
Layered Drawing
of Undirected Graphs

with Generalized Port Constraints

Julian Walter, Johannes Zink,
Joachim Baumeister, Alexander Wolff



Motivation

• Imagine you own a machine manufacturing company.

2



Motivation

• Imagine you own a machine manufacturing company.

• The company produces various models with different
equipment and individual custom-made parts.

2



Motivation

• Imagine you own a machine manufacturing company.

• The company produces various models with different
equipment and individual custom-made parts.

• In the case of a malfunction, a technician needs a drawn
cable plan to understand the particular interdependencies.

2



Motivation

• Imagine you own a machine manufacturing company.

• The company produces various models with different
equipment and individual custom-made parts.

• In the case of a malfunction, a technician needs a drawn
cable plan to understand the particular interdependencies.

• Hand-drawn plans for all variants are unreasonably expensive.

2



Motivation

• Imagine you own a machine manufacturing company.

• The company produces various models with different
equipment and individual custom-made parts.

• In the case of a malfunction, a technician needs a drawn
cable plan to understand the particular interdependencies.

• Hand-drawn plans for all variants are unreasonably expensive.

⇒ draw plans automatically s.t. they resemble hand-drawn plans

2



Motivation

• Imagine you own a machine manufacturing company.

• The company produces various models with different
equipment and individual custom-made parts.

• In the case of a malfunction, a technician needs a drawn
cable plan to understand the particular interdependencies.

• Hand-drawn plans for all variants are unreasonably expensive.

⇒ draw plans automatically s.t. they resemble hand-drawn plans

2



Motivation

• Imagine you own a machine manufacturing company.

• The company produces various models with different
equipment and individual custom-made parts.

• In the case of a malfunction, a technician needs a drawn
cable plan to understand the particular interdependencies.

• Hand-drawn plans for all variants are unreasonably expensive.

⇒ draw plans automatically s.t. they resemble hand-drawn plans

– orthogonal style
– vertices arranged

on few layers

2



Motivation

• Imagine you own a machine manufacturing company.

• The company produces various models with different
equipment and individual custom-made parts.

• In the case of a malfunction, a technician needs a drawn
cable plan to understand the particular interdependencies.

• Hand-drawn plans for all variants are unreasonably expensive.

⇒ draw plans automatically s.t. they resemble hand-drawn plans

– orthogonal style
– vertices arranged

on few layers

⇒ use layered graph
drawing algorithm

2



Introduction: Layered Graph Drawing

• Given: directed acyclic graph G = (V ,A)

3



Introduction: Layered Graph Drawing

• Given: directed acyclic graph G = (V ,A)

3



Introduction: Layered Graph Drawing

• Given: directed acyclic graph G = (V ,A)

• Task: place vertices onto distinct horizontal lines (layers)
s.t. all edges are directed upwards

3



Introduction: Layered Graph Drawing

• Given: directed acyclic graph G = (V ,A)

• Task: place vertices onto distinct horizontal lines (layers)
s.t. all edges are directed upwards

3



Introduction: Layered Graph Drawing

• Given: directed acyclic graph G = (V ,A)

• Task: place vertices onto distinct horizontal lines (layers)
s.t. all edges are directed upwards

• Goals motivated by graph drawing aesthetics:
few crossings, few layers, good aspect ratio, . . .

3



Introduction: Layered Graph Drawing

• Given: directed acyclic graph G = (V ,A)

• Task: place vertices onto distinct horizontal lines (layers)
s.t. all edges are directed upwards

• Goals motivated by graph drawing aesthetics:
few crossings, few layers, good aspect ratio, . . .

3



Introduction: Sugiyama Framework (1981)

Consists of 5 phases:

4



Introduction: Sugiyama Framework (1981)

Consists of 5 phases:

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

4



Introduction: Sugiyama Framework (1981)

Consists of 5 phases:

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

4



Introduction: Sugiyama Framework (1981)

Consists of 5 phases:

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

4



Introduction: Sugiyama Framework (1981)

Consists of 5 phases:

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

4



Introduction: Sugiyama Framework (1981)

Consists of 5 phases:

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

4



Introduction: Sugiyama Framework (1981)

Consists of 5 phases:

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

4



Introduction: Sugiyama Framework (1981)

Consists of 5 phases:

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

4



Introduction: Sugiyama Framework (1981)

Consists of 5 phases:

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

4



Introduction: Sugiyama Framework (1981)

Consists of 5 phases:

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

4



Introduction: Sugiyama Framework (1981)

Consists of 5 phases:

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

4



Introduction: Sugiyama Framework (1981)

Consists of 5 phases:

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

4



Introduction: Sugiyama Framework (1981)

Consists of 5 phases:

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

4



Introduction: Sugiyama Framework (1981)

Consists of 5 phases:

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

4



Introduction: Sugiyama Framework (1981)

Consists of 5 phases:

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

4



Introduction: Sugiyama Framework (1981)

Consists of 5 phases:

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

contains NP-hard tasks

4



Introduction: Sugiyama Framework (1981)

Consists of 5 phases:

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

contains NP-hard tasks

(for max. width)

4



Introduction: Sugiyama Framework (1981)

Consists of 5 phases:

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

contains NP-hard tasks

(for max. width)

⇒ use heuristics

4



Definitions

Extension of a graph to a port graph G = (V ,P,E ):
• vertex set V
• edge set E 3 e : {p1, p2} ∈

(
P
2

)
• port set P s.t. each p ∈ P belongs to some v ∈ V

5



Definitions

Extension of a graph to a port graph G = (V ,P,E ):
• vertex set V
• edge set E 3 e : {p1, p2} ∈

(
P
2

)
• port set P s.t. each p ∈ P belongs to some v ∈ V

5



Definitions

Extension of a graph to a port graph G = (V ,P,E ):
• vertex set V
• edge set E 3 e : {p1, p2} ∈

(
P
2

)
• port set P s.t. each p ∈ P belongs to some v ∈ V

5



Definitions

Extension of a graph to a port graph G = (V ,P,E ):
• vertex set V
• edge set E 3 e : {p1, p2} ∈

(
P
2

)
• port set P s.t. each p ∈ P belongs to some v ∈ V

5



Definitions

Extension of a graph to a port graph G = (V ,P,E ):
• vertex set V
• edge set E 3 e : {p1, p2} ∈

(
P
2

)
• port set P s.t. each p ∈ P belongs to some v ∈ V

5



Definitions

Extension of a graph to a port graph G = (V ,P,E ):
• vertex set V
• edge set E 3 e : {p1, p2} ∈

(
P
2

)
• port set P s.t. each p ∈ P belongs to some v ∈ V

Orthogonal drawing style:

• v ∈ V : axis-aligned rectangle of width ≥ w(v), height ≥ h(v)
• p ∈ P: small box on the boundary of its vertex
• e ∈ E : polyline of horizontal & vertical line segments

5



Definitions

Extension of a graph to a port graph G = (V ,P,E ):
• vertex set V
• edge set E 3 e : {p1, p2} ∈

(
P
2

)
• port set P s.t. each p ∈ P belongs to some v ∈ V

Orthogonal drawing style:

• v ∈ V : axis-aligned rectangle of width ≥ w(v), height ≥ h(v)
• p ∈ P: small box on the boundary of its vertex
• e ∈ E : polyline of horizontal & vertical line segments

5



Definitions

Extension of a graph to a port graph G = (V ,P,E ):
• vertex set V
• edge set E 3 e : {p1, p2} ∈

(
P
2

)
• port set P s.t. each p ∈ P belongs to some v ∈ V

Orthogonal drawing style:

• v ∈ V : axis-aligned rectangle of width ≥ w(v), height ≥ h(v)
• p ∈ P: small box on the boundary of its vertex
• e ∈ E : polyline of horizontal & vertical line segments

vertex 27893534

vertex 9237444

two
lines

Φ
v0

5



Definitions

Extension of a graph to a port graph G = (V ,P,E ):
• vertex set V
• edge set E 3 e : {p1, p2} ∈

(
P
2

)
• port set P s.t. each p ∈ P belongs to some v ∈ V

Orthogonal drawing style:

• v ∈ V : axis-aligned rectangle of width ≥ w(v), height ≥ h(v)
• p ∈ P: small box on the boundary of its vertex
• e ∈ E : polyline of horizontal & vertical line segments

vertex 27893534

vertex 9237444

two
lines

Φ
v0

5



Definitions

Extension of a graph to a port graph G = (V ,P,E ):
• vertex set V
• edge set E 3 e : {p1, p2} ∈

(
P
2

)
• port set P s.t. each p ∈ P belongs to some v ∈ V

Orthogonal drawing style:

• v ∈ V : axis-aligned rectangle of width ≥ w(v), height ≥ h(v)
• p ∈ P: small box on the boundary of its vertex
• e ∈ E : polyline of horizontal & vertical line segments

vertex 27893534

vertex 9237444

two
lines

Φ
v0

5



Previous Work

• Spönemann et al. (2009, 2014) consider graph drawing
with port constraints in the Sugiyama framework.

6



Previous Work

• Spönemann et al. (2009, 2014) consider graph drawing
with port constraints in the Sugiyama framework.

• 4 levels of port constraints (assignment per vertex):

– Free

– FixedSide

– FixedOrder

– FixedPos

6



Previous Work

• Spönemann et al. (2009, 2014) consider graph drawing
with port constraints in the Sugiyama framework.

• 4 levels of port constraints (assignment per vertex):

– Free

– FixedSide

– FixedOrder

– FixedPos

6



Previous Work

• Spönemann et al. (2009, 2014) consider graph drawing
with port constraints in the Sugiyama framework.

• 4 levels of port constraints (assignment per vertex):

– Free

– FixedSide

– FixedOrder

– FixedPos

6



Previous Work

• Spönemann et al. (2009, 2014) consider graph drawing
with port constraints in the Sugiyama framework.

• 4 levels of port constraints (assignment per vertex):

– Free

– FixedSide

– FixedOrder

– FixedPos

6



Previous Work

• Spönemann et al. (2009, 2014) consider graph drawing
with port constraints in the Sugiyama framework.

• 4 levels of port constraints (assignment per vertex):

– Free

– FixedSide

– FixedOrder

– FixedPos

6



Previous Work

• Spönemann et al. (2009, 2014) consider graph drawing
with port constraints in the Sugiyama framework.

• 4 levels of port constraints (assignment per vertex):

– Free

– FixedSide

– FixedOrder

– FixedPos

• Open source implemenation in Java as KIELER (later:
eclipse.elk) available

6



Contribution

We extend an orthogonal-style layered graph drawing algorithm
built on the Sugiyama framework with ports by:

7



Contribution

We extend an orthogonal-style layered graph drawing algorithm
built on the Sugiyama framework with ports by:

• Port groups (generalizing port constraints
Free, FixedSide, FixedOrder)

– can be assigend to a vertex side or Free
– can be nested
– internal order can be fixed or variable

7



Contribution

We extend an orthogonal-style layered graph drawing algorithm
built on the Sugiyama framework with ports by:

• Port groups (generalizing port constraints
Free, FixedSide, FixedOrder)

– can be assigend to a vertex side or Free
– can be nested
– internal order can be fixed or variable

7



Contribution

We extend an orthogonal-style layered graph drawing algorithm
built on the Sugiyama framework with ports by:

• Port groups (generalizing port constraints
Free, FixedSide, FixedOrder)

– can be assigend to a vertex side or Free
– can be nested
– internal order can be fixed or variable

7



Contribution

We extend an orthogonal-style layered graph drawing algorithm
built on the Sugiyama framework with ports by:

• Port groups (generalizing port constraints
Free, FixedSide, FixedOrder)

– can be assigend to a vertex side or Free
– can be nested
– internal order can be fixed or variable

7



Contribution

We extend an orthogonal-style layered graph drawing algorithm
built on the Sugiyama framework with ports by:

• Port groups (generalizing port constraints
Free, FixedSide, FixedOrder)

– can be assigend to a vertex side or Free
– can be nested
– internal order can be fixed or variable

7



Contribution

We extend an orthogonal-style layered graph drawing algorithm
built on the Sugiyama framework with ports by:

• Port groups (generalizing port constraints
Free, FixedSide, FixedOrder)

– can be assigend to a vertex side or Free
– can be nested
– internal order can be fixed or variable

7



Contribution

We extend an orthogonal-style layered graph drawing algorithm
built on the Sugiyama framework with ports by:

• Port groups (generalizing port constraints
Free, FixedSide, FixedOrder)

– can be assigend to a vertex side or Free
– can be nested
– internal order can be fixed or variable

• Port pairings: require 2 ports to be on an axis-parallel line

7



Contribution

We extend an orthogonal-style layered graph drawing algorithm
built on the Sugiyama framework with ports by:

• Port groups (generalizing port constraints
Free, FixedSide, FixedOrder)

– can be assigend to a vertex side or Free
– can be nested
– internal order can be fixed or variable

• Port pairings: require 2 ports to be on an axis-parallel line

7



Contribution

We extend an orthogonal-style layered graph drawing algorithm
built on the Sugiyama framework with ports by:

• Port groups (generalizing port constraints
Free, FixedSide, FixedOrder)

– can be assigend to a vertex side or Free
– can be nested
– internal order can be fixed or variable

• Port pairings: require 2 ports to be on an axis-parallel line

7



Contribution

We extend an orthogonal-style layered graph drawing algorithm
built on the Sugiyama framework with ports by:

• Port groups (generalizing port constraints
Free, FixedSide, FixedOrder)

– can be assigend to a vertex side or Free
– can be nested
– internal order can be fixed or variable

• Port pairings: require 2 ports to be on an axis-parallel line

• Draw undirected graphs by orienting the edges using

– breadth-first search (orient in direction of discovery)
– force-directed algorithm (orient all edges upwards)

7



Contribution

We extend an orthogonal-style layered graph drawing algorithm
built on the Sugiyama framework with ports by:

• Port groups (generalizing port constraints
Free, FixedSide, FixedOrder)

– can be assigend to a vertex side or Free
– can be nested
– internal order can be fixed or variable

• Port pairings: require 2 ports to be on an axis-parallel line

• Draw undirected graphs by orienting the edges using

– breadth-first search (orient in direction of discovery)
– force-directed algorithm (orient all edges upwards)

7



Contribution

We extend an orthogonal-style layered graph drawing algorithm
built on the Sugiyama framework with ports by:

• Port groups (generalizing port constraints
Free, FixedSide, FixedOrder)

– can be assigend to a vertex side or Free
– can be nested
– internal order can be fixed or variable

• Port pairings: require 2 ports to be on an axis-parallel line

• Draw undirected graphs by orienting the edges using

– breadth-first search (orient in direction of discovery)
– force-directed algorithm (orient all edges upwards)

7



Contribution

We extend an orthogonal-style layered graph drawing algorithm
built on the Sugiyama framework with ports by:

• Port groups (generalizing port constraints
Free, FixedSide, FixedOrder)

– can be assigend to a vertex side or Free
– can be nested
– internal order can be fixed or variable

• Port pairings: require 2 ports to be on an axis-parallel line

• Draw undirected graphs by orienting the edges using

– breadth-first search (orient in direction of discovery)
– force-directed algorithm (orient all edges upwards)

We experimentally evaluate our variants on real cable plans and
pseudo plans (we describe how we generate them from real data)

7



Our Extensions to the Sugiyama Framework

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

8



Our Extensions to the Sugiyama Framework

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

1. Orient undirected edges (w/o creating cycles)
• with breadth-first search (BFS)
• with force-directed algorithm (FD)
• by random placement (Rand)

8



Our Extensions to the Sugiyama Framework

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

1. Orient undirected edges (w/o creating cycles)
• with breadth-first search (BFS)
• with force-directed algorithm (FD)
• by random placement (Rand)

Orient ports acc. to port groups, insert turning
dummy vertices for ports on the “wrong” side:

2.5

8



Our Extensions to the Sugiyama Framework

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

1. Orient undirected edges (w/o creating cycles)
• with breadth-first search (BFS)
• with force-directed algorithm (FD)
• by random placement (Rand)

Orient ports acc. to port groups, insert turning
dummy vertices for ports on the “wrong” side:

L3

L2

L1

L3
L2.5
L2

L1

2.5

8



Our Extensions to the Sugiyama Framework

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

1. Orient undirected edges (w/o creating cycles)
• with breadth-first search (BFS)
• with force-directed algorithm (FD)
• by random placement (Rand)

Orient ports acc. to port groups, insert turning
dummy vertices for ports on the “wrong” side:

L3

L2

L1

L3
L2.5
L2

L1Well-established barycenter
heuristic with respect to:

2.5

8



Our Extensions to the Sugiyama Framework

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

1. Orient undirected edges (w/o creating cycles)
• with breadth-first search (BFS)
• with force-directed algorithm (FD)
• by random placement (Rand)

Orient ports acc. to port groups, insert turning
dummy vertices for ports on the “wrong” side:

L3

L2

L1

L3
L2.5
L2

L1Well-established barycenter
heuristic with respect to: • Vertices – sort ports afterwards

• Ports – sort port groups & vtcs.
recursively acc. to barycenters of their ports

• Mixed – for port pairings like Ports,
otherwise like Vertices

2.5

8



Our Extensions to the Sugiyama Framework

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

1. Orient undirected edges (w/o creating cycles)
• with breadth-first search (BFS)
• with force-directed algorithm (FD)
• by random placement (Rand)

Orient ports acc. to port groups, insert turning
dummy vertices for ports on the “wrong” side:

L3

L2

L1

L3
L2.5
L2

L1Well-established barycenter
heuristic with respect to: • Vertices – sort ports afterwards

• Ports – sort port groups & vtcs.
recursively acc. to barycenters of their ports

• Mixed – for port pairings like Ports,
otherwise like Vertices

(Fixed) algorithm by
Brandes & Köpf (GD’01)

2.5

8



Our Extensions to the Sugiyama Framework

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

1. Orient undirected edges (w/o creating cycles)
• with breadth-first search (BFS)
• with force-directed algorithm (FD)
• by random placement (Rand)

Orient ports acc. to port groups, insert turning
dummy vertices for ports on the “wrong” side:

L3

L2

L1

L3
L2.5
L2

L1Well-established barycenter
heuristic with respect to: • Vertices – sort ports afterwards

• Ports – sort port groups & vtcs.
recursively acc. to barycenters of their ports

• Mixed – for port pairings like Ports,
otherwise like Vertices

(Fixed) algorithm by
Brandes & Köpf (GD’01)

orthogonal

2.5

8



Experiments

• Real: 380 real cable plans of a large machine manufacturer

9



Experiments

• Real: 380 real cable plans of a large machine manufacturer

• Pseudo: 1139 cable plans artificially generated from Real

9



Experiments

• Real: 380 real cable plans of a large machine manufacturer

• Pseudo: 1139 cable plans artificially generated from Real

• Tested different variants of our algorithm:

– methods for orienting the edges
– methods for crossing minimization

9



Experiments

• Real: 380 real cable plans of a large machine manufacturer

• Pseudo: 1139 cable plans artificially generated from Real

• Tested different variants of our algorithm:

– methods for orienting the edges
– methods for crossing minimization

9



Experiments

• Real: 380 real cable plans of a large machine manufacturer

• Pseudo: 1139 cable plans artificially generated from Real

• Tested different variants of our algorithm:

– methods for orienting the edges
– methods for crossing minimization

9



Experiments

• Real: 380 real cable plans of a large machine manufacturer

• Pseudo: 1139 cable plans artificially generated from Real

• Tested different variants of our algorithm:

– methods for orienting the edges
– methods for crossing minimization

• Measured #crossings, #bends of orthogonal output drawings

9



Experiments

• Real: 380 real cable plans of a large machine manufacturer

• Pseudo: 1139 cable plans artificially generated from Real

• Took best of 5 executions for each plan & variant

• Tested different variants of our algorithm:

– methods for orienting the edges
– methods for crossing minimization

• Measured #crossings, #bends of orthogonal output drawings

9



Experiments

• Real: 380 real cable plans of a large machine manufacturer

• Pseudo: 1139 cable plans artificially generated from Real

• Our implementation in Java is available on github:
github.com/j-zink-wuerzburg

.../praline

.../pseudo-praline-plan-generation

• Took best of 5 executions for each plan & variant

• Tested different variants of our algorithm:

– methods for orienting the edges
– methods for crossing minimization

• Measured #crossings, #bends of orthogonal output drawings

9



Example: (anonymized) plan from Real

Kieler

our implementation

10



Example: plan from Pseudo

Kieler

our implementation

11



Results: Orienting Edges (Real)

0 50 100 150 200 250
0

0.5

1

1.5

cr
o
ss
in
g
s
re
l.
to

R
a
n
d

BFS

FD

0 50 100 150 200 250
0

0.5

1

1.5

number of vertices

b
en

d
s
re
l.
to

R
a
n
d

12



Results: Orienting Edges (Real)

0 50 100 150 200 250
0

0.5

1

1.5

cr
o
ss
in
g
s
re
l.
to

R
a
n
d

BFS

FD

0 50 100 150 200 250
0

0.5

1

1.5

number of vertices

b
en

d
s
re
l.
to

R
a
n
d

FD:
µ = .55
best 89 %

12



Results: Orienting Edges (Real)

0 50 100 150 200 250
0

0.5

1

1.5

cr
o
ss
in
g
s
re
l.
to

R
a
n
d

BFS

FD

0 50 100 150 200 250
0

0.5

1

1.5

number of vertices

b
en

d
s
re
l.
to

R
a
n
d

FD:
µ = .55
best 89 %

BFS:
µ = .67
best 25 %

12



Results: Orienting Edges (Real)

0 50 100 150 200 250
0

0.5

1

1.5

cr
o
ss
in
g
s
re
l.
to

R
a
n
d

BFS

FD

0 50 100 150 200 250
0

0.5

1

1.5

number of vertices

b
en

d
s
re
l.
to

R
a
n
d

FD:
µ = .55
best 89 %

BFS:
µ = .67
best 25 %

FD:
µ = .80
best 85 %

12



Results: Orienting Edges (Real)

0 50 100 150 200 250
0

0.5

1

1.5

cr
o
ss
in
g
s
re
l.
to

R
a
n
d

BFS

FD

0 50 100 150 200 250
0

0.5

1

1.5

number of vertices

b
en

d
s
re
l.
to

R
a
n
d

FD:
µ = .55
best 89 %

BFS:
µ = .67
best 25 %

FD:
µ = .80
best 85 %

BFS:
µ = .86
best 20 %

12



Results: Orienting Edges (Pseudo)

0 50 100 150 200 250
0

0.5

1

1.5

cr
o
ss
in
g
s
re
l.
to

R
a
n
d

BFS

FD

0 50 100 150 200 250
0

0.5

1

1.5

number of vertices

b
en

d
s
re
l.
to

R
a
n
d

13



Results: Orienting Edges (Pseudo)

FD:
µ = .68
best 89 %

BFS:
µ = .80
best 21 %

0 50 100 150 200 250
0

0.5

1

1.5

cr
o
ss
in
g
s
re
l.
to

R
a
n
d

BFS

FD

0 50 100 150 200 250
0

0.5

1

1.5

number of vertices

b
en

d
s
re
l.
to

R
a
n
d

13



Results: Orienting Edges (Pseudo)

FD:
µ = .68
best 89 %

BFS:
µ = .80
best 21 %

FD:
µ = 1.01
best 60 %

BFS:
µ = 1.03
best 29 %

0 50 100 150 200 250
0

0.5

1

1.5

cr
o
ss
in
g
s
re
l.
to

R
a
n
d

BFS

FD

0 50 100 150 200 250
0

0.5

1

1.5

number of vertices

b
en

d
s
re
l.
to

R
a
n
d

13



Results: Crossing Minimization (Real)

0 50 100 150 200 250
0

0.5

1

1.5

cr
o
ss
in
g
s
re
l.
to

K
ie
l
e
r

Vertices

Mixed

Ports

0 50 100 150 200 250
0

0.5

1

number of vertices

b
en

d
s
re
l.
to

K
ie
l
e
r

14



Results: Crossing Minimization (Real)

Ports:
µ = .65
best 84 %

0 50 100 150 200 250
0

0.5

1

1.5

cr
o
ss
in
g
s
re
l.
to

K
ie
l
e
r

Vertices

Mixed

Ports

0 50 100 150 200 250
0

0.5

1

number of vertices

b
en

d
s
re
l.
to

K
ie
l
e
r

14



Results: Crossing Minimization (Real)

Ports:
µ = .65
best 84 %

Vertices:
µ = .83
best 19 %

0 50 100 150 200 250
0

0.5

1

1.5

cr
o
ss
in
g
s
re
l.
to

K
ie
l
e
r

Vertices

Mixed

Ports

0 50 100 150 200 250
0

0.5

1

number of vertices

b
en

d
s
re
l.
to

K
ie
l
e
r

14



Results: Crossing Minimization (Real)
Mixed:
µ = .83
best 16 %

Ports:
µ = .65
best 84 %

Vertices:
µ = .83
best 19 %

0 50 100 150 200 250
0

0.5

1

1.5

cr
o
ss
in
g
s
re
l.
to

K
ie
l
e
r

Vertices

Mixed

Ports

0 50 100 150 200 250
0

0.5

1

number of vertices

b
en

d
s
re
l.
to

K
ie
l
e
r

14



Results: Crossing Minimization (Real)
Mixed:
µ = .83
best 16 %

Ports:
µ = .65
best 84 %

Vertices:
µ = .83
best 19 %

Mixed:
µ = .44
best 29 %
Ports:
µ = .42
best 72 %

0 50 100 150 200 250
0

0.5

1

1.5

cr
o
ss
in
g
s
re
l.
to

K
ie
l
e
r

Vertices

Mixed

Ports

0 50 100 150 200 250
0

0.5

1

number of vertices

b
en

d
s
re
l.
to

K
ie
l
e
r Vertices:

µ = .46
best 13 %

14



Results: Crossing Minimization (Pseudo)

0 50 100 150 200 250
0

0.5

1

1.5

cr
o
ss
in
g
s
re
l.
to

K
ie
l
e
r

Vertices

Mixed

Ports

0 50 100 150 200 250
0

0.5

1

number of vertices

b
en

d
s
re
l.
to

K
ie
l
e
r

15



Results: Crossing Minimization (Pseudo)

Mixed:
µ = .96
best 15 %

Ports:
µ = .82
best 62 %

Vertices:
µ = .87
best 39 %

0 50 100 150 200 250
0

0.5

1

1.5

cr
o
ss
in
g
s
re
l.
to

K
ie
l
e
r

Vertices

Mixed

Ports

0 50 100 150 200 250
0

0.5

1

number of vertices

b
en

d
s
re
l.
to

K
ie
l
e
r

15



Results: Crossing Minimization (Pseudo)

Mixed:
µ = .96
best 15 %

Ports:
µ = .82
best 62 %

Vertices:
µ = .87
best 39 %

Vertices:
µ = .56
best 40 %

Ports:
µ = .56
best 41 %

Mixed:
µ = .56
best 34 %

0 50 100 150 200 250
0

0.5

1

1.5

cr
o
ss
in
g
s
re
l.
to

K
ie
l
e
r

Vertices

Mixed

Ports

0 50 100 150 200 250
0

0.5

1

number of vertices

b
en

d
s
re
l.
to

K
ie
l
e
r

15



Conclusions

• We have extended the well-known Sugiyama framework to
draw technical plans (like cable plans) that are undirected,
have ports contained in (nested) port groups and plugs.

16



Conclusions

• We have extended the well-known Sugiyama framework to
draw technical plans (like cable plans) that are undirected,
have ports contained in (nested) port groups and plugs.

• We have implemented and experimentally evaluated
our algorithm on real and on synthetic data.

16



Conclusions

• We have extended the well-known Sugiyama framework to
draw technical plans (like cable plans) that are undirected,
have ports contained in (nested) port groups and plugs.

• We have implemented and experimentally evaluated
our algorithm on real and on synthetic data.

• FD was best for orienting undirected edges;
Ports was best for reducing crossings.

16



Conclusions

• We have extended the well-known Sugiyama framework to
draw technical plans (like cable plans) that are undirected,
have ports contained in (nested) port groups and plugs.

• We have implemented and experimentally evaluated
our algorithm on real and on synthetic data.

• FD was best for orienting undirected edges;
Ports was best for reducing crossings.

• Our variants compare well with existing implementation
(Kieler) in terms of #crossings and #bends (but slower).

16



Conclusions

• We have extended the well-known Sugiyama framework to
draw technical plans (like cable plans) that are undirected,
have ports contained in (nested) port groups and plugs.

• We have implemented and experimentally evaluated
our algorithm on real and on synthetic data.

• FD was best for orienting undirected edges;
Ports was best for reducing crossings.

• Our variants compare well with existing implementation
(Kieler) in terms of #crossings and #bends (but slower).

• We intend to integrate our algorithm into the software of
our industrial partner to see whether this statistical
improvement yields advantages in practice.

16


