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Abstract. The increasing complexity of protein interaction networks makes their
manual analysis infeasible. Signal transduction processes pose a specific chal-
lenge, as each protein can perform different functions, depending on its state.
Here, we present a PROLOG and XML based system which explores the protein
state space. Starting with state based information about the function of single
proteins, the system searches for all biologically reasonable states that can be
reached from the starting point. As facts of general molecular biology have been
integrated, novel reasonable states, not encoded in the starting set, can be reached.
Furthermore, the influence of modifications like mutations or the addition of fur-
ther proteins can be explored. Thus, the system could direct experiments and
allow to predict their outcome.

1 Introduction

Current large scale projects like the sequencing of genomes and the unravelling of pro-
tein interaction networks produce a wealth of data and give new insights into the molec-
ular architecture of cells. Still, it is a huge step from data generation to the understanding
of the molecular details of cellular networks. One of the primary challenges is the struc-
tured representation of a proteins function, a prerequisite for any computational analy-
sis. Although many protein and nucleotide databases still use mainly human readable
text as annotation, different approaches have been developed to structure this knowl-
edge. These were as straightforward as defining specific keywords or as complicated as
setting up an ontology for different aspects of protein function [Rzhetsky et al., 2000];
probably, the most widely used of the latter approaches is from the Gene Ontology
project [Consortium, 2008].

An additional level of complexity arises when describing not only the function of
single proteins, but their interplay within the cellular network. Here, the function of one
protein has to be seen in the context of its interactions or the pathways it is involved
in. In the case of metabolic networks, methods for the representation of knowledge and
the computation with function have been developed [Keseler et al., 2009,Karp, 2001].
Here, the function of a protein can be seen as more or less constant. This contrasts
typical eukaryotic signaling pathways, where the function of a protein and therefore



its influence on the cellular networks changes for different input signals. This flexibility
in function is usually implemented by describing the state of a protein when performing
specific actions [Duan et al., 2002,Schacherer et al., 2001,Ratsch et al., 2003]. Systems
like the π–calculus have been developed, which allow to encode signaling pathways and
to explore the effects of mutations [Regev et al., 2001]. Still, these approaches as well
as Petri nets [Grafahrend–Belau et al., 2008] represent rigid networks and do not allow
to find states not given to the system. The Biocham system [Fages et al., 2004] offers
automated reasoning tools for querying the temporal properties of interaction networks
under all possible behaviours using Computation Tree Logic (CTL). [Baral, 2004] uses
an action–style, knowledge based approach for supporting various tasks of reasoning
(including planning, hypothetical reasoning, and explanation) about signaling networks
in the presence of incomplete and partial information.

Here, we describe a simulation approach which is based on a logic representation of
protein states. Its goal is to find all possible and biological acceptable pathways which
can be derived from the given starting situation. As the system is aware of general
concepts of molecular biology, it can 1) generate states not known to the system and
2) simulate the outcome of modifications like mutations or addition of inhibitors.

The rest of this paper is organized as follows: In Section 2, we present the concepts
and techniques for manipulating XML structures in PROLOG. Section 3 provides formal
representations of protein function, general biological concepts, and then it describes
the central PROLOG search algorithm for protein networks. Two practical applications
are shown in Section 4. Finally, Section 5 discusses the new approach.

2 Manipulation of XML Structures in PROLOG

The logic programming language PROLOG is very useful for representing, manipulat-
ing and reasoning about complex structures, such as the states obtained during the sim-
ulation of biological processes [Bratko, 2001,Clocksin & Mellish, 2003]. In particular,
search algorithms can be implemented very nicely based on PROLOG’s built–in concept
of backtracking, and the handling and manipulation of the relatively complex interme-
diate data structures obtained during the simulation can be done in a very declarative
way.

XML has been increasingly used for representing various forms of complex, semi–
structured data, and for exchanging these data between different applications. E.g.,
in molecular biology, XML languages like SBML [Hucka et al., 2003], MAGE–ML
[Spellman et al., 2002] and PSI Ml [Hermjakob et al., 2004] have been developed. XML
data are used by many tools in different application domains, and to some extend they
are human–readable.

Thus, we have used XML as the data format for the complex states of our PROLOG
based search algorithm. For querying and manipulating XML elements in PROLOG,
we have developed the XML query, transformation, and update language FNQUERY
[Seipel, 2002]. This combination of XML and PROLOG facilitates knowledge represen-
tation and software engineering drastically. The elegant data access to and update of
XML data by path expressions in connection with the powerful reasoning facilities and
the declarative programming style of PROLOG makes our application compact, flexible,



and extensible. Another PROLOG based XML query language has, e.g., been proposed
in [Alemendros–Jiménez et al., 2007], without the necessary update functionality, how-
ever. Our approach is also superior to standard XML processing tools such as XQuery
or XSLT, since it is fully interleaved with the declarative – and general purpose – pro-
gramming language PROLOG, and since the update capabilities are better.

2.1 XML Representations and Path Expressions

There exist various ways of representing XML structures in PROLOG. We have devel-
oped a PROLOG term representation for XML elements, which we call field notation,
and a fact representation, which we call graph notation. These internal representations
are described in [Seipel, 2002]; for the purposes of this paper it is sufficient to read
XML data from files and to write them to XML files.

We use path expressions for localizing sub–structures of an XML structure. The
path language FNPATH, which we have developed, is an extension of the well–known
path language XPATH, and XPATH expressions can be mapped to equivalent FNPATH
expressions. Moreover, we can allow for more general path expressions, since we use
PROLOG – including backtracking and unification – for their evaluation. In the follow-
ing we will describe the fragment of FNPATH which we have used in this paper. The
path expressions in this fragment directly correspond to equivalent XPATH expressions.

A path expression π = σ1σ2 . . . σn consists of one or more steps σi for localizing
child elements or attributes of XML elements. E.g., the path expression

/proteins/protein::[@name=Protein]

has two location steps. When this path expression is applied to an XML element Cell,
then the first step σ1 = /proteins selects the child element Ps of Cell with the tag
proteins. Subsequently, the second step σ2 = /protein::[@name=Protein]
of the path expression selects a child element P of Ps with the tag protein, such that
P has an attribute name with the value Protein.

In general, a location step can be of the forms σ = @ ν, σ = /ν, and σ = /ν :: τ,
where ν is a node test and τ is a list of predicates. The second form is a short hand for
the third, if the list τ is empty. The predicate @name=Protein in the example above
also contains a location step @name, which selects the value of the attribute name of
the element P; the predicate succeeds, if this value is Protein.

2.2 The Query Language

The PROLOG based XML query, transformation, and update language FNQUERY is
based on FNPATH, and it has three sublanguages:

– FNSELECT: selection of subelements/attributes,
– FNTRANSFORM: transformations like XSLT,
– FNUPDATE: updates (insertion, deletion) of elements/attributes.

In this paper, we have extensively used FNSELECT and FNUPDATE for computing suc-
cessor states during the simulation process. For this purpose, FNUPDATE has been ex-
tended by insertion and deletion operations, which are very useful here.



Selection of Substructures. If X is an XML element in PROLOG representation and π
is a path expression, then the assignment Y := X π selects a substructure of X and
assigns it to Y. E.g., the following rule selects the location Loc of a state element for
a given protein with the name Protein within a given cell Cell. The path expression
π consists of 5 location steps, which are applied successively to Cell. The predicate
@name=Protein in the second location step assures that the selected child has the
proper value for the attribute name:

get_location(Protein, Cell, Loc) :-
Loc := Cell/proteins/protein::[@name=Protein]

/current_state/state@location.

Modification/Update of Substructures. If X is an XML element in PROLOG represen-
tation and π is a path expression, then the assignment Y := X*[π:v] modifies the
substructure of X that is selected by π to the new value v. E.g., the assignment statement
in the following rule changes the value of the attribute location to Loc.

set_location(Protein, Loc, Cell_1, Cell_2) :-
Cell_2 := Cell_1 * [

/proteins/protein::[@name=Protein]
/current_state/state@location:Loc].

Insertion and Deletion of Substructures. The following PROLOG rules are used for
modifying a given cell Cell_1. The first rule adds a new interaction element with the
attribute value Int for protein within the protein element with the name P. The
second rule deletes such an interaction element.

add_interaction(P, Int, Cell_1, Cell_2) :-
Cell_2 := Cell_1 <+> [

/proteins/protein::[@name=P]
/current_state/state/interactions
/interaction:[protein:Int]:[] ].

delete_interaction(P, Int, Cell_1, Cell_2) :-
Cell_2 := Cell_1 <-> [

/proteins/protein::[@name=P]
/current_state/state/interactions
/interaction::[@protein=Int] ].

3 Representation and Searching

In the following, we provide formal representations of protein function and general
biological concepts, and then we describe the central PROLOG search algorithm for
protein networks.



3.1 Formal Representation of Protein Function

It is a fundamental feature of proteins, especially those involved in signal transduction,
that their function is tightly regulated. Depending, for example, on its own phosphory-
lation status, a protein kinase might phosphorylate different target proteins. Therefore,
any representation of a proteins function has to allow different functions for a single
protein, depending on its status. This status can be described by three features, namely
the localisation, modifications, and interactions [Duan et al., 2002,Ratsch et al., 2003].

In our approach, we combine these features with a detailed description of the func-
tion performed within this state. Currently, the localisation mainly describes the or-
ganelle a protein can be found in, for example the cytoplasm or the nucleus. Within the
list of modifications, the type, but also the position in the sequence is stored. Finally,
the interactions describe a list of bound proteins. Depending on the value of these three
features, the protein might perform different functions. These are encoded in a list of
actions. Each action itself consists of the type of the action, the name of the involved
protein and possible parameters.

Type Subtypes Parameters
moving none protein

new location
interaction binding protein1,2

dissociation
modification phosphorylation protein1,2

dephosphorylation position

Table 1. Implemented Actions

Currently, three general types of actions are implemented, where each type can
contain different subtypes and parameters (Table 1). Within this concept it is important
to note that we do not use any descriptions like activation, stimulation or inhibition,
as these are interpretations and depend on the experiment performed. We describe the
molecular details of a function a protein performs when in a given state. This might be
interpreted as an activation to perform a function within a given state.

Having defined the state as the core structure, different states and their actions have
to be put together with additional information to describe a proteins function. First,
there are constant, that is state independent, features which have to be represented. Sec-
ond, as we aim for qualitative simulation, the actual state of a protein has to be stored.
Following, all states which trigger a specific action are listed. Finally, we allow for so
called forbidden states. Especially in molecular biology, the knowledge of a proteins
function frequently contains negative information like the fact that a protein will not be
localised within the nucleus if bound to a defined other protein. By introducing forbid-
den states, we allow the handling of this information. Figure 1 shows the XML structure
describing the function of a single protein.



<protein name="receptor" sequence="MDCQLSILLLLSCSVLD...">
<current_state>

<state location="transmembrane">
<modifications/>
<interactions>

<interaction protein="jak"/> </interactions>
<actions/>

</state>
</current_state>
<action_states>

<state location="transmembrane">
<modifications/>
<interactions mode="identical">

<interaction protein="ligand"/>
<interaction protein="jak"/> </interactions>

<actions>
<action type="interaction" subtype="binding">

<protein name="receptor"/>
<parameter protein="receptor"/>
<status state="todo"/> </action> </actions>

</state>
</action_states>
<forbidden_states>

<state location="transmembrane">
<modifications/>
<interactions>

<interaction protein="Grb2"/> </interactions>
</state>

</forbidden_states>
</protein>

Fig. 1. XML Representation of a Proteins Function – To represent all functions of a protein and
allow simulation, the actual state of a protein (current_state) as well as all states leading to an
action (action_states) have to be known. Furthermore, states not acceptable for the protein can
be stored (forbidden_states). Features invariant to the protein, like the name or its sequence, are
given as parameter to the protein tag.

3.2 Representation of General Biological Concepts

If one aims at qualitatively simulating signal transduction processes, it is of vital im-
portance to take into account general biological concepts which can help to restrain
the search space and keep the derived states consistent as well as biologically correct.
Therefore, we have implemented the following concepts into our system.

Localisation. To describe different cellular localisations, we first have defined a set of
accepted keywords describing localisations. In a second step, we have built, comparably
to the GeneOntology, a hierarchy of these localisations using subclasses/2 facts.



As we are modelling changes of localisations (moves), we furthermore define between
which compartments direct moves are possible using allowed/2 facts. For example,
although nucleus and mitochondrion are both organelles embedded in the cytoplasm, no
direct transitions between them are possible. A protein is assigned to one localisation
for each state. A special case are transmembrane proteins, which reside in up to three
different localisations, for example extracellular, membrane and cytoplasmic; this is
represented by a contains/2 fact.

localisations([
localisation, intra, extra,
membrane, transmembrane,
cytoplasma, nucleus, ... ]).

subclasses(localisation, [
intra, extra, membrane ]).

subclasses(transmembrane, [membrane]).

allowed(intra, extra).
allowed(cytoplasma, nucleus).
allowed(X, X).

contains(transmembrane, [
extra, membrane, cytoplasma ]).

...

Interaction. As protein interactions build the backbone of any signal transduction pro-
cess, a substantial amount of rules was generated to assure, that the modelled interac-
tions are biologically sound. First, only proteins not already interacting (unbound/2)
are allowed to start a new interaction and only interacting proteins can dissociate.
Second, the predicate matching_location_/3 assures that both interacting pro-
teins reside in the same localisation; the values of the localisations do not have to
be identical. Third, reciprocity of binding as well as dissociation events is assured by
add_interaction/3. If one of multiple interacting proteins is moving, that is its
localisation changes, all interacting proteins have to move. This assures consistency of
localisation information; furthermore a translocation will not happen if any of the in-
teracting proteins is not allowed within the new localisation. E.g., the PROLOG module
interaction contains the following rule for bindings:

binding(S1, Action, S2) :-
P1 := Action/protein@name,
P2 := Action/parameter@protein,
Proteins = [P1, P2],
unbound(S1, Proteins),



matching_location_(S1, Proteins, SA),
add_interaction(SA, Proteins, SB),
!,
\+ forbidden_state(Proteins, SB),
add(SB, Action, Proteins, S2).

Based on the facts implemented for localisation, we can handle cases where the
information about the localisation of one protein is more specific than the other. In an
example scenario, it might be known for protein A, that it is localised within the cyto-
plasm whereas protein B is only known to be somewhere within the cell (intracellular).
Our system does not only allow this interaction, as the cytoplasm is a specification of
intracellular, it updates the localisation information for protein B. This is also done it-
eratively for all interacting proteins in the case of complexes. Thereby, the system can
improve on current knowledge.

Modification. Currently, the only implemented modification is phosphorylation. Here,
our rules assure that within the phosphorylated position resides a correct amino acid,
S, T or Y. Furthermore, it is assured, that the side which becomes phosphorylated is
not already phosphorylated. Complementarily, only phosphorylated sites can become
de–phosphorylated. In both cases, a modification includes the interaction (predicate
interaction:unbound/2 and first call of predicate interaction/4), the ac-
tual modification (predicate phosphorylation_/3) and a dissociation (second call
of predicate interaction/4). Therefore, only proteins which are able to interact
can be involved in a phosphorylation or de–phosphorylation reaction.

phosphorylation(S1, Action, S2) :-
Protein_1 := Action/protein@name,
Protein_2 := Action/parameter@protein,
Proteins = [Protein_1, Protein_2],
interaction:unbound(S1, Proteins),
interaction(S1, Proteins, binding, SA),
phosphorylation_(SA, Action, SB),
interaction(SB, Proteins, dissociate, S2).

3.3 Searching Through Protein States

Thus far, we have described a static system for the representation of protein function
based on states and some general rules concerning biological concepts. As it is the aim
of the system to search through protein state space and to allow for qualitative simu-
lations, the function of each protein has to be connected to and depend on the state of
other proteins. This has been implemented for example by LiveDIP [Duan et al., 2002]
and the Molecule Pages database [Saunders et al., 2008] by linking states with state
transitions. Here, no state transitions are encoded. That is, no information like protein



A gets transferred from state 1 to state 2 when interacting with protein C has to be pro-
vided. Rather, we perform actions on proteins and let the protein itself decide whether
its new state might trigger further actions. Thereby, we allow each protein to reach
states, which are not explicitly encoded in its state list and are able to unravel novel
pathways intrinsic to the analyzed protein interaction network.

Comparing States. A fundamental concept of the presented approach is the ability to
compare different states. This is, for example, of importance for deciding, whether the
current state of a protein matches a state which is connected to a new action. Obviously,
the most straightforward approach would be to check for identity within all features
of the state (localisation, interactions and modifications). This would lead to the same
results as explicitly coding state transitions and would not allow to detect states not
encoded within the system. To allow for a more explorative searching, we have defined
a subsumption relationship for states.

subsumes_localisation(S, G) :-
SLoc := S@location,
GLoc := G@location,
localisation:specifies(SLoc, GLoc).

subsumes_interactions(S, G) :-
identical := G/interactions@mode,
!,
get_interactions(S, SInt),
get_interactions(G, GInt),
subset(GInt, SInt),
subset(SInt, GInt).

subsumes_modifications(S, G) :-
identical := G/modifications@mode,
!,
get_modifications(S, SMod),
get_modifications(G, GMod),
subset(GMod, SMod), subset(SMod, GMod).

In the case of localisations, the subsuming state needs to have a localisation which
is either identical to or more specific than the general state. For example, a state with
a cytoplasmic localisation will subsume a state with a intracellular localisation. Here,
the general biological knowledge about the compartments of the cell is substantial. For
the interactions and modifications, the general state has to be a subset of the subsuming
state. To allow more restrictive comparisons, both interaction and modification can be
set to identical, which enforces identity between the general and the subsuming state.
These rules allow to decide whether a protein is in a state, which can trigger a specified
action.



Search Algorithm and Implementation. Having defined a subsumption relationship
between states and actions associated with given states, which are called soups below,
the system can now be used to search through protein state space. To start the search
process, an action as well as the starting states of all proteins are needed. In the first
step, the system tries to perform the action, taking into account the biological back-
ground given above. If the action can be performed, at least one protein will be in
a novel state. The system now compares the current state of all proteins with all ac-
tion states of the protein. If no current state is found which subsumes an action state
(soup_node_subsumes/2), then the system tries to perform the action. If success-
ful, a new round of search is initiated (find_next_soup/4). In each step, applica-
tions of the general biological concepts assure, that only correct states are reached. For
example, a protein A might be in a state triggering an action to bind to protein B. This
action will fail, if protein B in its current state is located in a different cellular compart-
ment than protein A. The search process iterates until no protein is in a state triggering
a new action. Here, the first solution of the search process has been found.

protein_state_search(S, _, S).
protein_state_search(S1, Actions_1, S3) :-

M := S1@id, not(soup_node_subsumes(_, M)),
find_next_soup(S1, Actions_1, S2, Actions),
find_candidate_actions(S2, Actions, Cs),
add_candidate_actions(Cs, Actions, Actions_2).
protein_state_search(S2, Actions_2, S3).

find_next_soup(S1, As1, S2, As2) :-
A := As1/action::[@id=Id, /status@state=todo],
[Type, SubType] := A-[@type, @subtype],
once(apply(Type:SubType, [S1, A, S])),
As2 := As1 * [

/action::[@id=Id]/status@state:done ],
remember_search_edge(S1, S, S2).

Natural numbers are assigned as identificators to Soups, and the edges between two
soups are asserted in the PROLOG database:

remember_search_edge(S1, S, S2) :-
M := S1@id,
soup_to_number_(S, N),
S2 := S * [@id:N],
assert(soup_edge(M, N)),
!.

The system finds all solutions using PROLOG’s backtracking mechanism. In each
intermediate step, the system checks, whether another action than the one already per-
formed might be triggered. If so, another search process is started, leading to further



solutions of the system. Thus, a depth first search through the space of all possible
protein states is performed.

Within the search process, care is taken to detect possible cycles which would lead
to infinite searches. Therefore, the search is stopped if an action already performed is
triggered.

find_candidate_actions(Soup, Actions, Candidates) :-
findall( Action,

( Protein := Soup/proteins/protein,
check_action(Protein, Action),
\+ performed(Action, Soup),
\+ action_already_found(Actions, Action) ),

Candidates_2 ),
sort(Candidates_2, Candidates).

check_action(Protein, Action) :-
C_State := Protein/current_state/state,
A_State := Protein/action_states/state,
protein_state_subsumes(C_State, A_State),
Action := A_State/actions/action.

performed(Action, Soup) :-
Test_Action := Soup/pathway/step/action,
action:identical(Action, Test_Action).

action_already_found(Actions, Action) :-
Action_2 := Action * [@id:_],
Action_2 := Actions/action.

Interface / Visualization. Already in comparatively small biological systems, many
end states can be reached. Obviously, any two of these end states can be identical, as
each can be reached by different combinations of actions. To allow for the evaluation
of the results and decrease the redundancy, we have developed a visualization in SWI–
PROLOG [Wielemaker, 2009], cf. Figures 2 and 3. Here, each combination of protein
states, which can be reached is represented by a circle. If two states are identical, then
the nodes representing these states are combined leading to a collapse of the original
search tree.

For each node, not only the state of all proteins, but also all pathways leading to the
node are given. As the representation is based on the same XML structure as the input,
it might be used as input for other programs, e.g. visualizing the pathways in a more
detailed way.



4 Applications

To show, that the proposed system is indeed able to represent signaling pathways, we
evaluate two test cases, the Jak–Stat and the MAP kinase pathway. In addition to finding
novel states, it was a fundamental goal of the presented system to allow for qualitative
simulations of modifications of the signal transduction pathways; here, the implemented
general biological concepts are of major importance.

4.1 Jak–Stat Pathway

The Jak–Stat signalling pathway provides one of the fastest routes from a cell surface
receptor to the nucleus [O’Shea et al., 2002]. Still, all major principles of signalling
pathways, dimerization, phosphorylation and translocation are implemented within this
short pathway. The involved proteins are the receptor, a ligand, the Jak protein kinases
and the Stats. For each of the proteins we have defined a starting state as well as states
which lead to further actions. An example is the rule that a phosphorylated Stat can
homodimerize. The state searching procedure was started with an interaction of the
ligand with the receptor.

Fig. 2. Representation of the Jak–Stat Pathway



Figure 2 shows all soups (combinations of proteins states) which have been reached
from this initial condition. Most interestingly, there are two ways how node 7 can be
reached. Inspection of this node reveals, that the difference between the two pathways
is the order in which the dissociation of Stat from the receptor and the dimerization of
two Stats are handled.

– With the knowledge given to system, two pathways have been found leading to
node 7. Whereas in the first (via node 6), the phosphorylated Stat dissociates from
the receptor before dimerization with another phosphorylated Stat, the pathway via
node 9 reverses these steps.

– The detailed information underlying nodes 3 and 4 is selected and shown in an
HTML table. The annotation is automatically improved. After binding to the recep-
tor, the localisation of Stat is specified from intracellular to cytoplasmic (shown in
grey).

It is an important feature of our system, that states which are not explicitly given in the
knowledge base can be generated. This happens for example at node 9, which describes
a protein complex of the ligand, a dimerized receptor, Jak and Stat. Additionally, Stat
itself is a dimer. The existence of such a protein complex was not given within any state
described in the knowledge base.

In addition to the generation of novel states, the system can also help in refining
current knowledge. At the beginning of the search process, Stats location is annotated
as intracellular. Within node 4, Stat binds to the receptor, which is annotated as trans-
membrane protein. As in the current implementation transmembrane proteins consist of
an extracellular, a transmembrane and a cytoplasmic region, the system deduces, that
Stat has to be cytoplasmic, if it binds as an intracellular protein to a transmembrane
protein.

This example illustrates, that information about important states is not only suf-
ficient to reconstruct pathways, also novel states as well as improvements of current
knowledge can be automatically generated.

4.2 MAP Kinase Pathway

The MAPK pathway represents one of the oldest signalling cascades conserved between
yeast and human [Bardwell, 2005,Wang & Dohlman, 2004]. Its core is a cascade of
phosphorylation of protein kinases.

In total, 167 possible soups (combinations of protein states) were found. As the
integration of these states and the pathways leading to them shows (Figure 3), there are
many different pathways leading to identical combinations of protein states. Directed by
this analysis, experimental research might unravel which of these pathways are actually
implemented by the yeast cell.

5 Discussion

Unraveling the molecular details of signal transduction processes is an important step
towards understanding the regulation of cellular networks. Although it is the ultimate



Fig. 3. Representation of the Yeast Mating Pheromone Response Pathway

goal of systems biology to quantitatively model the whole cell, especially in signal
transduction we are still far from the enumeration of all involved molecular reactions.
The identification of these reaction as well as the delineation of possible pathways is
therefore a crucial prerequisite.

We have described a PROLOG system which, given a defined set of proteins and their
functions, searches for all possible states encoded within a system and thereby finds all
possible pathways using backtracking. The fundamental concept of the approach is the
state of a protein, which is defined by its location, modifications and interactions. The
whole system consists of three components: first an XML encoded state based repre-
sentation of protein function. Second, a rule based representation of general biological
concepts and third, a search algorithm implemented in PROLOG. The resulting system
is not only able to search through protein state space, but furthermore to simulate the
outcome of manipulations to the proteins. Declarative logic programming in PROLOG
greatly simplified the system despite the complex logic behind the search algorithm and
the complexity of the underlying data structures.

Contrasting other approaches [Saunders et al., 2008,Zheng et al., 2008], we do not
encode any explicit state transitions. Instead, the protein knows about states which trig-
ger further actions. If the protein is in a state that subsumes one of these states, an
action is started, which might transform other proteins, leading to further actions. Thus,
proteins can reach states, which have not been given to the system beforehand. These
novel deduced states might be a good starting point for further experimental exploration
of signal transduction networks.



A critical point within the approach is the collection of the functions of the involved
proteins. Although manual knowledge acquisition will assure the highest quality, it is
comparably slow. One might overcome this hindrance by adding automated function
prediction for the involved proteins based for example on sequence analysis.

So far, the system has been tested only on smaller signal transduction networks. One
possible challenge might be the increasing computational resources needed for larger
system. To date, we rather see the collection of biological knowledge in the level of
detail needed for the system as the limitation. More on the users point of view, the huge
amount of detail might become hard to digest in the current representation. Thus, a
more graphical, possibly animated interface, which might even allow to interfere with
the system, would be the long term goal.
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