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Abstract

The task of computing an optimal solution to a given problem instance is ubiquitous
in computer science and is usually referred to as an optimization problem. In a com-
binatorial optimization problem, any problem instance or feasible solution is described
by a discrete structure involving, for example, finite sets, graphs, or integral variables.
This is in contrast to continuous optimization where the focus is on numerical problems
and where instances and solutions are described by real-valued variables. Interestingly
enough, algorithmic approaches for combinatorial optimization often rely on solving a
continuous relaxation of the problem; we employ this idea several times in this thesis,
too.

Most of the combinatorial optimization problems arising in practice are NP-hard,
which implies that (under usual complexity-theoretic assumptions) there is no efficient
algorithm to compute an optimum solution efficiently, that is, in polynomial time.

A common way to attack NP-hard optimization problems is to devise efficient algo-
rithms that are not guaranteed to find an optimal but always a “good” solution. An
approzimation algorithm is such an algorithm that has a provable performance guarantee.
That is, we can show an upper bound on the deviation of any solution computed by this
algorithm from the optimal solution of the respective problem instance. A prominent
example is the travelling salesperson problem (TSP) where the goal is to find a shortest
round trip that visits a given set of locations in a metric space. The well-known approx-
imation algorithm by Christofides is guaranteed to efficiently compute a tour that is at
most 3/2 times as expensive as an optimal tour.

Combinatorial problems usually give rise to a big variety and diversity in structure.
Changing a problem even in a seemingly simple way may change its algorithmic solvabil-
ity dramatically. Hence, discrete algorithmic techniques have often been developed for a
specific problem rather than in a general manner. And it is the (often non-trivial) task
of the algorithm designer to tailor such techniques to the particular problem at hand.
In the particular case of approximation algorithms, the community working on such
algorithms has singled out certain central combinatorial problems (such as set cover,
TSP, Steiner tree, or facility location) that serve—due to their simple, fundamental
structure—as a test-bed for new algorithmic tools. It has, in fact, turned out that sub-
stantial improvements for these problems usually go hand in hand with the development
of new techniques that can be applied to a variety of other, more specific problems as
well.

The objective of this thesis is to study approximation algorithms for NP-hard prob-
lems that are motivated by real-world network design and location problems. Following
the above-outlined methodology, we aim at examining a variety of structurally differ-
ent problems with the idea of covering several types of problems. Our focus lies on
investigating problems that are considered to be among the most central ones in the
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field of approximation algorithms; but we also examine new or more recently proposed
problems—in particular in the case of geometric optimization problems. A recurring
theme of this thesis is that we shed new light on these classical optimization problems.
We study these problems under a new perspective such as adding an additional con-
straint (for example, a packing, covering, cardinality, or length constraint) that makes
the problem substantially harder, studying a new parameterization of it, or investigating
it in a more general search space.

In this summary, we give a brief overview over the results that we obtained for the
particular problems under investigation. We also sketch the algorithmic techniques used.
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1 Network Design Problems

In a network design problem we are looking for a subgraph of a given graph that satisfies
certain structural constraints (such as spanning a certain subset of the vertices) and that
optimizes a certain quality measure (such as minimizing the number of edges). Classical
examples are the well-known Steiner tree problem (see Section and the travelling
salesperson problem, which we mentioned in the abstract.

In this chapter, we discuss our results on approximation algorithms for network design
problems. We distinguish two types of such problems. First, in Sections [I.1 we
consider problems where the input involves an arbitrary graph. Second, in Sections
we discuss problems arising in a geometric context (such as rectilinear networks).

1.1 Maximum Edge-Disjoint Paths

The maximum edge-disjoint paths problem is one of the classical NP-hard routing prob-
lems. The input is an undirected graph G with n nodes and a set of k node pairs (s;, t;)
called terminal pairs. The objective is to find a subset of terminal pairs of maximum
cardinality that can be routed via edge-disjoint paths. The approximability of the prob-
lem is currently not well understood. There is no 2°(V1°8™)_approximation algorithm
unless all problems in NP have algorithms with running time n?(°6™) [CKN17]. This
inapproximability bound constitutes a significant gap to the best known approximation
upper bound of O(y/n) due to Chekuri et al. [CKS06]; closing this gap is currently one of
the big open problems in approximation algorithms. In their seminal paper, Raghavan
and Thompson [RT87] introduce the technique of randomized rounding for LPs, which

yields an O(1)-approximation when edges may be used by O (1 Ogign) paths.

To gain a deeper understanding of the problem, the approximability parameterized
with the tree-width w of the input graph has been studied [CNS13]. For w = 1, that
is on trees, the problem is efficiently solvable [GVY97]. For general w, an O(w3)-
approximation algorithm is known [EMPRI16]. It has been conjectured that the best
possible bound is O(w) since the largest known integrality gap of the standard LP re-
laxation of the problem is Q(w) [CNS13].

Motivated by this gap between upper and lower bound in terms of the tree-width, we
[FMS16] propose to study the problem with respect to another parameter that measures
how tree-like a graph is and that is lower bounded by the tree-width. In particular, we
analyze the approximability in terms of the feedback verter set number r of a graph,
which measures its vertex deletion distance to a forest. In fact, we can show that the
problem is already NP-hard for » = 1. The bounds that we obtain strengthen the above
fundamental results for general graphs. In particular, we obtain first an O(/r - log kr)-
approximation algorithm where k is the number of terminal pairs in the input. As
r < n, up to logarithmic factors, our result strengthens the best known ratio O(y/n)



due to Chekuri et al. Second, we show how to route Q(OPT) pairs with congestion

@) <1og’lgo ’;7;”,), strengthening the bound obtained by the classic approach of Raghavan
and Thompson.

Our algorithms employ the standard multi-commodity flow relaxation of the prob-
lem [CKS06], which finds for each terminal pair a collection of (possibly fractional) flow
paths and ensures that each terminal and each edge is passed by at most one unit of
flow. The total flow of the optimum flow provides an upper bound on OPT.

In the randomized rounding approach of Raghavan and Thompson [RT87] every flow
path is routed with probability equal to its flow value. This is done in a natural dependent
manner that ensures that each terminal pair is routed by at most one of the picked paths.
In order to prove our strengthened congestion bound O(log kr/loglog kr), we propose
a non-trivial preprocessing of the optimum LP solution that is applied prior to the
randomized rounding. In this step, we aggregate the flow paths by a careful rerouting
so that the flow “concentrates” in special nodes (so-called hot spots) in the sense that if
all edges incident on hot spots have low congestion, then so have all edges in the graph.
A crucial point that allow us to show the improved bound is that the number of these
hot spots is polynomial in k£ and 7.

Our O(4/rlog kr)-approximation algorithm is also based on rounding the multi-com-
modity flow relaxation. Similarly to the algorithm of Chekuri et al. [CKS06], we dis-
tinguish the two cases where the majority of flow paths is, in a certain sense, short or
long, respectively. In particular, in the first case many flow paths visit a large number
of nodes in the feedback vertex set R. Then there must be a single node carrying a
significant fraction of the total flow and a good fraction of this flow can be realized by
integral paths by solving a single-source flow problem. This case is analogous to the
approach of Chekuri et al. The second case where a majority of the flow paths visit only
a few nodes in R turns out to be more challenging, since any such path may still visit
an unbounded number of edges in terms of k and r (in contrast to the work of Chekuri
et al.). We use two main ingredients to overcome this difficulty. First, we apply our first
result as a building block to obtain a solution with logarithmic congestion while losing
only a constant factor in the approximation ratio. Secondly, we introduce the idea of
irreducible routings with low congestion, which allows us to exploit the structural prop-
erties of the graph and the congestion property to identify a sufficiently large number of
flow paths blocking only a small amount of flow. These paths can then be routed in a
greedy manner.

1.2 Network Design with Bounded Distances

In a directed graph with n nodes, non-correlated edge lengths and costs, the network
design problem with bounded distances asks for a cost-minimal spanning subgraph subject
to a length bound d for all node pairs. The best known algorithm for this problem is
by Dodis and Khanna [DK99] and has a linear approximation ratio of O(nlogd). The
algorithm is based on rounding a linear programming relaxation of the problem.

We [CS15b] give a bi-criteria approximation for this problem that achieves for any



€ > 0 an approximation ratio n®°*¢ but guarantees only a pair-wise distance of (2 + ¢)d

rather than d. The running time of the algorithm depends on n and € and is polynomial
for any fixed € > 0.

As a starting point, our algorithm uses a two-stage approach originally proposed by
Feldman et al. [FKN12] for directed Steiner forest and that has later been used for sparse
directed spanners [BGJT12, DK11]. We divide the considered node pairs into thin and
thick pairs. Here, a node pair (s,t) is thin if the set of s—¢ paths of length at most d
covers a “small” number of nodes. Otherwise, the pair is called thick. We settle the
thin pairs by LP-rounding, as we have to cover certain cuts w.r.t. shortest paths. For
the latter, we sample nodes and construct short in- and out-trees for each of them. This
latter part is a main technical challenge: In contrast to the case of sparse spanners, we
cannot simply use shortest-path trees, as they could have arbitrarily high costs.

To solve this issue, we turn our attention to a second problem, which is also of inde-
pendent interest, called directed shallow-light Steiner tree. In this problem we are given
a digraph with non-correlated edge lengths and costs, a distinguished root node r, a
set of k nodes called terminals, and for each terminal an individual length bound. The
objective is to find an r-rooted directed subtree that spans all terminals, ensures that
the distance of each terminal from the root is upper bounded by the length bound of
the terminal and that minimizes the total cost among all such trees.

Kortsarz and Peleg [KP97] gave an O(k®)-approximation for undirected graphs with
uniform edge lengths and uniform distance bound. We obtain the first non-trivial result
for the general directed problem. In fact, at the cost of violating the length bounds by
a factor of at most 1 + &, we obtain the same approximation ratio as [KP97], but for
directed graphs and without the restrictions to uniform lengths and costs.

Finally, we show how to apply our results to obtain an (a+e, O(n%5¢))-approximation
for light-weight directed a-spanners. For this, no non-trivial approximation algorithm has
been known before. All running times depend on n and ¢ and are polynomial in n for
any fixed € > 0.

1.3 Degree-Based Spanning Tree Problems

The notion of degree-based spanning tree problems has been introduced by Salamon
[Sal10]. In such a problem we look for a spanning tree of a given undirected graph that
optimizes an objective function that depends on the distribution of node degrees in the
spanning tree. Optimizing this structural aspect is in contrast to many other network
design problem where the objective is to minimize total edge or node weights (such as
in minimum spanning tree or minimum Steiner tree problem). Degree-based spanning
tree problems can be motivated by the design of communication networks where nodes
represent communication devices whose cost depend on their functionality, which is, in
turn, reflected by the degree of the node. For example, a receiver may be represented
by a leaf, a forward node by a node of degree two, and a router or splitter by a node of
degree at least three.

A variety of such problems has been studied in the approximation algorithms liter-
ature. In this thesis, we consider three degree-based spanning tree problems. In the



mazimum leaf spanning tree problem we aim at finding a spanning tree that maximizes
the number of leaves. In the maximum internal spanning tree problem we wish to max-
imize the number of internal nodes (non-leaves) in the tree. Finally, in the mazimum
path-node spanning tree problem we maximize the number of nodes one or two (which
can be motivated by the design of optical networks).

In contrast to the previous two problems that we tackled by LP rounding approaches,
known algorithms for degree-based spanning tree problems are combinatorial. Below we
discuss two local search and one greedy algorithm for the above-mentioned problems.
The analyses of the two local search algorithms are based on sophisticated charging
schemes that relate a locally optimal solution with a globally optimal one.

Maximum Leaf Spanning Tree We [SSW11] consider the mazimum leaf spanning tree
problem (MLST) on digraphs. MLST is NP-hard [SO98] and existing approximation
algorithms for MLST on digraphs have ratios of O(v/OPT) [DV10] and 92 [DT09].

We focus on the special case of acyclic digraphs and propose two linear-time approxi-
mation algorithms; one with ratio 4 that uses a result of Daligault and Thomassé [DT09]
and one with ratio 2 based on a greedy 3-approximation algorithm of Lu and Ravi [LR9S]
for the undirected version of the problem. Our analysis of the greedy algorithm is in-
spired by a clever analysis of Solis-Oba [SO98] for the undirected case. We complement
these positive results by observing that MLST is MaxSNP-hard on acyclic digraphs.
Hence, this special case does not admit a PTAS (unless P = NP).

Maximum Internal Spanning Tree The best approximation algorithm known prior
for the mazimum internal spanning tree problem is due to Prieto and Sloper [PSO05]
and has a ratio of 2. For graphs without pendant nodes, Salamon [Sal09] has lowered
this factor to 7/4 by means of local search. However, the approximative behaviour of
his algorithm on general graphs has remained open. We [KS15] show that a simplified
and faster version of Salamon’s algorithm yields a 5/3-approximation even on general
graphs. In addition to this, we investigate a node weighted variant of the problem for
which Salamon achieved a ratio of 2- A(G) —3. Extending Salamon’s approach we obtain
a factor of 3 + ¢ for any € > 0. We complement our results with worst case instances
showing that our analyses are tight.

Maximum Path-Node Spanning Tree Given an undirected, connected graph, the aim
of the minimum branch-node spanning tree problem is to find a spanning tree with the
minimum number of nodes of degree larger than two. The problem is motivated by
optical network design problems where junctions are significantly more expensive than
simple end- or through-nodes, and are thus to be avoided [GHSV02, GHO03]. Unfor-
tunately, it is NP-hard to recognize instances that admit an objective value of zero,
rendering the search for guaranteed approximation ratios futile.

We [CS15a] suggest to investigate a complementary formulation, called mazimum
path-node spanning tree, where the goal is to find a spanning tree that maximizes the
number of nodes with degree at most two. While the optimal solutions (and the practical



applications) of both formulations coincide, our formulation proves more suitable for
approximation. In fact, it admits a trivial 1/2-approximation algorithm. Our main
contribution is a local search algorithm that guarantees a ratio of 6/11, as well as showing
that the problem is APX-hard, that is, it does not allow a polynomial time approximation
scheme (PTAS).

1.4 Manhattan Network Problems

In contrast to the problems discussed above, Manhattan network problems are geometric
network design problems. In particular, we [DGK'15, DFK*17] consider the generalized
minimum Manhattan network problem (GMMN). The input to this problem is a set R
of n pairs of terminals, which are points in R%. The goal is to find a minimum-length
rectilinear network that connects every pair in R by a Manhattan path, that is, a path
of axis-parallel line segments whose total length equals the pair’s Manhattan distance.
This problem is a natural generalization of the extensively studied minimum Manhattan
network problem (MMN) in which R consists of all possible pairs of terminals [GLNO1].
Another important special case is the well-known rectilinear Steiner arborescence prob-
lem (RSA) [LROO]. As a generalization of these problems, GMMN is NP-hard. No
approximation algorithms were known for general GMMN.

We obtain an O(log n)-approximation algorithm for GMMN. First, we use a simple (yet
powerful) divide-and-conquer scheme to reduce the problem to RSA. This yields a ratio
of O(log?n). To bring down the ratio to O(logn) we develop a new stabbing technique,
which is a novel way to approach Manhattan network problems and constitutes the main
technical contribution of this work.

Our result is a first step towards answering the open question of Chepoi et al. [CNVO08]
whether or not there is a constant-factor approximation algorithm for GMMN. We give
indications that it may be challenging to obtain an O(1)-approximation and demonstrate
why techniques working for MMN and RSA seem to fail.

We also study the case of higher dimensions. In fact, some parts of our algorithm
generalize to higher dimensions, yielding a simple O(longr1 n)- approximation algorithm
for the problem in arbitrary fixed dimension d. As a corollary, we obtain an exponential
improvement upon the previously best O(n)-ratio for MMN in d dimensions (an earlier
result of us [DGK™'15]). En route, we show that an existing O(logn)-approximation
algorithm for 2D-RSA generalizes to higher dimensions.

For dimension d = 3, we also give a 4(k — 1)-approximation algorithm for the case
that the terminals are contained in the union of k£ > 2 parallel planes [DGK'15]. This
result is based on an interesting connection to a rectangle piercing problem on the plane
that can be solved efficiently.

1.5 Non-Crossing Steiner Forest

Steiner tree is a fundamental problem in combinatorial optimization. Given an edge-
weighted graph and a set of vertices called terminals, the task is to find a minimum-
weight subgraph that connects the terminals. For the closely related and well-studied



Steiner forest problem, the terminals are colored, and the desired subgraph must connect,
for each color, the terminals of that color.

We [BFK'15] consider a geometric variant of Steiner forest where we add the con-
straint of planarity and require that terminals with distinct colors lie in distinct con-
nected components. More precisely, we consider the problem of computing, for a k-
colored set of points in the plane (which we also call terminals), k pairwise non-crossing
planar Euclidean Steiner trees, one for each color. Note that such trees exist for every
given set of points. The problem was introduced by Efrat et al. [EHKP15] and can
be used for visualizing embedded and clustered graphs. We call the problem of mini-
mizing the total length of these trees k-Colored Non-Crossing Euclidean Steiner Forest
(k-CESF).

For k =1, this is the well-known Euclidean Steiner tree problem. For k-CESF, we
present a deterministic (k + €)-approximation algorithm (improving on a known 1.21k-
approximation algorithm [EHKP15]) and a randomized O(y/nlog k)-approximation al-
gorithm (this bound was previously only known for matchings [CHKL13]). Our main
result is that 2-CESF admits a PTAS. By a non-trivial modification of this PTAS, we
prove that 3-CESF admits a (5/3 + €)-approximation algorithm. Our PTAS for 2-CESF
uses some ideas of Arora’s algorithm [ARR98] for Euclidean Steiner tree, which is equiv-
alent to 1-CESF. Since, in a solution to 2-CESF, the two trees are not allowed to cross,
our approach differs from Arora’s algorithm in several respects. We use a different notion
of r-lightness, and by a portal-crossing reduction we achieve that each portal is crossed
at most three times. More care is also needed in the perturbation step and in the base
case of the dynamic program.

1.6 Box Representations

We [BvDF117] study the following geometric representation problem: Given a graph
whose vertices correspond to axis-aligned rectangles with fixed dimensions, arrange the
rectangles without overlaps in the plane such that two rectangles touch if the graph
contains an edge between them. This problem is called CONTACT REPRESENTATION OF
WORD NETWORKS (CROWN) since it formalizes the geometric problem behind drawing
word clouds in which semantically related words are close to each other. CROWN is
known to be NP-hard, and there are approximation algorithms by Barth et al. [BFKT14]
for certain graph classes for the optimization version, in which realizing each desired
adjacency yields a certain profit. This optimization version can be viewed as a network
design problem, in which we aim at realizing the maximum profit subgraph.

We present the first O(1)-approximation algorithm for the general case, when the
input is a complete weighted graph, and a stronger bound for the bipartite case. Since
the subgraph of realized adjacencies is necessarily planar, we also consider several planar
graph classes (namely stars, trees, outerplanar, and planar graphs), improving upon the
known results for these graph classes [BFK™14]. For some graph classes, we also describe
improvements in the unweighted case, where each adjacency yields the same profit.
Finally, we show that the problem is APX-complete on bipartite graphs of bounded
maximum degree.



The results of Barth et al. are simply based on existing decompositions of the respective
graph classes into star forests or cycles. For stars and cycles straightforward or existing
algorithms are used.

Our results rely on a variety of algorithmic tools. First, we devise sophisticated de-
compositions of the input graphs into heterogeneous classes of subgraphs, which also
requires a more general combination method than that of Barth et al. Second, we use
randomization to obtain a simple constant-factor approximation for general weighted
graphs. Previously, such a result was not even known for unweighted bipartite graphs.
Third, to obtain an improved algorithm for the unweighted case, we prove a lower bound
on the size of a matching in a planar graph of high average degree. Fourth, we use a pla-
nar separator result of Frederickson [Fre91] to obtain a polynomial-time approximation
scheme (PTAS) for degree-bounded planar graphs.



2 Location Problems

In metric location problems, the input consists of a set of clients, a set F of facilities and
a metric distance function between clients and facilities. The goal is to select a subset
S C F of facilities, and an assignment of clients to the selected facilities, that together
minimize a certain problem-specific cost function. One can think of F' being a set of
potential facility locations, whereas S contains the locations where we decide to open
(that is, to build) facilities.

For example, in the k-center problem, we aim at opening k facilities such that the
maximum distance of a client to the facility serving it is minimized. In the well-studied
problem facility location there is no bound on the number of facilities but instead each
facility has an individual opening cost and the objective is to minimize the total open-
ing cost plus the total connection cost. Finally, in the k-median problem we want to
open k facilities so as to minimize the total connection cost. For k-center and facility
location (nearly) optimal constant-factor approximation algorithms are known, that is,
the proven approximation bounds [HS85, Lill] match (or nearly match) the best in-
approximability bound [HS85, GK99]. Also for the k-median problem constant-factor
approximation algorithms are known [CGTS99], but there is still a significant gap be-
tween the best known upper bound of 2.675 [BPR*15] and the best known inapprox-
imability bound of 1.73 [GK99]. The k-median problem seems the hardest one among
the above-mentioned three location problems in terms of approximation algorithms.

2.1 Capacitated k-Median

Also capacitated variants of all three above-mentioned (and also further) location prob-
lems have been studied extensively [CHK12, PTWO01, CRO05]. In the capacitated version
each facility has an upper bound on the number of clients it may serve. While the ca-
pacitated variants turn out substiantially harder to solve than the uncapacitated coun-
terparts, constant-factor approximation algorithms have been obtained for capacitated
k-center [CHK12] and capacitated facility location problems [PTWO01]. For capacitated
k-median, however, the approximability status is still unknown despite significant ef-
forts by the community. And it is one of the central open questions in approximation
algorithms whether or not also this problem admits a constant-factor approximation
algorithm.

A main difficulty in approximating the problem is that the standard linear program-
ming formulation (even in the case of uniform capacities) has unbounded integrality gap
unless we violate the capacity bound by a factor of at least 2 [CGTS99]. We [BFRS15]
construct approximation algorithms for capacitated k-median violating the capacities
based on rounding a fractional solution to this relaxation. We show that a violation
factor of 2 + ¢ is in fact sufficient to obtain a constant-factor approximation algorithm



with ratio O(1/&?) with respect to the connection cost in the case of uniform capacities.
Prior to our work, the best algorithm had a violation factor of 3 [CGTS99] and required
to open multiple copies of facilities whereas our algorithm opens each facility at most
once.

We extend our (2 + ¢)-violation algorithm in the following two directions. On one
hand, we obtain a 2 + ¢ capacity violating algorithm to the more general k-facility loca-
tion problem with uniform capacities, where opening facilities incurs a location specific
opening cost. On the other hand, we show that violating capacities by a slightly bigger
factor of 3 + ¢ is sufficient to obtain a constant factor approximation of the connection
cost also in the case of the non-uniform hard capacitated k-median problem. This sub-
stantially improves upon the previously known algorithm with a violation of 50 and that
required (in contrast to ours) to open multiple copies of facilities [CRO5].

Our algorithms first use the clustering of Charikar et al. [CGTS99] to partition the
facilities into sets of total fractional opening at least 1 — 1/¢ for some fixed ¢. Then we
exploit the technique of Levi, Shmoys, and Swamy [LSS12], which they developed for the
capacitated facility location problem, which is to locally group the demand from clients
to obtain a system of single node demand instances. Next, depending on the setting, we
either work with stars of facilities (for non-uniform capacities), or we use a dedicated
routing tree on the demand nodes (for non-uniform opening cost), to redistribute the
demand that cannot be satisfied locally within the clusters.

In a recent work subsequent to ours, Demirci and Li [DL16] study a much stronger
LP relaxation by means of which they can even achieve a (1 + ¢)-capacity violation.
The question for a constant-factor approximation algorithm for capacitated k-median
remains, however, open.

2.2 Knapsack Median

Knapsack median is a generalization of the classic k-median problem in which we replace
the cardinality constraint with a knapsack constraint. More precisely, we are given for
each facility an individual opening cost and a bound on the total opening cost. A major
difficulty in approximating this problem lies in the fact that the standard LP has an
unbounded integrality gap. Kumar [Kum12] was the first to get around this difficulty by
combining the lower bound of the LP with a clever combinatorial bound to obtain the
first constant-factor approximation. There is a series of improved bounds and the best
algorithm prior to our work has a ratio of 32 and is due to Swamy [Swal6]. We [BPR"17]
improve on the best known algorithms in several ways, including adding randomization
and applying sparsification as a preprocessing step. The latter improvement produces
the first LP for this problem with bounded integrality gap. The new algorithm obtains
an approximation factor of 17.46.

Our algorithm has a flow similar to Swamy’s: we first get a half-integral solution
(except for a few “bad” facilities), and then create pairs of half-facilities, opening one
facility in each pair. By making several improvements, we reduce the approximation
ratio to 17.46. The first improvement is a simple modification to the pairing process so
that every half-facility is guaranteed either itself or its closest neighbor to be open (versus



having to go through two “jumps” to get to an open facility). The second improvement
is to randomly sample the half-integral solution, and condition on the probability that
any given facility is “bad”. The algorithm can be derandomized with linear loss in the
runtime. The third improvement deals with the bad facilities, which inevitabley arise
due to the knapsack constraint. All previous algorithms used Kumar’s bound [Kum12] to
bound the cost of nearby clients when bad facilities must be closed. However, we show
that by using a sparsification technique similar in spirit to—but distinct from—that
used by Li and Svensson [LS13], we can focus on a subinstance in which the connection
costs of clients are guaranteed to be evenly distributed throughout the instance. This
allows for a much stronger bound than Kumar’s, and also results in an LP with bounded
integrality gap, unlike previous algorithms.

We also give a bi-criteria algorithm with factor 3.05 and with a budget violation of
1+ € for any € > 0. (The running time of this algorithm depends on ¢.)

2.3 Maximum Betweenness Centrality

A question that frequently arises in the analysis of complex networks is how central
or important a given node is. Examples of such complex networks are communication
or logistical networks. In the previous sections we discussed k-median and k-center
problems aiming at minimizing connections costs. Here, in contrast, we [FS11] consider
a centrality measure that aims at monitoring communication and is called shortest path
betweenness centrality [Fre77, Bra08]. This measure can be motivated by the following
scenario that relies only on very basic assumptions.

The maximum betweenness centrality problem (MBC) can be defined as follows. Given
a graph, find a k-element node set C' that maximizes the probability of detecting com-
munication between a pair of nodes s and ¢ chosen uniformly at random. It is assumed
that the communication between s and ¢ is realized along a shortest s— path which is,
again, selected uniformly at random. The communication is detected if the communi-
cation path contains a node of C'. Dolev et al. [DEPZ09] showed that MBC is NP-hard
and gave a (1 — 1/e)-approximation algorithm using a greedy approach. We provide a
reduction of MBC to the maximum coverage problem that simplifies the analysis of the
algorithm of Dolev et al. considerably. Our reduction allows us to obtain a new algo-
rithm with the same approximation ratio for a (generalized) budgeted version of MBC,
in which every node has a cost and we are given a budget that specifies an upper bound
on the total cost of the chosen node set C'. We provide tight examples showing that the
analyses of both algorithms are best possible. Moreover, we prove that MBC is APX-
complete by a reduction from the maximum k-vertex cover problem and provide an exact
polynomial-time algorithm for MBC on tree graphs based on dynamic programming.

2.4 Maximizing Monotone Submodular Functions Subject to a Covering
and a Packing Constraint

Suppose you are the producer of a certain good and you wish to produce a given minimum
amount P of this good, for example, because of projections, customer demands or to
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ensure a certain market share. To this end, you want to open at most k factories.
Assume that you have a certain ground set U of options for opening factories. Each
option e in this set specifies the amount p(e) of the goods that e can produce. Your
aim is to find a k-subset S of U to maximize the gain f(S) (revenue minus production
cost) and so that S can produce P units of the good. In practice, the actual gain
may be a complicated function depending, for example, on the location and the precise
demand distribution of the customers. We will work with the assumption that the gain
function f is submodular [NWF78|. Here, submodular means that f has the property of
diminishing returns, which is a reasonable assumption in most practical settings. More
precisely, if e € U is an element and X C Y C U are two subsets not containing e
then its incremental gain f(X + e) — f(X) with respect to X is not smaller than its
incremental gain f(Y +e) — f(Y) with respect to Y. The function f is called monotone
if f(X)<f(Y)foral XCY CU.

Submodular functions are a general means of modelling the principle of diminishing
returns in discrete optimization [NWF78]. They are the discrete analogous of convexity
and capture, for example, problems such as maximum cut, maximum di-cut, generalized
assignment, maximum coverage, maximum bi-section and maximum facility location.

Optimization of submodular functions has attracted lots of attention from the combi-
natorial optimization community in the last few years. Initially, combinatorial algorithms
using greedy and local search techniques were proposed for maximizing submodular func-
tions subject to cardinality or packing constraints [NWF78, Svi04]. But as the complex-
ity of the constraints increased (such as matroid or multiple knapsack constraints), it
became necessary to look at more sophisticated techniques using a continuous relaxation
known as the multilinear relazation [CCPV11, KST09, VCZ11, EN16].

We [SU17] take a detour from the recently used techniques and propose a new combina-
torial algorithm that achieves constant-factor approximations for maximizing monotone
submodular functions subject to a covering constraint and a packing constraint for max-
imizing monotone submodular functions. Our algorithm violates both constraints by a
factor of 1+ ¢ for any € > 0. We remark that a violation cannot be avoided since already
checking existence of a feasible solution is NP-hard.

Existing approaches for maximizing submodular functions usually exploit that the
underlying polytope describing the constraints is down-closed. Our results are the first
to handle a general covering constraint, which is not down-closed. We propose a com-
binatorial approach that seems novel to us. We combine the greedy approach with a
dynamic programming (DP) table that can handle more complex constraints and con-
trols the greedy process. As a result, our dynamic programming table does not contain
optimum partial solutions (as it is common for DPs) but rather approximate solutions
and the propagation steps in the DP are made according to a greedy rule. We are not
aware of a similar usage of DP in submodular optimization and more general in approxi-
mation algorithms. We also feel that our approach is simple and natural enough so that
it may have applications for other problems as well. It would, for example, be interesting
to see if this approach can handle other problems with additional complex constraints
where the basic variants (with simple constraints) can be tackled by a greedy approach.
In particular, we point out an interesting connection of our approach to the capacitated
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k-median problem and give a non-trivial approximation algorithm without any violation
of the constraints for metrics with two distances.

2.5 Geometric Coverage Problems

The maximum coverage (MC) problem is one of the classic combinatorial optimization
problems which is well studied due to its wealth of applications. In this problem, we
are given a family of sets over a given universe of ground elements. The objective is
to find a given number k of sets in the family such that the number of covered ground
elements is maximized. A possible application of maximum coverage lies in the area of
location problems where each set in the family corresponds to the set of clients that can
be served by a potential facility and where the objective is to open k facilities so as to
maximize the number of clients served. The problem is closely related to the well-known
set cover (SC) problem where we want to find the smallest number of sets that cover
the all ground elements.

In their seminal work, Mustafa and Ray [MR09] showed that a wide class of geometric
SC problems admit a PTAS via local search—this is one of the most general approaches
known for such problems. Their result applies if a naturally defined “exchange graph”
for two feasible solutions is planar and is based on subdividing this graph via a planar
separator theorem due to Frederickson [Fre91]. Obtaining similar results for the related
MC seems non-trivial due to the hard cardinality constraint. In fact, while Badanidiyuru,
Kleinberg, and Lee [BKL12] have shown (via a different analysis) that local search yields
a PTAS for MC with two-dimensional real halfspaces, they only conjectured that the
same holds true for dimension three. Interestingly, at this point it was already known
that local search provides a PTAS for the corresponding set cover case and this followed
directly from the approach of Mustafa and Ray.

It is possible to construct the same exchange graphs as in the case of SC also for MC.
However, the hard cardinality constraint given by input parameter k poses an obstacle.
In particular, when considering a swap corresponding to a part of the subdivision, this
swap might be infeasible as it may contain (substantially) more sets from the global
optimum than from the local optimum. Another issue is that MC has a different objective
function than SC. Namely, the goal is to maximize the number of covered elements rather
than minimizing the number of used sets.

We [CDRS16] provide a way to address the above-mentioned issues. First, we propose
a color-balanced version of the planar separator theorem. The resulting subdivision
approximates locally in each part the global distribution of the colors. Second, we show
how this roughly balanced subdivision can be employed in a more careful analysis to
strictly obey the hard cardinality constraint. More specifically, we obtain a PTAS for any
“planarizable” instance of MC and thus essentially for all cases where the corresponding
SC instance can be tackled via the approach of Mustafa and Ray. As a corollary, we
confirm the conjecture of Badanidiyuru, Kleinberg, and Lee [BKL12] regarding real half
spaces in dimension three. We feel that our ideas could also be helpful in other geometric
settings involving a cardinality constraint.
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Conclusion

In this thesis, we have studied approximation algorithms for combinatorial optimization
problems. The focus was on examining the effect of adding a new constraint (such as a
cardinality, knapsack, capacity, covering or length constraint) to a classical optimization
problem. In the case of edge-disjoint paths, we have considered a new parameterization,
and for Manhattan networks we studied a generalized version. While the particular
problems under consideration were structurally quite different, the presence of such an
additional constraint (or new aspect) always rendered the problem under investigation
substantially harder to tackle.

For some of the problems, rounding continuous relaxations of the problem has turned
out to be a powerful approach even under the presence of additional constraints but we
were sometimes required to relax those constraints.

For strongly constrained problems where “structure” is a decisive factor (such as for
geometric problems or degree-based spanning tree problems), combinatorial algorithmic
approaches such as divide-and-conquer, greedy, or local search have turned out effective.

In the future, it would be interesting to obtain more general results on how the par-
ticular constraints impact the approximability of a problem. It would also be interesting
to devise stronger continuous relaxations that do not require the violation of constraints
or that are able to cope with highly constrained and structured problems.
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