Julius-Maximilians- Chair for o o
I UNIVERSITAT INFORMATICS | ||I|I|f|
WU RZ B U RG Efficient Algorithms and
Knowledge-Based Systems L A i R A &)
Compact Drawings of 1-Planar Graphs
with Right-Angle Crossings
and Few Bends

Steven Chaplick, Fabian Lipp,
Alexander Wolff, and Johannes Zink

Introduction: Beyond-Planar Graphs

Types of drawings:

Planar: No crossings

Introduction: Beyond-Planar Graphs -

Types of drawings:

1-Planar: <1 crossings per edge

Planar: No crossings

Introduction: Beyond-Planar Graphs -

Types of drawings:

1-Planar: <1 crossings per edge

Planar: No crossings

Introduction: Beyond-Planar Graphs -

Types of drawings:

1-Planar: <1 crossings per edge

NIC-Planar: Two crossings share
< 1 vertices

% Planar: No crossings

Introduction: Beyond-Planar Graphs -

Types of drawings:

1-Planar: <1 crossings per edge

NIC-Planar: Two crossings share
< 1 vertices

Planar: No crossings

Introduction: Beyond-Planar Graphs -

Types of drawings:

1-Planar:

NIC-Planar:

é IC-Planar:

Planar:

< 1 crossings per edge

Two crossings share
< 1 vertices

Two crossings share
no vertices

No crossings

Introduction:

Beyond-Planar Graphs -

Types of drawings:

1-Planar:

NIC-Planar:

IC-Planar:

Planar:

< 1 crossings per edge

Two crossings share
< 1 vertices

Two crossings share
no vertices

No crossings

Introduction: Beyond-Planar Graphs -

Types of drawings:

1-Planar:

NIC-Planar:

IC-Planar:

Planar:

RAC:

< 1 crossings per edge

Two crossings share
< 1 vertices

Two crossings share
no vertices

No crossings

Right angle crossings

Introduction: Beyond-Planar Graphs -

Types of drawings:

1-Planar: <1 crossings per edge

NIC-Planar: Two crossings share
< 1 vertices

IC-Planar: Two crossings share

no vertices
Planar: No crossings
RAC: Right angle crossings

RAC,: with < k bends per edge
RACy: with straight-line edges

Introduction: Beyond-Planar Graphs -

Types of drawings:

1-Planar: < 1 crossings per edge
.
NIC-Planar: Two crossings share
. < 1 vertices
-
v > IC-Planar: Two crossings share
S no vertices
Planar: No crossings
’ RAC: Right angle crossings
poE,r(n) RAC,: with < k bends per edge

RACp: with straight-line edges
RACPY: in polynomial area

Introduction: Beyond-Planar Graphs -

Types of drawings:

< 1 crossings per edge
.

(C Pla@Two crossings share

. < 1 vertices
c

> > @Pla@ Two crossings share
o
o

no vertices
@ No crossings
’ RAC: Right angle crossings
poly(n) RAC: with < k bends per edge

RACp: with straight-line edges
RACPY: in polynomial area

Introduction: The Shift Algorithm 3

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

Introduction: The Shift Algorithm

pal

ldea:

Introduction: The Shift Algorithm

Idea:
e Triangulate given plane graph.

Introduction: The Shift Algorithm

Idea:
e Triangulate given plane graph.

Introduction: The Shift Algorithm

Idea:
e Triangulate given plane graph.

e Compute a canonical ordering of
the vertices v1, v, ..., V.

Introduction: The Shift Algorithm

ldea:

the vertices v1, v, ..., V.

e Triangulate given plane graph. V6
e Compute a canonical ordering of '\

Introduction: The Shift Algorithm

ldea:

the vertices v1, v, ..., V.

e Triangulate given plane graph. V6
e Compute a canonical ordering of '\

e Draw the graph: V1

Introduction: The Shift Algorithm

ldea:

the vertices vi, o, ..., v,.

e Triangulate given plane graph. V6
e Compute a canonical ordering of '\

e Draw the graph: V1
— Start with triangle vq, v», v3.

Introduction: The Shift Algorithm 3

Idea: Vi
e Triangulate given plane graph. V6
e Compute a canonical ordering of \A
the vertices vi, o, ..., v,. '&
e Draw the graph: V1 V2

— Start with triangle vq, v», v3.

Introduction: The Shift Algorithm 3

Idea: Vi
e Triangulate given plane graph. V6
e Compute a canonical ordering of \A
the vertices v1, v, ..., V. '&
e Draw the graph: V1 V2

— Start with triangle vq, v», v3.
— For vy:
Shift first & last neighbor of v.

Introduction: The Shift Algorithm 3

Idea: Vi
e Triangulate given plane graph. V6
e Compute a canonical ordering of \A
the vertices vi, o, ..., v,. '&
e Draw the graph: V1 V2

— Start with triangle vq, v», v3.
— For vy:
Shift first & last neighbor of v.

Introduction: The Shift Algorithm 3

Idea: Vi
e Triangulate given plane graph. V6
e Compute a canonical ordering of \A
the vertices vi, o, ..., v,. '&
e Draw the graph: V1 V2

— Start with triangle vq, v», v3.
— For vy:

Shift first & last neighbor of vj.
— Add v, to the outer face.

Introduction: The Shift Algorithm 3

ldea:

e Triangulate given plane graph. V6 N\
e Compute a canonical ordering of '\
the vertices v1, v, ..., V. b
e Draw the graph: V1 V2

— Start with triangle vq, v», v3.
— For vy:

Shift first & last neighbor of vj.
— Add v, to the outer face.

Introduction: The Shift Algorithm 3

Idea: Vi
e Triangulate given plane graph. V6
e Compute a canonical ordering of \A
the vertices vi, o, ..., v,. 'b
e Draw the graph: V1 V2

— Start with triangle vq, v», v3.
— For vy:

Shift first & last neighbor of v.
— Add v, to the outer face.

= all slopes on outer face £1 K
(except for vivs) V3

Introduction: The Shift Algorithm

ldea:

the vertices vi, o, ..., v,.

e Triangulate given plane graph. V6
e Compute a canonical ordering of '\

e Draw the graph: V1
— Start with triangle vq, v», v3.
— For vy:
Shift first & last neighbor of vj.
— Add v, to the outer face.

= all slopes on outer face +1
(except for vy v»)

Introduction: The Shift Algorithm 3

Idea: Vi
e Triangulate given plane graph. V6
e Compute a canonical ordering of \A
the vertices vi, o, ..., v,. 'b
e Draw the graph: V1 V2

— Start with triangle vq, v», v3.
— For vy:

Shift first & last neighbor of v.
— Add v, to the outer face.

= all slopes on outer face £1 » K
(except for vy v») V3

Introduction: The Shift Algorithm 3

Idea: Vi
e Triangulate given plane graph. V6
e Compute a canonical ordering of \A
the vertices vi, o, ..., v,. 'b
e Draw the graph: V1 V2

— Start with triangle vq, v», v3.
— For vy:

Shift first & last neighbor of vy. e
— Add v, to the outer face. ERRN

= all slopes on outer face +1
(except for vy v»)

Introduction: The Shift Algorithm

W

Idea: Vi
e Triangulate given plane graph. V6
e Compute a canonical ordering of \A
the vertices vi, o, ..., v,. 'b
e Draw the graph: V1 V2

— Start with triangle vq, v», v3.
— For vg: Ve

Shift first & last neighbor of vj.
— Add v, to the outer face. ‘
= all slopes on outer face £+1 K
(except for vy v») V3

V1 V2

Introduction: The Shift Algorithm

W

Idea: Vi
e Triangulate given plane graph. V6
e Compute a canonical ordering of \A
the vertices vi, o, ..., v,. 'b
e Draw the graph: V1 V2

Resulting grid size:

— Start with triangle vq, vo, v3. (2n—4) x (n—2)

— For vy:

Ve
Shift first & last neighbor of vj.
— Add v, to the outer face. ‘
= all slopes on outer face £+1 K
(except for vy v») V3

V1 V2

Introduction: The Shift Algorithm

W

Idea: Vi
e Triangulate given plane graph. V6
e Compute a canonical ordering of \A
the vertices vi, o, ..., v,. '&
e Draw the graph: V1 V2

Resulting grid size:

— Start with triangle vq, vo, v3. (2n—4) x (n—2)

— For vy:

Ve
Shift first & last neighbor of vj.
— Add v, to the outer face. ‘
= all slopes on outer face £+1 K
(except for vy v») V3

V1 V2

Introduction: The Shift Algorithm

W

Idea: Vi
e Triangulate given plane graph. V6
e Compute a canonical ordering of \A
the vertices vi, o, ..., v,. '&
e Draw the graph: V1 V2

. . Resulting grid size:
— Start with triangle vq, vo, v3. (2n — 4)g><g(n —2)

— For vy: V6
Shift first & last neighbor of v.
— Add v, to the outer face.

= all slopes on outer face £1 » K
(except for vy v») V3

Introduction: Related Work 4

: {graph G | G has a NIC-planar drawing}

/ contained in

@ (even for fixed embedding)
y contained in

@ (unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

Introduction: Related Work 4

/ contained in

@ (even for fixed embedding)
y contained in

@ (unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

Introduction: Related Work 4

/ contained in

@ (even for fixed embedding)
y contained in

@ (unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

Introduction: Related Work 4

RACEY
RACPY
RACPY

/ contained in

@ (even for fixed embedding)
% contained in

@ (unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

Introduction: Related Work 4

2 ®AC = al graphs>

RACH

RACEY
RACPY
RACPY

/ contained in

@ (even for fixed embedding)
y contained in

@ (unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

Introduction: Related Work 4

RACEY

/ contained in

@ (even for fixed embedding)
y contained in

@ (unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

Introduction: Related Work 4

RAC,
RACEY
RACPY
"""""" RACEY

r / contained in
(even for fixed embedding)
y contained in
@ (unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

Introduction: Related Work 4

RACEY

ol
l RACP®Y
I
“ RACPY

RAC,

/ contained in
@ (even for fixed embedding)

y contained in
@ (unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

Introduction: Related Work 4

4'@05/ — all g@

RAC,
RACEY

: RACE®Y

"""""" RACEY

, / contained in
(even for fixed embedding)
y contained in
@ (unknown for fixed embedding)

\\\\\\\\\\\\\\ incomparable

Introduction: Related Work 4

RACEY

RAC,

/ contained in
(even for fixed embedding)
y contained in

(unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

Introduction: Related Work 4

ol
RACS™Y Our results

RAC,

/ contained in
(even for fixed embedding)
y contained in

(unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

Introduction: Related Work 4

ol
RACS™Y Our results

RAC,

/ contained in
(even for fixed embedding)
y contained in

(unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

Introduction: Related Work 4

RACEY

RAC,

|] n
Y e

RACPY): Our first main result:

*
4

NIC-plane graphs

poly
C RACPY

/ contained in
(even for fixed embedding)
y contained in

(unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

Introduction: Related Work 4

—v@"'y = all graphs> Qur second main result:

. 1-plane graphs
. g RACSOly

% Our first main result:

NIC-plane graphs
C RACPY

—
o

\
N
\
\WN
\\\\\
\
W
(%
WM

contained in
(even for fixed embedding)

contained in
(unknown for fixed embedding)

incomparable

Result 1: NIC-Plane Graphs C RAC;”

RACS™ = all graphs)

Result 1: NIC-Plane Graphs C RACP”

e Input: a NIC-plane graph

Result 1: NIC-Plane Graphs C RACP”

e Input: a NIC-plane graph
Approach that nearly works:

Result 1: NIC-Plane Graphs C RACP”

e Input: a NIC-plane graph
Approach that nearly works:

Result 1: NIC-Plane Graphs C RACP”

e Input: a NIC-plane graph
Approach that nearly works:
e Enclose each icrossing by a so called empty kite: O

Result 1: NIC-Plane Graphs C RACP”

e Input: a NIC-plane graph
Approach that nearly works:
e Enclose each icrossing by a so called empty kite: O

Vdummy

Result 1: NIC-Plane Graphs C RACP”

e Input: a NIC-plane graph
Approach that nearly works:
e Enclose each crossing by a so called empty kite: O

e Replace each pair of crossing edges by a single edge

Vdummy

Result 1: NIC-Plane Graphs C RACP”

e Input: a NIC-plane graph
Approach that nearly works:
e Enclose each crossing by a so called empty kite: O

e Replace each pair of crossing edges by a single edge

Vdummy

Result 1: NIC-Plane Graphs C RACP”

e Input: a NIC-plane graph
Approach that nearly works:
e Enclose each crossing by a so called empty kite: O

e Replace each pair of crossing edges by a single edge

e Draw the obtained plane graph with the Shift Algorithm

Vdummy

Result 1: NIC-Plane Graphs C RACP”

e Input: a NIC-plane graph
Approach that nearly works:
e Enclose each crossing by a so called empty kite: O

e Replace each pair of crossing edges by a single edge

e Draw the obtained plane graph with the Shift Algorithm

Vdummy

Result 1: NIC-Plane Graphs C RACY®”

e Input: a NIC-plane graph
Approach that nearly works:
e Enclose each crossing by a so called empty kite: O

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

Vdummy

Result 1: NIC-Plane Graphs C RACY®”

e Input: a NIC-plane graph
Approach that nearly works:
e Enclose each crossing by a so called empty kite: O

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

Vdummy

Result 1: NIC-Plane Graphs C RACY®”

e Input: a NIC-plane graph
Approach that nearly works:
e Enclose each crossing by a so called empty kite: O

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

<

Vdummy

Result 1: NIC-Plane Graphs € RACEY ¢

e Input: a NIC-plane graph
Approach that nearly works:
e Enclose each crossing by a so called empty kite: O

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

grid point on the
Thales’ circle

Vdummy

Result 1: NIC-Plane Graphs € RACEY ¢

e Input: a NIC-plane graph
Approach that nearly works:
e Enclose each crossing by a so called empty kite: O

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

A grid point on the

‘y Thales’ circle

Vdummy

Result 1: NIC-Plane Graphs € RACEY ¢

e Input: a NIC-plane graph
Approach that nearly works:
e Enclose each crossing by a so called empty kite: O

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

IA grid points for

the bends

Vdummy

Result 1: NIC-Plane Graphs € RACEY ¢

e Input: a NIC-plane graph
Approach that nearly works:
e Enclose each crossing by a so called empty kite: O

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

-

Vdummy

Result 1: NIC-Plane Graphs C RACY®”

e Input: a NIC-plane graph
Approach that nearly works:
e Enclose each crossing by a so called empty kite: O

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

@.\/

Vdummy

Result 1: NIC-Plane Graphs C RACY®”

e Input: a NIC-plane graph
Approach that nearly works:
e Enclose each crossing by a so called empty kite: O

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

@.\/

Vdummy

Result 1: NIC-Plane Graphs € RACEY ¢

e Input: a NIC-plane graph
Approach that nearly works:
e Enclose each crossing by a so called empty kite: O

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

z very slim

Vdummy

Result 1: NIC-Plane Graphs C RACY®”

e Input: a NIC-plane graph
Approach that nearly works:
e Enclose each crossing by a so called empty kite: O

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

@.\/

Vdummy

Result 1: NIC-Plane Graphs C RACY®”

e Input: a NIC-plane graph
Approach that nearly works:
e Enclose each crossing by a so called empty kite: O

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

@.\/

Vdummy

Result 1: NIC-Plane Graphs C RACY®”

e Input: a NIC-plane graph
Approach that nearly works:
e Enclose each crossing by a so called empty kite: O

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

@.\/

Vdummy

Result 1: NIC-Plane Graphs C RACY®”

e Input: a NIC-plane graph
Approach that nearly works:
e Enclose each crossing by a so called empty kite: O

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

v

\d
Vdummy .
b Y
))
1
’
L 4
L4
*

Result 1: NIC-Plane Graphs € RACEY ¢

e Input: a NIC-plane graph
Approach that nearly works:
e Enclose each crossing by a so called empty kite: O

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

Vdummy é bad
configu-
ration!

Result 1: NIC-Plane Graphs C RACP” § 7
bad

configu-
ration!

Result 1: NIC-Plane Graphs C RAC?O'yé 7
bad

Solution: configu-
. : ration!
e Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

Result 1: NIC-Plane Graphs C RAC?O'yé 7
bad

Solution: configu-
. : ration!
e Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

e Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).

Result 1: NIC-Plane Graphs C RAC?O'yé 7
bad

Solution: configu-
. : ration!
e Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

e Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up
iInstead of top-down.

Result 1: NIC-Plane Graphs C RAC?O'yé 7
bad

Solution: configu-
. : ration!
e Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

e Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up

instead of top-down. start with
an empty

quadrangle

Result 1: NIC-Plane Graphs C RAC?O'yé 7
bad

Solution: configu-
. : ration!
e Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

e Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up
iInstead of top-down.

V42

Result 1: NIC-Plane Graphs C RAC?O'yé 7
bad

Solution: configu-
. : ration!
e Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

e Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up

iInstead of top-down. Insert the
diagonal

V42

Result 1: NIC-Plane Graphs C RAC?O'yé 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

e Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up

iInstead of top-down. Insert the
diagonal

V42

Result 1: NIC-Plane Graphs C RAC?O'yé 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)

adjacent to the other three vertices. Ves

e Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up
iInstead of top-down.

Z)

Result 1: NIC-Plane Graphs C RAC?O'yé 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)

adjacent to the other three vertices. Ves

e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up
iInstead of top-down.

Z)

Result 1: NIC-Plane Graphs C RAC?O'yé 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)

adjacent to the other three vertices. Ves

e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up
instead of top-down. Voa

Z)

Result 1: NIC-Plane Graphs C RAC?O'yé 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

VE5
e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up Va2
instead of top-down. Voa

e Now only three “good” cases can appear:

Result 1: NIC-Plane Graphs C RAC‘l’O'yé 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

VE5
e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up Va2
instead of top-down. Voa

e Now only three “good” cases can appear:

Case 1

4

Result 1: NIC-Plane Graphs C RAC‘l’O'yé 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

VE5
e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up Va2
instead of top-down. Voa

e Now only three “good” cases can appear:

Case 1

-

Result 1: NIC-Plane Graphs C RAC‘l’O'yé 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

VE5
e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up Va2
instead of top-down. Voa

e Now only three “good” cases can appear:

Case 1

-

Result 1: NIC-Plane Graphs C RAC‘l’O'yé 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

VE5
e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up Va2
instead of top-down. Voa

e Now only three “good” cases can appear:

Case 1 | Case 2

S| A

Result 1: NIC-Plane Graphs C RAC‘l’O'yé 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

VE5
e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up Va2
instead of top-down. Voa

e Now only three “good” cases can appear:

Case 1 | Case 2

S| A

Result 1: NIC-Plane Graphs C RAC‘l’O'yé 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

VE5
e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up Va2
instead of top-down. Voa

e Now only three “good” cases can appear:

Case 1 | Case 2

S| A

Result 1: NIC-Plane Graphs C RAC‘l’O'yé 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

VE5
e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up Va2
instead of top-down. Voa

e Now only three “good” cases can appear:

Case 1 | Case 2 | Case 3

S~ A- A

Result 1: NIC-Plane Graphs C RAC‘l’O'yé 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

VE5
e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up Va2
instead of top-down. Voa

e Now only three good cases can appear

Case 1 | Case 2 Case 3

| ot | S

Result 1: NIC-Plane Graphs C RAC‘l’O'yé 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

VE5
e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up Va2
instead of top-down. Voa

e Now only three good cases can appear

Case 1 | Case 2 Case 3

| ot | S

Result 1: NIC-Plane Graphs C RACY®Y

Full example:

Result 1: NIC-Plane Graphs C RACP”

Full example:

Result 2: 1-Plane Graphs C RAC5®”

RACEY = all g@

Result 2: 1-Plane Graphs C RACSOIy

e Input: a 1-plane graph

10

Result 2: 1-Plane Graphs C RACSOIy

e Input: a 1-plane graph
Preprocessing:

10

Result 2: 1-Plane Graphs C RACSOIy

e Input: a 1-plane graph
Preprocessing:

10

Result 2: 1-Plane Graphs C RACSOIy 10

e Input: a 1-plane graph
Preprocessing:
e Enclose each crossing by a so called subdivided kite: {:}

Result 2: 1-Plane Graphs C RACSOIy 10

e Input: a 1-plane graph
Preprocessing:
e Enclose each crossing by a so called subdivided kite: {:}

Result 2: 1-Plane Graphs C RACSOIy 10

e Input: a 1-plane graph
Preprocessing:
e Enclose each crossing by a so called subdivided kite: {:}

e Planarize the graph by replacing each crossing by a vertex

Result 2: 1-Plane Graphs C RACSOIy 10

e Input: a 1-plane graph
Preprocessing:
e Enclose each crossing by a so called subdivided kite: {:}

e Planarize the graph by replacing each crossing by a vertex

Result 2: 1-Plane Graphs C RACSOIy 10

e Input: a 1-plane graph
Preprocessing:
e Enclose each crossing by a so called subdivided kite: {:}

e Planarize the graph by replacing each crossing by a vertex

Drawing phase:

e Draw the obtained plane graph
using the Shift Algorithm

Result 2: 1-Plane Graphs C RACSOIy 10

e Input: a 1-plane graph
Preprocessing:
e Enclose each crossing by a so called subdivided kite: {:}

e Planarize the graph by replacing each crossing by a vertex

Drawing phase:

e Draw the obtained plane graph
using the Shift Algorithm

Result 2: 1-Plane Graphs C RACSOIy

11

Result 2: 1-Plane Graphs C RACSOIy

Postprocessing (obtaining crossings at right angles):

11

Result 2: 1-Plane Graphs C RACSOIy

Postprocessing (obtaining crossings at right angles):
e Consider the four axis-parallel half-lines originating at ¢

11

Result 2: 1-Plane Graphs C RACSOIy

Postprocessing (obtaining crossings at right angles):
e Consider the four axis-parallel half-lines originating at ¢

11

Result 2: 1-Plane Graphs C RACSOIy 11

Postprocessing (obtaining crossings at right angles):
e Consider the four axis-parallel half-lines originating at ¢
e Assign the four edges being incident to ¢ to these half-lines

Result 2: 1-Plane Graphs C RACSOIy 11

Postprocessing (obtaining crossings at right angles):
e Consider the four axis-parallel half-lines originating at ¢
e Assign the four edges being incident to ¢ to these half-lines

Result 2: 1-Plane Graphs C RACSOIy 11

Postprocessing (obtaining crossings at right angles):
e Consider the four axis-parallel half-lines originating at ¢
e Assign the four edges being incident to ¢ to these half-lines

e Bend these edges at their assigned half-lines:

Result 2: 1-Plane Graphs C RACSOIy 11

Postprocessing (obtaining crossings at right angles):
e Consider the four axis-parallel half-lines originating at ¢
e Assign the four edges being incident to ¢ to these half-lines

e Bend these edges at their assigned half-lines:

Result 2: 1-Plane Graphs C RACSOIy 11

Postprocessing (obtaining crossings at right angles):
e Consider the four axis-parallel half-lines originating at ¢
e Assign the four edges being incident to ¢ to these half-lines

e Bend these edges at their assigned half-lines:

Result 2: 1-Plane Graphs C RACSOIy 11

Postprocessing (obtaining crossings at right angles):
e Consider the four axis-parallel half-lines originating at ¢
e Assign the four edges being incident to ¢ to these half-lines

e Bend these edges at their assigned half-lines:

Be careful:

One assignment
might depend on
another one

Result 2: 1-Plane Graphs C RACSOIy 11

Postprocessing (obtaining crossings at right angles):
e Consider the four axis-parallel half-lines originating at ¢
e Assign the four edges being incident to ¢ to these half-lines

e Bend these edges at their assigned half-lines:

Be careful: Solution:
One assignment re-draw the
might depend on independent
another one ones first

Result 2: 1-Plane Graphs C RACSOIy 11

Postprocessing (obtaining crossings at right angles):

e Consider the four axis-parallel half-lines originating at ¢

e Assign the four edges being incident to ¢ to these half-lines

e Bend these edges at their assigned half-lines:

Be careful:

One assignment
might depend on
another one

Be careful:
There might be
no grid points to
bend the edges

Solution:
re-draw the
independent
ones first

Result 2: 1-Plane Graphs C RACSOIy 11

Postprocessing (obtaining crossings at right angles):

e Consider the four axis-parallel half-lines originating at ¢

e Assign the four edges being incident to ¢ to these half-lines

e Bend these edges at their assigned half-lines:

Be careful:

One assignment
might depend on
another one

Be careful:
There might be
no grid points to
bend the edges

Solution:
re-draw the
independent
ones first

Solution:
make the grid
sufficiently
fine

Result 2: 1-Plane Graphs C RACSOIy 11

Postprocessing (obtaining crossings at right angles):

e Consider the four axis-parallel half-lines originating at ¢

e Assign the four edges being incident to ¢ to these half-lines

e Bend these edges at their assigned half-lines:

Be careful:

One assignment
might depend on
another one

Be careful:
There might be
no grid points to
bend the edges

Solution:
re-draw the
independent
ones first

Solution:
make the grid
sufficiently
fine

Result 2: 1-Plane Graphs C RACSOIy 11

Postprocessing (obtaining crossings at right angles):
e Consider the four axis-parallel half-lines originating at ¢
e Assign the four edges being incident to ¢ to these half-lines

e Bend these edges at their assigned half-lines:
1. Refine the grid by A € O(n)

Result 2: 1-Plane Graphs C RACSOIy 11

Postprocessing (obtaining crossings at right angles):
e Consider the four axis-parallel half-lines originating at ¢
e Assign the four edges being incident to ¢ to these half-lines

e Bend these edges at their assigned half-lines: ‘gi(igs)izi:@(nz)

1. Refine the grid by A € O(n)

Result 2: 1-Plane Graphs C RACSOIy 11

Postprocessing (obtaining crossings at right angles):
e Consider the four axis-parallel half-lines originating at ¢
e Assign the four edges being incident to ¢ to these half-lines

e Bend these edges at their assigned half-lines:

1. Refine the grid by A € O(n)
2. Re-draw independent edges

Result 2: 1-Plane Graphs C RACSOIy 11

Postprocessing (obtaining crossings at right angles):
e Consider the four axis-parallel half-lines originating at ¢
e Assign the four edges being incident to ¢ to these half-lines

e Bend these edges at their assigned half-lines:

1. Refine the grid by A € O(n)
2. Re-draw independent edges

Result 2: 1-Plane Graphs C RACSOIy 11

Postprocessing (obtaining crossings at right angles):
e Consider the four axis-parallel half-lines originating at ¢
e Assign the four edges being incident to ¢ to these half-lines
e Bend these edges at their assigned half-lines:
1. Refine the grid by A € O(n)
2. Re-draw independent edges
3. Refine the grid by i again

Result 2: 1-Plane Graphs C RACSOIy 11

Postprocessing (obtaining crossings at right angles):
e Consider the four axis-parallel half-lines originating at ¢

e Assign the four edges being incident to ¢ to these half-lines

e Bend these edges at their assigned half-lines: ‘gi(igs;Z::O(n3)

1. Refine the grid by A € O(n)
2. Re-draw independent edges
3. Refine the grid by i again

Result 2: 1-Plane Graphs C RACSOIy 11

Postprocessing (obtaining crossings at right angles):
e Consider the four axis-parallel half-lines originating at ¢
e Assign the four edges being incident to ¢ to these half-lines

e Bend these edges at their assigned half-lines:

1. Refine the grid by A € O(n)
Re-draw independent edges
Refine the grid by i again
Re-draw dependent edges

= W

Result 2: 1-Plane Graphs C RACSOIy 11

Postprocessing (obtaining crossings at right angles):
e Consider the four axis-parallel half-lines originating at ¢
e Assign the four edges being incident to ¢ to these half-lines

e Bend these edges at their assigned half-lines:

1. Refine the grid by A € O(n)
Re-draw independent edges
Refine the grid by i again
Re-draw dependent edges

= W

Result 2: 1-Plane Graphs C RACSOIy 11

Postprocessing (obtaining crossings at right angles):
e Consider the four axis-parallel half-lines originating at ¢
e Assign the four edges being incident to ¢ to these half-lines

e Bend these edges at their assigned half-lines:

1. Refine the grid by A € O(n)
2. Re-draw independent edges
3. Refine the grid by i again
4. Re-draw dependent edges

e Remove the dummy objects

Result 2: 1-Plane Graphs C RACSOIy 11

Postprocessing (obtaining crossings at right angles):
e Consider the four axis-parallel half-lines originating at ¢
e Assign the four edges being incident to ¢ to these half-lines

e Bend these edges at their assigned half-lines:

1. Refine the grid by A € O(n)
2. Re-draw independent edges
3. Refine the grid by i again
4. Re-draw dependent edges

e Remove the dummy objects

e

Summary and Open Questions

12

Summary and Open Questions

NIC-plane
C RACPY

12

Summary and Open Questions

NIC-plane
C RACPY

ACgc>|y = all graphs

1-plane
C RACE®Y

12

12

Summary and Open Questions
NIC-plane 1-plane
C RACPY C RACE®Y
Preserves embedding Yes Yes

12

Summary and Open Questions
NIC-plane 1-plane
C RACPY C RACE®Y
Preserves embedding Yes Yes
Runtime O(n) O(n)

12

Summary and Open Questions
NIC-plane 1-plane
C RACPY C RACHY
Preserves embedding Yes Yes
Runtime O(n) O(n)
Bends per edge <1 <2

12

Summary and Open Questions
NIC-plane 1-plane
C RACPY C RACE®Y
Preserves embedding Yes Yes
Runtime O(n) O(n)
Bends per edge <1 < 2
Grid size O(n) x O(n) O(n’) x O(n?)

Summary and Open Questions 12

NIC-plane 1-plane

C RACPY C RACHY
Preserves embedding Yes Yes
Runtime O(n) O(n)
Bends per edge <1 < 2

Grid size O(n) x O(n) O(n’) x O(n?)

Open question:
1-planar C RACP®Y ?

Summary and Open Questions 12

NIC-plane 1-plane

C RACPY C RACHY
Preserves embedding Yes Yes
Runtime O(n) O(n)
Bends per edge <1 < 2

Grid size O(n) x O(n) O(n’) x O(n?)

Open question:
1-planar C RACP®Y ?

Summary and Open Questions 12

NIC-plane 1-plane
C RACPY C RACHY
Preserves embedding Yes Yes
Runtime O(n) O(n)
Bends per edge <1 < 2
Grid size O(n) x O(n) O(n’) x O(n?)

Angy = all graphs

Open question:
1-planar C RACP®Y ?

	Introduction

