tion is done by traversal of a tree, and by testing the matching of nodes against patterns
in the style sheet. Comparing PROLOG and XSLT, of course the mainstream character
and the extent of support are arguments in favour of XSLT, but there are also some
drawbacks [9]. Firstly, XSLT is not a universal programming language, which means
that not all problems are solvable within this framework. Secondly, XSLT is not de-
signed from ground up as a declarative language. In simple examples this is not easily
visible, but as applications get more complex you see the barely disguised imperative
background shining through in control structures (xsl:if, xsl:for-each etc.) and pattern
matching. A detailed comparison of XSLT and PROLOG can be found on the WWW
pages of SWI–PROLOG [13].



Logic programming is very well–suited for natural language processing (NLP) [8]
and for text processing in general. In particular, definite clause grammars (DCGs) are
a powerful declarative approach to writing parsers [11]. According to Richard O’Keefe
the great advantage of DCGs is that it is important not to think about the details of
the translation: Any time you have stereotyped code, using a translator to automatically
supply the fixed connection patterns means that the code is dramatically shorter and
clearer than it would otherwise have been, because you are hiding the uninformative
parts and revealing the informative parts. Thus, the code is easier to write and to read,
and it has fewer mistakes, because the pattern is established once in the translator and
thereafter tirelessly applied with machine consistency. DCGs are just one example for a
more general idea (cf. [10, 14]): define a little language embedded in PROLOG syntax,
write an interpreter for that language, and devise a translator which turns constructs of
that language into the (useful, non–book–keeping) code that the interpreter would have
executed for those constructs.

Prätor [15] has shown that techniques of logic programming are especially apt for
the structures and the specific problems of critical editions. DCGs and a graph traver-
sal had been used for transforming between the different layers of XML documents in
the pilot project Jean Paul. In the present paper we extend this approach by proposing a
more compact and intuitive substitution formalism, which can be interleaved with PRO-
LOG’s built–in DCG formalism, and we have developed a new XML update language
FNUPDATE for adding navigation facilities.

The rest of this paper is organized as follows: In Section 2 we review some charac-
teristics of critical editions in general, and we give an introduction to the different types
of XML structures used within the pilot project Jean Paul. In Section 3 we show how
XML documents can be represented in PROLOG, and we present transformations based
on sequential scans and on tree traversals, respectively. Finally, in Section 4 we use an
XML update language FNUPDATE, that we have implemented in PROLOG, for adding
topology and navigation facilities to XML documents.

2 Critical Editions

Critical editions are notoriously difficult sorts of text, as they form not one linear text
but rather a complex of different variants and readings of a text, which are to be han-
dled within a critical apparatus (think of a set of foot– or endnotes). They are enriched
by commentaries with historical and philological information and made accessible by
indices and directories. Other peculiarities are the mostly large extent of the editions
and the fact that the period of production as well as of usage is very long reaching
from decades to centuries. Especially in electronic editions it is necessary to care for
sustainable availability and usability.

Some problems are due to the print form. Lack of space leads to elaborate systems
of abbreviations and to steady considerations, which material and information can still
be incorporated and which one has to be left out. The print can hardly handle the in-
herent nonlinearity of the documents, and of course there is no thought of adaptation to

2



different situations of usage. Compared to the print form, electronic editions show some
advantages, which result from the advanced ways of navigation and retrieval and from
the possibility to provide different types of output. The larger storage capacities provide
room for additional information regarding, e.g., involved persons or historical circum-
stances. Hypertext capacities facilitate the constitution of temporal, spatial or thematic
relations. Different editions may be nested and entirely new information spaces may be
created in this way.

2.1 The Pilot Project Jean Paul

The Academy of Sciences and Humanities of Berlin–Brandenburg is the home of many
edition projects of all ages – editions in a broader sense including aside from work
editions also source editions and dictionaries. Most of these editions are still focussed
on the print form, but we are working on the migration to genuine electronic editions.

Fig. 1. Comment to a Letter of the Jean Paul Edition

Jean Paul has been a frequently read and appreciated author of novels in the times
of Goethe. The Jean Paul Edition is organized in 6 volumes, each of which consists of
about 150 letters to Jean Paul. The two aims of the pilot project were to produce an elec-
tronic equivalent of the just finished first volume, and to demonstrate some additional
features of an electronic edition in an enriched selection. Aside from the usual contents
it provides a simple full text search, and – most importantly – three paths to the letters
via correspondent, year or place of the respective letter.

In this paper we focus on the comments to the letters. For each letter there exists
one comment; the comment to the first letter of the first volume is shown in Figure 1.

3



The source texts of the edition were originally produced with Microsoft Word,
which is not a desirable choice as an editor’s tool at all, but just legacy. They were
subsequently translated to a migration layer in HTML by a commercial tool. In the Sec-
tions 3 and 4 we will show transformations from this migration layer layer to the archive
layer of the edition. The timeframe, in which a critical edition should be usable, is very
long. Different users or situations may demand different presentations, which can then
be produced from the archived documents.

2.2 Transformation Techniques

Two orthogonal concepts are used for transforming documents, DCGs and subsititution
rules, which can also be mixed by calling them from each other:

– We use DCGs for grouping elements that are on the same level in the source doc-
ument to form complex, nested structures. They are well–suited for parsing a se-
quence of items by a sequential scan.

– We use subsititution rules for transforming a complex, nested document. They tra-
verse a tree–shaped XML document recursively: first the subelements of an element
are transformed, then the resulting element is also transformed.

We propose a new, compact and intuitive substitution formalism, which can be inter-
leaved with PROLOG’s well–known built–in DCG formalism,

3 Transformation of XML Documents

The transformation of XML documents is a perfect task for declarative programming.
The first success is to see how seamlessly an XML document converts into a gen-
uine PROLOG structure. Subsequently, we show how to strip off unnecessary graphical
markup and to transform layout markup which transports meaning into explicit XML
tagging. This transforms from the migration to the archive layer.

3.1 XML Documents in PROLOG

Essentially, an XML or HTML element can be represented as a nested term structure
containing the tag name, the attribute list, and the content (possibly also a list or empty).
There are some libraries available to support this sort of transformation in both direc-
tions. As far as we know the first was the HTML tool PiLLoW for CIAO PROLOG [4],
which also contains some CGI– and HTTP–support. A similar library for SGML exists
for SWI–PROLOG.

The tool FNQUERY [16], which was implemented in SWI–PROLOG, uses a slightly
abbreviated – but similar – term structure. E.g., an XML element

4



<p style="margin-top:0;margin-bottom:0;">
<font face="Times New Roman" size="3">

<em>1,</em> 18-19
<strong>Gehen </strong> bis
<strong>sind] </strong>
Dem folgenden Brief Vogels ...

</font>
</p>

is represented as

p:[style:’margin-top:0;margin-bottom:0;’]:[
font:[face:’Times New Roman’, size:3]:[

em:[’1,’], ’18-19’,
strong:[’Gehen ’], bis, strong:[’sind] ’],
’Dem folgenden Brief Vogels ...’ ] ]

called FN triple, where the attribute list can be omitted, if it is empty. Here, a triple is
represented by means of operator definition in the form T:As:C, where As is an asso-
ciative list of attribute/value pairs in the form a:v. Text elements (such as ’18-19’)
are simply represented as PROLOG atoms. The PROLOG library FNQUERY goes be-
yond the pure transformation by providing additional means to select and handle sub-
structures, comparable to XQuery or F–logic. E.g., if Xml is the FN triple above, then
the call X := Xml^font@face selects the value ’Times New Roman’ of the
face–attribute of the nested font–element and assigns it to X. A detailed description
of the selection features of FNQUERY can be found in [16].

3.2 Complex Transformations by Traversal of Documents

The predicate transform_fn_item/2 transforms an FN triple Item_1 (e.g., from
the migration layer) into another FN triple Item_2 (e.g., from the archive layer) based
on facts for the predicate --->/2:

transform_fn_item(T:As:Es, Item) :-
maplist( transform_fn_item,

Es, Es_2 ),
( T:As:Es_2 ---> Item
; As = [],
T:Es_2 ---> Item ).

transform_fn_item(declare(_X), ’’).
transform_fn_item(Item, Item).

This new subsitution formalism has been implemented within the subsystem FN-
TRANSFORM of FNQUERY. It generalizes XSLT style sheets, which can be seen as a
collection of transformation rules. These template rules in XSLT have the form of

5



<xsl:template match=Pattern>
Template</xsl:template>

Pattern is an XPATH expression, which matches with some nodes of the document
tree, and Template is the content which is to be inserted at this location. This content
may contain the possibly recursive application of the same or other template rules. For
doing this in PROLOG, we use substitution rules of the form

Item_1 ---> Item_2 :- Condition.

If a term matches the pattern Item_1 (and of course all capacities of the PROLOG
unification can be used to do this matching) and the call of Condition (which can be
a standard PROLOG goal) succeeds, then the pattern will be replaced by the template
Item_2.

3.3 From the Migration Layer to the Archive Layer

On the migration layer the text is represented as a flat sequence of paragraph elements,
as shown in the previous subsection. The following substitution rules transform this
sequence to a nested structure.

html:_:Es ---> Es.
head:_:_ ---> ’’ :- assert(commentHead).
body:_:Es_1 ---> comment:Es_2 :-

jean_paul_comment(comment:Es_2, Es_1, []).

p:As:Es ---> signedp:Es :-
right := As^align.

p:_:Es ---> notep:Es.

font:As:Es ---> lat:Es :-
’small-caps’ := As^’font-variant’.

font:_:[X] ---> X.
em:_:Es ---> commentHead:Es :- retract(commentHead).
em:_:Es ---> page:Es.

strong:_:Es ---> lemma:Es.
u:_:Es ---> spaced:Es.

T:As:Es ---> T:As:Es.

The body of the HTML document is transformed into a comment–element, and the
first em–element in the body becomes the header of this comment; this is acchieved by
the assertion of commentHead. Subsequent em–elements are transformed to page–
elements. The following text is the result of the transformation. It is archived, and it

6



serves as the basis for the production of different presentation layers. In the archive
layer the comment consists of a header, which is a commentHead–element, and two
blocks, which are given by ednote–elements with a type–attribute having the value
Überlieferung and Erläuterungen, respectively.

<comment>
<commentHead>1. Von Erhard Friedrich Vogel.

Rehau, 6. Mai 1781, Sonntag
</commentHead>
<ednote type="Überlieferung">

<notep>H: BL, Eg. 2008. 1 Bl. 2ř, 1/2 S.</notep>
...

</ednote>
<ednote type="Erläuterungen">

...
<notep>

<page>1,</page> 18-19
<lemma>Gehen</lemma> bis <lemma>sind]</lemma>
Dem folgenden Brief Vogels ist zu entnehmen, ...

</notep>
</ednote>

</comment>

The grouping of a comment into a header and two blocks – in the third substitution rule
above – has been acchieved using the predicate jean_paul_comment/3, which is
defined by the following DCG rules:

jean_paul_comment(comment:Es) -->
header(H),
block(’Überlieferung’, X),
block(’Erläuterungen’, Y),
{ append(H, [X, Y], Es) }.

header([notep:[]:[commentHead:Es_1]|Es_2]) -->
sequence_of_notep([notep:[]:[page:_:Es_1]|Es_2]).

block(Type, ednote:[type:Type]:Seq) -->
sequence_of_notep([notep:_:[Type]|Seq]).

sequence_of_notep([notep:As:Es]) -->
[notep:As:Es].

sequence_of_notep([notep:As:Es|Seq]) -->
[notep:As:Es],
sequence_of_notep(Seq).

According to the DCG rules, the header can consist of several notep–elements; the
first of these elements is derived from an FN triple notep:[]:[page:_:Es_1] that

7



is transformed to another FN triple of the formnotep:[]:[commentHead:Es_1].
Using furher DCG rules the notep–elements of the archive layer can be transformed
to note–elements, such as the following:

<note id="7">
<remark>

<position page="1" line="18-19"/>
<lemma>Gehen</lemma> <lemma>sind</lemma>

</remark>
Dem folgenden Brief Vogels ist zu entnehmen, ...

</note>

The archive layer preserves all information, which may be helpful in some case,
and omits all presentation specific features.

4 Update of XML Documents

In this section we investigate transformations that are applied to the archive layer for
producing a presentation layer or a presentation layer with navigation utilities, respec-
tively. The transformations are based on the XML update language FNUPDATE, which
we have implemented in PROLOG within FNQUERY.

4.1 Pruning of XML Documents

Using FNUPDATE we delete the remark–elements within the ednote–elements for
Erläuterungen, since they shall not be displayed at the presentation layer:

xml_extract_notes(Xml_1, Xml_2) :-
Xml_2 := Xml_1 <-> [

^ednote::[@type=’Erläuterungen’]
^note^remark ].

In FNUPDATE an XML element given by an FN triple Xml_1 can be pruned by delet-
ing certain subelements. <-> is a binary operator, which indicates that within the fol-
lowing pair of brackets it will be specified by a path expression which subelements
should be deleted. In the example, certain remark–elements are deleted; the condi-
tion @type=’Erläuterungen’ assures that only ednote–elements with the value
Erläuterungen in their type–attribute are affected.

The PROLOG predicate xml_extract_notes/2 is applied to a comment–
element Xml_1, and thus we don’t have comment in the selection path. The result
Xml_2, which forms the presentation layer, is also a comment–element; compared to
Xml_1 the note–elements are simplified; in our example we obtain

8



<note id="7">
Dem folgenden Brief Vogels ist zu entnehmen, ...

</note>

as a simplified subelement of the presentation layer structure.

4.2 Topology and Navigation

The presentation layer is not meant as the graphical interface, which is primarily pro-
duced by the style sheet and the browser, but as an organisation of the content with
regard to different user interests.

A very important task in this context is navigation. We suggest to distinguish be-
tween topology and navigation with reference to a document. Topology refers to the
potential connections of document elements, whereas navigation means the realised
and used connection paths. In accordance with this convention, providing the topology
would be part of the archive layer, whereas the presentation has to care of the naviga-
tion. While topology is a matter of conceptual and structural relations, navigation has
also to take into account technical and aesthetic aspects of the realisation. Other user
interests demand different ways of access and navigation, but these should be generated
from the one archive layer, or better: the archive layer should be designed in a way that
multiple navigations can be produced with little effort.

The information from the document, even in its tagged archive format, may not be
enough to produce the navigation. In such case we need meta information, incorporated
into the document (e.g., as RDF) or kept in a separate file or database. Here again PRO-
LOG is a good choice to handle and inference these structures. The presentation layer
may be seen as a virtual layer on top of documents and meta information. Derived from
such meta information are both the navigation headlines of the letters and the differ-
ent directories of persons, years and places, which provide access to the content, cf.
Figure 2.

Another navigation task is the creation of indices, e.g. for persons mentioned in the
document. For this purpose we would insert a durable tag that marks the person names,
like <person>Name</person>, on the archive layer. This provides the basis for
the insertion of the appropriate linking structures on the presentation layer.

Creating an Index for an XML Document

The following predicate adds anchors to a given word within an FN term using FNUP-
DATE: If a given word Name occurs in the content list of a note–element, then the
word is replaced by an element <person>Name</person>:

xml_enrich_with_anchors(Name, Xml_1, Xml_2) :-
Xml_2 := Xml_1 <-+> [

9



Fig. 2. Navigation Utilities

^ednote^note^child::’*’::[
^self::’*’=N, name_contains(Name, N)]

^person:[N] ].

This is initiated by the binary replacement operator <-+>/2 in the path expression.
E.g., if we want to enrich an XML document containing the element

<note id="7">
Dem folgenden Brief Vogels ...

</note>

with anchors to words containing Vogel, then we assume that the content of this ele-
ment is split into tokens, i.e., that we have the following FN triple:

note:[id:7]:[
’Dem’, folgenden, ’Brief’, ’Vogels’, ... ].

Using the FNUPDATE statement above we obtain the following:

<note id="7">
Dem folgenden Brief <person>Vogels</person> ...

</note>

Finally, we create the index structure from the enriched document. For each in-
serted anchor, the following predicate extracts a corresponding reference of the form
<a href="#N">Name</a> from the updated document, where the ID N is gener-
ated using the call get_num(anchor_id, N):

10



xml_extract_references(Xml, index:Anchors) :-
findall( a:[href:R]:[Name],

( [Name] := Xml^_^person^content::*,
get_num(anchor_id, N),
File := Xml@file,
concat([File, ’#’, N], R) ),

Anchors ).

Observe, that the selection Xml^_^person yields a complete person–element, such
as person:[]:[’Vogels’]. The subsequent expression ^content::* selects
its content list. Thus, in the rule above Name would be assigned to ’Vogels’.

Given a presentation layer file letter_17 containing the enrichednote–element
above, we obtain an index with a reference to letter_17:

<index>
<a href="letter_17#1">’Vogels’</a>
...

</index>

This index will be stored in a separate XML file.

5 Final Remarks

The introduction of the substitution predicate --->/2 extends the ideas of the DCG
operator -->/2, which is usually used for transformations on flat sequences of tokens,
to transformations on complex structures based on tree traversals. Using --->/2, we
have simplified the transformation formalism of [15].

We have used the sublanguage FNUPDATE of FNQUERY for a compact specifica-
tion of updates to the archive layer of the critical Jean Paul edition. This was used for
the construction of further navigation structures in addition to the hierarchical table of
contents, cf. Figure 2, which we had before. Now we have a word register as well. In
the future we want to base the creation of the whole navigation structure including the
hierarchical table of contents on FNUPDATE and FNTRANSFORM.

At the moment the handling of meta data is a rather modest matter in our project.
The next step will be to incorporate meta information in RDF and to get nearer to
the Semantic Web. Without doubt this is a very interesting and important development
for the future of critical editions. Examples of logic programming tools and libraries
for RDF are to be found for example within SWI–PROLOG and within the Mozilla
project [3]. As RDF is a format which must be supplemented by a separate means for
inference, PROLOG (and companions) will be our favourite also in this field.

11



References

1. S. Abiteboul, P. Bunemann, D. Suciu: Data on the Web – From Relations to Semi–Structured
Data and XML, Morgan Kaufmann, 2000.

2. G. Antoniou, F. van Harmelen: A Semantic Web Primer, MIT Press, 2004.
3. D. Brickley: Enabling Inference,

http://www.mozilla.org/rdf/doc/inference.html.
4. D. Cabeza, M. Hermenegildo: WWW Programming using Computational Logic Systems

(and the PiLLoW / CIAO Library), Proc. Workshop on Logic Programming and the WWW,
at WWW6, 1997.

5. S. Ceri, G. Gottlob, L. Tanca: Logic Programming and Databases, Springer, 1990.
6. M.A. Covington: Natural Language Processing for Prolog Programmers, Prentice Hall, 1993.
7. G. Gazdar, C. Mellish: Natural Language Processing in PROLOG: An Introduction to Com-

putational Linguistics, Addison–Wesley, 1989.
8. G. Gupta, E. Pontelli, D. Ranjan, et al.: Semantic Filtering: Logic Programming Killer Ap-

plication, Proc. Symposium on Practical Aspects of Declarative Languages PADL 2002,
Springer LNCS 2257.

9. M. Leventhal: XSL Considered Harmful,
www.xml.com/pub/a/1999/05/xsl/xslconsidered_1.html.

10. L.S. Levy: Taming the Tiger – Software Engineering and Software Economics, Springer,
1987.

11. R.A.O’Keefe: The Craft of Prolog, MIT Press, 1990.
12. C. Lehner: PROLOG und Linguistik, Oldenbourg Verlag, 1990.
13. B. Parsia: Long story about using SWI–PROLOG, RDF and HTML Infrastructure, especially

Chapter 6: DCGs Compared to XSLT,
http://www.xml.com/pub/a/2001/07/25/prologrdf.html.

14. F. Pereira, S. Sheiber: PROLOG and Natural–Language Analysis, Center for the Study of
Language and Information, 1987.

15. K. Prätor: Logic for Critical Editions, Proc. Intl. Conference on Applications of Declarative
Programming and Knowledge Management INAP 2004.

16. D. Seipel: Processing XML Documents in PROLOG, Proc. 17th Workshop on Logic Pro-
gramming WLP 2002.

17. M. Smith, C. Welty, D. McGuinness: OWL Web Ontology Language Guide, February 2004,
http://www.w3.org/TR/2004/REC-owl-guide-20040210/.

18. J. Wielemaker, A. Anjewierden: Programming in XPCE/PROLOG

http://www.swi-prolog.org/

12


