

1-Bend RAC Drawings of NIC-Planar Graphs in Quadratic Area

Steven Chaplick, Fabian Lipp, Alexander Wolff, and **Johannes Zink**

Types of Drawings:

Planar:

No crossings

Types of Drawings:

1-Planar: ≤ 1 crossings per edge

Planar:

No crossings

Types of Drawings:

1-Planar: ≤ 1 crossings per edge

Types of Drawings:

NIC-Planar: Two crossings share

 ≤ 1 vertices

Types of Drawings:

NIC-Planar: Two crossings share

 ≤ 1 vertices

Types of Drawings:

1-Planar: ≤ 1 crossings per edge

NIC-Planar: Two crossings share

 ≤ 1 vertices

IC-Planar: Two crossings share

no vertices

Types of Drawings:

1-Planar: ≤ 1 crossings per edge

NIC-Planar: Two crossings share

 ≤ 1 vertices

IC-Planar: Two crossings share

no vertices

Types of Drawings:

NIC-Planar: Two crossings share

 ≤ 1 vertices

IC-Planar: Two crossings share

no vertices

Planar: No crossings

RAC: Right angle crossings

Types of Drawings:

1-Planar: ≤ 1 crossings per edge

NIC-Planar: Two crossings share

 ≤ 1 vertices

IC-Planar: Two crossings share

no vertices

Planar: No crossings

RAC: Right angle crossings

 RAC_1 : with ≤ 1 bends per edge

RAC₀: with straight-line edges

Types of Drawings:

1-Planar: ≤ 1 crossings per edge

NIC-Planar: Two crossings share

 ≤ 1 vertices

IC-Planar: Two crossings share

no vertices

Planar: No crossings

RAC: Right angle crossings

 RAC_1 : with ≤ 1 bends per edge

RAC₀: with straight-line edges

RACpoly: in polynomial area

Types of Drawings:

RAC₀: with straight-line edges

RACpoly: in polynomial area

Algorithm in O(n) time:

Algorithm in O(n) time:

Input:

NIC-plane graph (G, \mathcal{E}) with n vertices

Algorithm

in O(n) time: Graph G with

a NIC-planar

Input: embedding \mathcal{E}

NIC-plane graph (G, \mathcal{E}) with n vertices

Algorithm

in O(n) time: Graph G with

a NIC-planar

Input: embedding \mathcal{E}

NIC-plane graph (G, \mathcal{E}) with n vertices

Output:

1-bend RAC drawing Γ of G according to \mathcal{E} Every vertex, bend point, and crossing point of Γ lies on a grid of size $O(n) \times O(n)$

[de Fraysseix, Pach, and Pollack, 1990] [Chrobak and Payne, 1995]

[de Fraysseix, Pach, and Pollack, 1990] [Chrobak and Payne, 1995]

Idea:

[de Fraysseix, Pach, and Pollack, 1990] [Chrobak and Payne, 1995]

Idea:

• Triangulate given plane graph.

[de Fraysseix, Pach, and Pollack, 1990] [Chrobak and Payne, 1995]

Idea:

• Triangulate given plane graph.

[de Fraysseix, Pach, and Pollack, 1990] [Chrobak and Payne, 1995]

- Triangulate given plane graph.
- Compute a canonical ordering of the vertices v_1, v_2, \ldots, v_n .

[de Fraysseix, Pach, and Pollack, 1990] [Chrobak and Payne, 1995]

- Triangulate given plane graph.
- Compute a canonical ordering of the vertices v_1, v_2, \ldots, v_n .

[de Fraysseix, Pach, and Pollack, 1990] [Chrobak and Payne, 1995]

- Triangulate given plane graph.
- Compute a canonical ordering of the vertices v_1, v_2, \ldots, v_n .
- Draw the graph:

[de Fraysseix, Pach, and Pollack, 1990] [Chrobak and Payne, 1995]

- Triangulate given plane graph.
- Compute a canonical ordering of the vertices v_1, v_2, \ldots, v_n .
- Draw the graph:
 - Start with triangle v_1 , v_2 , v_3 .

[de Fraysseix, Pach, and Pollack, 1990] [Chrobak and Payne, 1995]

- Triangulate given plane graph.
- Compute a canonical ordering of the vertices v_1, v_2, \ldots, v_n .
- Draw the graph:
 - Start with triangle v_1 , v_2 , v_3 .

[de Fraysseix, Pach, and Pollack, 1990] [Chrobak and Payne, 1995]

- Triangulate given plane graph.
- Compute a canonical ordering of the vertices v_1, v_2, \ldots, v_n .
- Draw the graph:
 - Start with triangle v_1 , v_2 , v_3 .
 - For v_k :
 Shift first & last neighbor of v_k .

[de Fraysseix, Pach, and Pollack, 1990] [Chrobak and Payne, 1995]

- Triangulate given plane graph.
- Compute a canonical ordering of the vertices v_1, v_2, \ldots, v_n .
- Draw the graph:
 - Start with triangle v_1 , v_2 , v_3 .
 - For v_k :
 Shift first & last neighbor of v_k .

[de Fraysseix, Pach, and Pollack, 1990] [Chrobak and Payne, 1995]

- Triangulate given plane graph.
- Compute a canonical ordering of the vertices v_1, v_2, \ldots, v_n .
- Draw the graph:
 - Start with triangle v_1 , v_2 , v_3 .
 - For v_k :
 Shift first & last neighbor of v_k .
 - Add v_k to the outer face.

[de Fraysseix, Pach, and Pollack, 1990] [Chrobak and Payne, 1995]

- Triangulate given plane graph.
- Compute a canonical ordering of the vertices v_1, v_2, \ldots, v_n .
- Draw the graph:
 - Start with triangle v_1 , v_2 , v_3 .
 - For v_k :
 Shift first & last neighbor of v_k .
 - Add v_k to the outer face.

[de Fraysseix, Pach, and Pollack, 1990] [Chrobak and Payne, 1995]

- Triangulate given plane graph.
- Compute a canonical ordering of the vertices v_1, v_2, \ldots, v_n .
- Draw the graph:
 - Start with triangle v_1 , v_2 , v_3 .
 - For v_k :
 Shift first & last neighbor of v_k .
 - Add v_k to the outer face.
 - \Rightarrow all slopes on outer face ± 1 (except for v_1v_2)

[de Fraysseix, Pach, and Pollack, 1990] [Chrobak and Payne, 1995]

- Triangulate given plane graph.
- Compute a canonical ordering of the vertices v_1, v_2, \ldots, v_n .
- Draw the graph:
 - Start with triangle v_1 , v_2 , v_3 .
 - For v_k :
 Shift first & last neighbor of v_k .
 - Add v_k to the outer face.
 - \Rightarrow all slopes on outer face ± 1 (except for v_1v_2)

[de Fraysseix, Pach, and Pollack, 1990] [Chrobak and Payne, 1995]

- Triangulate given plane graph.
- Compute a canonical ordering of the vertices v_1, v_2, \ldots, v_n .
- Draw the graph:
 - Start with triangle v_1 , v_2 , v_3 .
 - For v_k :
 Shift first & last neighbor of v_k .
 - Add v_k to the outer face.
 - \Rightarrow all slopes on outer face ± 1 (except for v_1v_2)

[de Fraysseix, Pach, and Pollack, 1990] [Chrobak and Payne, 1995]

- Triangulate given plane graph.
- Compute a canonical ordering of the vertices v_1, v_2, \ldots, v_n .
- Draw the graph:
 - Start with triangle v_1 , v_2 , v_3 .
 - For v_k :
 Shift first & last neighbor of v_k .
 - Add v_k to the outer face.
 - \Rightarrow all slopes on outer face ± 1 (except for v_1v_2)

[de Fraysseix, Pach, and Pollack, 1990] [Chrobak and Payne, 1995]

- Triangulate given plane graph.
- Compute a canonical ordering of the vertices v_1, v_2, \ldots, v_n .
- Draw the graph:
 - Start with triangle v_1 , v_2 , v_3 .
 - For v_k :
 Shift first & last neighbor of v_k .
 - Add v_k to the outer face.
 - \Rightarrow all slopes on outer face ± 1 (except for v_1v_2)

[de Fraysseix, Pach, and Pollack, 1990] [Chrobak and Payne, 1995]

Idea:

- Triangulate given plane graph.
- Compute a canonical ordering of the vertices v_1, v_2, \ldots, v_n .
- Draw the graph:
 - Start with triangle v_1 , v_2 , v_3 .
 - For v_k :
 Shift first & last neighbor of v_k .
 - Add v_k to the outer face.
 - \Rightarrow all slopes on outer face ± 1 (except for v_1v_2)

Resulting grid size:

$$(2n-4)\times(n-2)$$

[de Fraysseix, Pach, and Pollack, 1990] [Chrobak and Payne, 1995]

Idea:

- Triangulate given plane graph.
- Compute a canonical ordering of the vertices v_1, v_2, \ldots, v_n .
- Draw the graph:
 - Start with triangle v_1 , v_2 , v_3 .
 - For v_k :
 Shift first & last neighbor of v_k .
 - Add v_k to the outer face.
 - \Rightarrow all slopes on outer face ± 1 (except for v_1v_2)

Resulting grid size:

$$(2n-4)\times(n-2)$$

[de Fraysseix, Pach, and Pollack, 1990] [Chrobak and Payne, 1995]

Idea:

- Triangulate given plane graph.
- Compute a canonical ordering of the vertices v_1, v_2, \ldots, v_n .
- Draw the graph:
 - Start with triangle v_1 , v_2 , v_3 .
 - For v_k :
 Shift first & last neighbor of v_k .
 - Add v_k to the outer face.
 - \Rightarrow all slopes on outer face ± 1 (except for v_1v_2)

Resulting grid size:

$$(2n-4)\times(n-2)$$

• Input: a NIC-plane graph

• Input: a NIC-plane graph

- Input: a NIC-plane graph
- Enclose each $\frac{\text{crossing}}{\text{crossing}}$ by a so called $\frac{\text{empty kite}}{\text{crossing}}$

- Input: a NIC-plane graph
- Enclose each crossing by a so called *empty kite* (

- Input: a NIC-plane graph
- Enclose each crossing by a so called *empty kite* (\longleftrightarrow)
- Replace each pair of crossing edges by a single edge

- Input: a NIC-plane graph
- Enclose each crossing by a so called *empty kite* (\longleftrightarrow)
- Replace each pair of crossing edges by a single edge

- Input: a NIC-plane graph
- Enclose each crossing by a so called *empty kite* (\longleftrightarrow)
- Replace each pair of crossing edges by a single edge
- Draw the obtained plane graph with the Shift Algorithm

- Input: a NIC-plane graph
- Enclose each crossing by a so called *empty kite* (\longleftrightarrow)
- Replace each pair of crossing edges by a single edge
- Draw the obtained plane graph with the Shift Algorithm

- Input: a NIC-plane graph
- Enclose each crossing by a so called *empty kite* (\longleftrightarrow)
- Replace each pair of crossing edges by a single edge
- Draw the obtained plane graph with the Shift Algorithm
- Manually reinsert the removed edges with 1 bend so that they cross in a right angle (crossings and bends on the grid)

- Input: a NIC-plane graph
- Enclose each crossing by a so called *empty kite* (\longleftrightarrow)
- Replace each pair of crossing edges by a single edge
- Draw the obtained plane graph with the Shift Algorithm
- Manually reinsert the removed edges with 1 bend so that they cross in a right angle (crossings and bends on the grid)

- Input: a NIC-plane graph
- Enclose each crossing by a so called *empty kite* (\longleftrightarrow)
- Replace each pair of crossing edges by a single edge
- Draw the obtained plane graph with the Shift Algorithm
- Manually reinsert the removed edges with 1 bend so that they cross in a right angle (crossings and bends on the grid)

- Input: a NIC-plane graph
- Enclose each crossing by a so called *empty kite* (\longleftrightarrow)
- Replace each pair of crossing edges by a single edge
- Draw the obtained plane graph with the Shift Algorithm
- Manually reinsert the removed edges with 1 bend so that they cross in a right angle (crossings and bends on the grid)

- Input: a NIC-plane graph
- Enclose each crossing by a so called *empty kite* (\longleftrightarrow)
- Replace each pair of crossing edges by a single edge
- Draw the obtained plane graph with the Shift Algorithm
- Manually reinsert the removed edges with 1 bend so that they cross in a right angle (crossings and bends on the grid)

- Input: a NIC-plane graph
- Enclose each crossing by a so called *empty kite* (\longleftrightarrow)
- Replace each pair of crossing edges by a single edge
- Draw the obtained plane graph with the Shift Algorithm
- Manually reinsert the removed edges with 1 bend so that they cross in a right angle (crossings and bends on the grid)

- Input: a NIC-plane graph
- Enclose each crossing by a so called *empty kite* (\longleftrightarrow)
- Replace each pair of crossing edges by a single edge
- Draw the obtained plane graph with the Shift Algorithm
- Manually reinsert the removed edges with 1 bend so that they cross in a right angle (crossings and bends on the grid)

- Input: a NIC-plane graph
- Enclose each crossing by a so called *empty kite* (\longleftrightarrow)
- Replace each pair of crossing edges by a single edge
- Draw the obtained plane graph with the Shift Algorithm
- Manually reinsert the removed edges with 1 bend so that they cross in a right angle (crossings and bends on the grid)

- Input: a NIC-plane graph
- Enclose each crossing by a so called *empty kite* (\longleftrightarrow)
- Replace each pair of crossing edges by a single edge
- Draw the obtained plane graph with the Shift Algorithm
- Manually reinsert the removed edges with 1 bend so that they cross in a right angle (crossings and bends on the grid)

- Input: a NIC-plane graph
- Enclose each crossing by a so called *empty kite* (\longleftrightarrow)
- Replace each pair of crossing edges by a single edge
- Draw the obtained plane graph with the Shift Algorithm
- Manually reinsert the removed edges with 1 bend so that they cross in a right angle (crossings and bends on the grid)

- Input: a NIC-plane graph
- Enclose each crossing by a so called *empty kite* (\longleftrightarrow)
- Replace each pair of crossing edges by a single edge
- Draw the obtained plane graph with the Shift Algorithm
- Manually reinsert the removed edges with 1 bend so that they cross in a right angle (crossings and bends on the grid)

- Input: a NIC-plane graph
- Enclose each crossing by a so called *empty kite* (\longleftrightarrow)
- Replace each pair of crossing edges by a single edge
- Draw the obtained plane graph with the Shift Algorithm
- Manually reinsert the removed edges with 1 bend so that they cross in a right angle (crossings and bends on the grid)

- Input: a NIC-plane graph
- Enclose each crossing by a so called *empty kite* (\longleftrightarrow)
- Replace each pair of crossing edges by a single edge
- Draw the obtained plane graph with the Shift Algorithm
- Manually reinsert the removed edges with 1 bend so that they cross in a right angle (crossings and bends on the grid)

- Input: a NIC-plane graph
- Enclose each crossing by a so called *empty kite* (\longleftrightarrow)
- Replace each pair of crossing edges by a single edge
- Draw the obtained plane graph with the Shift Algorithm
- Manually reinsert the removed edges with 1 bend so that they cross in a right angle (crossings and bends on the grid)

- Input: a NIC-plane graph
- Enclose each crossing by a so called *empty kite* (\longleftrightarrow)
- Replace each pair of crossing edges by a single edge
- Draw the obtained plane graph with the Shift Algorithm
- Manually reinsert the removed edges with 1 bend so that they cross in a right angle (crossings and bends on the grid)

Solution:

 Make the first vertex in the qudrangle (regarding the canonical ordering) adjacent to the other three vertices.

- Make the first vertex in the qudrangle (regarding the canonical ordering) adjacent to the other three vertices.
- Use the algorithm by Harel and Sardas (Shift Algorithm for biconnected graphs).

- Make the first vertex in the qudrangle (regarding the canonical ordering) adjacent to the other three vertices.
- Use the algorithm by Harel and Sardas (Shift Algorithm for biconnected graphs).
 It builds a canonical ordering bottom-up instead of top-down.

- Make the first vertex in the qudrangle (regarding the canonical ordering) adjacent to the other three vertices.
- Use the algorithm by Harel and Sardas (Shift Algorithm for biconnected graphs).
 It builds a canonical ordering bottom-up instead of top-down.

- Make the first vertex in the qudrangle (regarding the canonical ordering) adjacent to the other three vertices.
- Use the algorithm by Harel and Sardas (Shift Algorithm for biconnected graphs).
 It builds a canonical ordering bottom-up instead of top-down.

- Make the first vertex in the qudrangle (regarding the canonical ordering) adjacent to the other three vertices.
- Use the algorithm by Harel and Sardas (Shift Algorithm for biconnected graphs).
 It builds a canonical ordering bottom-up instead of top-down.

- Make the first vertex in the qudrangle (regarding the canonical ordering) adjacent to the other three vertices.
- Use the algorithm by Harel and Sardas (Shift Algorithm for biconnected graphs).
 It builds a canonical ordering bottom-up instead of top-down.

- Make the first vertex in the qudrangle (regarding the canonical ordering) adjacent to the other three vertices.
- Use the algorithm by Harel and Sardas (Shift Algorithm for biconnected graphs).
 It builds a canonical ordering bottom-up instead of top-down.

- Make the first vertex in the qudrangle (regarding the canonical ordering) adjacent to the other three vertices.
- Use the algorithm by Harel and Sardas (Shift Algorithm for biconnected graphs).
 It builds a canonical ordering bottom-up instead of top-down.

- Make the first vertex in the qudrangle (regarding the canonical ordering) adjacent to the other three vertices.
- Use the algorithm by Harel and Sardas (Shift Algorithm for biconnected graphs).
 It builds a canonical ordering bottom-up instead of top-down.

- Make the first vertex in the qudrangle (regarding the canonical ordering) adjacent to the other three vertices.
- Use the algorithm by Harel and Sardas (Shift Algorithm for biconnected graphs).
 It builds a canonical ordering bottom-up instead of top-down.
- Now only three "good" cases can appear:

- Make the first vertex in the qudrangle (regarding the canonical ordering) adjacent to the other three vertices.
- Use the algorithm by Harel and Sardas (Shift Algorithm for biconnected graphs).
 It builds a canonical ordering bottom-up instead of top-down.
- Now only three "good" cases can appear:

- Make the first vertex in the qudrangle (regarding the canonical ordering) adjacent to the other three vertices.
- Use the algorithm by Harel and Sardas (Shift Algorithm for biconnected graphs).
 It builds a canonical ordering bottom-up instead of top-down.
- Now only three "good" cases can appear:

- Make the first vertex in the qudrangle (regarding the canonical ordering) adjacent to the other three vertices.
- Use the algorithm by Harel and Sardas (Shift Algorithm for biconnected graphs).
 It builds a canonical ordering bottom-up instead of top-down.
- Now only three "good" cases can appear:

- Make the first vertex in the qudrangle (regarding the canonical ordering) adjacent to the other three vertices.
- Use the algorithm by Harel and Sardas (Shift Algorithm for biconnected graphs).
 It builds a canonical ordering bottom-up instead of top-down.
- Now only three "good" cases can appear:

- Make the first vertex in the qudrangle (regarding the canonical ordering) adjacent to the other three vertices.
- Use the algorithm by Harel and Sardas (Shift Algorithm for biconnected graphs).
 It builds a canonical ordering bottom-up instead of top-down.
- Now only three "good" cases can appear:

- Make the first vertex in the qudrangle (regarding the canonical ordering) adjacent to the other three vertices.
- Use the algorithm by Harel and Sardas (Shift Algorithm for biconnected graphs).
 It builds a canonical ordering bottom-up instead of top-down.
- Now only three "good" cases can appear:

- Make the first vertex in the qudrangle (regarding the canonical ordering) adjacent to the other three vertices.
- Use the algorithm by Harel and Sardas (Shift Algorithm for biconnected graphs).
 It builds a canonical ordering bottom-up instead of top-down.
- Now only three "good" cases can appear:

- Make the first vertex in the qudrangle (regarding the canonical ordering) adjacent to the other three vertices.
- Use the algorithm by Harel and Sardas (Shift Algorithm for biconnected graphs).
 It builds a canonical ordering bottom-up instead of top-down.
- Now only three "good" cases can appear:

- Make the first vertex in the qudrangle (regarding the canonical ordering) adjacent to the other three vertices.
- Use the algorithm by Harel and Sardas (Shift Algorithm for biconnected graphs).
 It builds a canonical ordering bottom-up instead of top-down.
- Now only three "good" cases can appear:

• Runs in O(n) time.

- Runs in O(n) time.
- Resulting drawing is NIC-planar RAC with < 1 bend per edge.

- Runs in O(n) time.
- Resulting drawing is NIC-planar RAC with < 1 bend per edge.
- Grid of size at most $(16n 32) \times (8n 16)$.

- Runs in O(n) time.
- Resulting drawing is NIC-planar RAC with < 1 bend per edge.
- Grid of size at most $(16n 32) \times (8n 16)$.
- Needs NIC-planar embedding as input; this embedding is preserved.

- Runs in O(n) time.
- Resulting drawing is NIC-planar RAC with < 1 bend per edge.
- Grid of size at most $(16n 32) \times (8n 16)$.
- Needs NIC-planar embedding as input; this embedding is preserved.

- Runs in O(n) time.
- Resulting drawing is NIC-planar RAC with < 1 bend per edge.
- Grid of size at most $(16n 32) \times (8n 16)$.
- Needs NIC-planar embedding as input; this embedding is preserved.

Our main result: NIC-plane graphs $\subseteq RAC_1^{poly}$

- Runs in O(n) time.
- Resulting drawing is NIC-planar RAC with < 1 bend per edge.
- Grid of size at most $(16n 32) \times (8n 16)$.
- Needs NIC-planar embedding as input; this embedding is preserved.

Open question: 1-planar graphs $\subseteq RAC_1^{poly}$?

- Runs in O(n) time.
- Resulting drawing is NIC-planar RAC with < 1 bend per edge.
- Grid of size at most $(16n 32) \times (8n 16)$.
- Needs NIC-planar embedding as input; this embedding is preserved.

Open question: 1-planar graphs $\subseteq RAC_1^{poly}$?

