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• The company produces various models with different
equipment and individual custom-made parts.

• In the case of a malfunction, a technician needs a drawn
cable plan to understand the particular interdependencies.

• Hand-drawn plans for all variants are unreasonably expensive.

⇒ draw plans automatically s.t. they resemble hand-drawn plans

– orthogonal style
– vertices arranged

on few layers

⇒ use layered graph
drawing algorithm
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Introduction: Sugiyama Framework (1981)

Consists of 5 phases:

1. cycle elimination

2. layer assignment

3. crossing minimization

4. node placement

5. edge routing

contains NP-hard tasks

(for max. width)

⇒ use heuristics

4



Definitions

Extension of a graph to a port graph G = (V ,P,E ):
• vertex set V
• edge set E 3 e : {p1, p2} ∈

(
P
2

)
• port set P s.t. each p ∈ P belongs to some v ∈ V

5



Definitions

Extension of a graph to a port graph G = (V ,P,E ):
• vertex set V
• edge set E 3 e : {p1, p2} ∈

(
P
2

)
• port set P s.t. each p ∈ P belongs to some v ∈ V

5



Definitions

Extension of a graph to a port graph G = (V ,P,E ):
• vertex set V
• edge set E 3 e : {p1, p2} ∈

(
P
2

)
• port set P s.t. each p ∈ P belongs to some v ∈ V

5



Definitions

Extension of a graph to a port graph G = (V ,P,E ):
• vertex set V
• edge set E 3 e : {p1, p2} ∈

(
P
2

)
• port set P s.t. each p ∈ P belongs to some v ∈ V

5



Definitions

Extension of a graph to a port graph G = (V ,P,E ):
• vertex set V
• edge set E 3 e : {p1, p2} ∈

(
P
2

)
• port set P s.t. each p ∈ P belongs to some v ∈ V

5



Definitions

Extension of a graph to a port graph G = (V ,P,E ):
• vertex set V
• edge set E 3 e : {p1, p2} ∈

(
P
2

)
• port set P s.t. each p ∈ P belongs to some v ∈ V

Orthogonal drawing style:

• v ∈ V : axis-aligned rectangle of width ≥ w(v), height ≥ h(v)
• p ∈ P: small box on the boundary of its vertex
• e ∈ E : polyline of horizontal & vertical line segments

5



Definitions

Extension of a graph to a port graph G = (V ,P,E ):
• vertex set V
• edge set E 3 e : {p1, p2} ∈

(
P
2

)
• port set P s.t. each p ∈ P belongs to some v ∈ V

Orthogonal drawing style:

• v ∈ V : axis-aligned rectangle of width ≥ w(v), height ≥ h(v)
• p ∈ P: small box on the boundary of its vertex
• e ∈ E : polyline of horizontal & vertical line segments

5



Definitions

Extension of a graph to a port graph G = (V ,P,E ):
• vertex set V
• edge set E 3 e : {p1, p2} ∈

(
P
2

)
• port set P s.t. each p ∈ P belongs to some v ∈ V

Orthogonal drawing style:

• v ∈ V : axis-aligned rectangle of width ≥ w(v), height ≥ h(v)
• p ∈ P: small box on the boundary of its vertex
• e ∈ E : polyline of horizontal & vertical line segments

vertex 27893534

vertex 9237444

two
lines

Φ
v0

5



Definitions

Extension of a graph to a port graph G = (V ,P,E ):
• vertex set V
• edge set E 3 e : {p1, p2} ∈

(
P
2

)
• port set P s.t. each p ∈ P belongs to some v ∈ V

Orthogonal drawing style:

• v ∈ V : axis-aligned rectangle of width ≥ w(v), height ≥ h(v)
• p ∈ P: small box on the boundary of its vertex
• e ∈ E : polyline of horizontal & vertical line segments

vertex 27893534

vertex 9237444

two
lines

Φ
v0

5



Definitions

Extension of a graph to a port graph G = (V ,P,E ):
• vertex set V
• edge set E 3 e : {p1, p2} ∈

(
P
2

)
• port set P s.t. each p ∈ P belongs to some v ∈ V

Orthogonal drawing style:

• v ∈ V : axis-aligned rectangle of width ≥ w(v), height ≥ h(v)
• p ∈ P: small box on the boundary of its vertex
• e ∈ E : polyline of horizontal & vertical line segments

vertex 27893534

vertex 9237444

two
lines

Φ
v0

5



Previous Work

• Spönemann et al. (2009, 2014) consider graph drawing
with port constraints in the Sugiyama framework.

6



Previous Work

• Spönemann et al. (2009, 2014) consider graph drawing
with port constraints in the Sugiyama framework.

• 4 levels of port constraints (assignment per vertex):

– Free

– FixedSide

– FixedOrder

– FixedPos

6



Previous Work

• Spönemann et al. (2009, 2014) consider graph drawing
with port constraints in the Sugiyama framework.

• 4 levels of port constraints (assignment per vertex):

– Free

– FixedSide

– FixedOrder

– FixedPos

6



Previous Work

• Spönemann et al. (2009, 2014) consider graph drawing
with port constraints in the Sugiyama framework.

• 4 levels of port constraints (assignment per vertex):

– Free

– FixedSide

– FixedOrder

– FixedPos

6



Previous Work

• Spönemann et al. (2009, 2014) consider graph drawing
with port constraints in the Sugiyama framework.

• 4 levels of port constraints (assignment per vertex):

– Free

– FixedSide

– FixedOrder

– FixedPos

6



Previous Work

• Spönemann et al. (2009, 2014) consider graph drawing
with port constraints in the Sugiyama framework.

• 4 levels of port constraints (assignment per vertex):

– Free

– FixedSide

– FixedOrder

– FixedPos

6



Previous Work

• Spönemann et al. (2009, 2014) consider graph drawing
with port constraints in the Sugiyama framework.

• 4 levels of port constraints (assignment per vertex):

– Free

– FixedSide

– FixedOrder

– FixedPos

• Open source implemenation in Java as KIELER (later:
eclipse.elk) available
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Contribution

We extend an orthogonal-style layered graph drawing algorithm
built on the Sugiyama framework with ports by:

• Port groups (generalizing port constraints
Free, FixedSide, FixedOrder)

– can be assigend to a vertex side or Free
– can be nested
– internal order can be fixed or variable

• Port pairings: require 2 ports to be on an axis-parallel line

• Draw undirected graphs by orienting the edges using

– breadth-first search (orient in direction of discovery)
– force-directed algorithm (orient all edges upwards)

We experimentally evaluate our variants on real cable plans and
pseudo plans (we describe how we generate them from real data)
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Orient ports acc. to port groups, insert turning
dummy vertices for ports on the “wrong” side:

L3

L2

L1

L3
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heuristic with respect to: • Vertices – sort ports afterwards

• Ports – sort port groups & vtcs.
recursively acc. to barycenters of their ports

• Mixed – for port pairings like Ports,
otherwise like Vertices

(Fixed) algorithm by
Brandes & Köpf (GD’01)
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Experiments

• Real: 380 real cable plans of a large machine manufacturer

• Pseudo: 1139 cable plans artificially generated from Real

• Our implementation in Java is available on github:
github.com/j-zink-wuerzburg

.../praline

.../pseudo-praline-plan-generation

• Took best of 5 executions for each plan & variant

• Tested different variants of our algorithm:

– methods for orienting the edges
– methods for crossing minimization

• Measured #crossings, #bends of orthogonal output drawings
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Example: (anonymized) plan from Real

Kieler

our implementation
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Example: plan from Pseudo

Kieler

our implementation

11



Results: Orienting Edges (Real)

0 50 100 150 200 250
0

0.5

1

1.5

cr
o
ss
in
g
s
re
l.
to

R
a
n
d

BFS

FD

0 50 100 150 200 250
0

0.5

1

1.5

number of vertices

b
en

d
s
re
l.
to

R
a
n
d

12



Results: Orienting Edges (Real)

0 50 100 150 200 250
0

0.5

1

1.5

cr
o
ss
in
g
s
re
l.
to

R
a
n
d

BFS

FD

0 50 100 150 200 250
0

0.5

1

1.5

number of vertices

b
en

d
s
re
l.
to

R
a
n
d

FD:
µ = .55
best 89 %

12



Results: Orienting Edges (Real)

0 50 100 150 200 250
0

0.5

1

1.5

cr
o
ss
in
g
s
re
l.
to

R
a
n
d

BFS

FD

0 50 100 150 200 250
0

0.5

1

1.5

number of vertices

b
en

d
s
re
l.
to

R
a
n
d

FD:
µ = .55
best 89 %

BFS:
µ = .67
best 25 %

12



Results: Orienting Edges (Real)

0 50 100 150 200 250
0

0.5

1

1.5

cr
o
ss
in
g
s
re
l.
to

R
a
n
d

BFS

FD

0 50 100 150 200 250
0

0.5

1

1.5

number of vertices

b
en

d
s
re
l.
to

R
a
n
d

FD:
µ = .55
best 89 %

BFS:
µ = .67
best 25 %

FD:
µ = .80
best 85 %

12



Results: Orienting Edges (Real)

0 50 100 150 200 250
0

0.5

1

1.5

cr
o
ss
in
g
s
re
l.
to

R
a
n
d

BFS

FD

0 50 100 150 200 250
0

0.5

1

1.5

number of vertices

b
en

d
s
re
l.
to

R
a
n
d

FD:
µ = .55
best 89 %

BFS:
µ = .67
best 25 %

FD:
µ = .80
best 85 %

BFS:
µ = .86
best 20 %

12
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Results: Crossing Minimization (Real)
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Results: Crossing Minimization (Pseudo)
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Results: Crossing Minimization (Pseudo)
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Results: Crossing Minimization (Pseudo)
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Conclusions

• We have extended the well-known Sugiyama framework to
draw technical plans (like cable plans) that are undirected,
have ports contained in (nested) port groups and plugs.
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• We have extended the well-known Sugiyama framework to
draw technical plans (like cable plans) that are undirected,
have ports contained in (nested) port groups and plugs.

• We have implemented and experimentally evaluated
our algorithm on real and on synthetic data.

• FD was best for orienting undirected edges;
Ports was best for reducing crossings.

• Our variants compare well with existing implementation
(Kieler) in terms of #crossings and #bends (but slower).

• We intend to integrate our algorithm into the software of
our industrial partner to see whether this statistical
improvement yields advantages in practice.
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