
1-Bend RAC Drawings
of NIC-Planar Graphs

in Quadratic Area

Steven Chaplick, Fabian Lipp,
Alexander Wolff, and Johannes Zink

Beyond-Planar Graphs

Types of Drawings:

Planar: No crossings

2

Beyond-Planar Graphs

1-Planar:

Types of Drawings:

≤ 1 crossings per edge

K5

Planar: No crossings

2

Beyond-Planar Graphs

1-Planar:

Types of Drawings:

≤ 1 crossings per edge

Planar: No crossings

2

Beyond-Planar Graphs

1-Planar:

Types of Drawings:

≤ 1 crossings per edge

NIC-Planar: Two crossings share
≤ 1 vertices

Planar: No crossings

2

Beyond-Planar Graphs

1-Planar:

Types of Drawings:

≤ 1 crossings per edge

NIC-Planar: Two crossings share
≤ 1 vertices

Planar: No crossings

2

Beyond-Planar Graphs

1-Planar:

Types of Drawings:

≤ 1 crossings per edge

NIC-Planar: Two crossings share
≤ 1 vertices

IC-Planar: Two crossings share
no vertices

Planar: No crossings

2

Beyond-Planar Graphs

1-Planar:

Types of Drawings:

≤ 1 crossings per edge

NIC-Planar: Two crossings share
≤ 1 vertices

IC-Planar: Two crossings share
no vertices

Planar: No crossings

2

Beyond-Planar Graphs

1-Planar:

Types of Drawings:

≤ 1 crossings per edge

NIC-Planar: Two crossings share
≤ 1 vertices

IC-Planar: Two crossings share
no vertices

RAC: Right angle crossings

Planar: No crossings

2

Beyond-Planar Graphs

1-Planar:

Types of Drawings:

≤ 1 crossings per edge

NIC-Planar: Two crossings share
≤ 1 vertices

IC-Planar: Two crossings share
no vertices

RAC: Right angle crossings

RAC1: with ≤ 1 bends per edge
RAC0: with straight-line edges

Planar: No crossings

2

Beyond-Planar Graphs

1-Planar:

Types of Drawings:

≤ 1 crossings per edge

NIC-Planar: Two crossings share
≤ 1 vertices

IC-Planar: Two crossings share
no vertices

RAC: Right angle crossings

RAC1: with ≤ 1 bends per edge
RAC0: with straight-line edges

poly(n)

RACpoly: in polynomial area

p
ol

y(
n

)

Planar: No crossings


︸ ︷︷ ︸

2

Beyond-Planar Graphs

1-Planar:

Types of Drawings:

≤ 1 crossings per edge

NIC-Planar: Two crossings share
≤ 1 vertices

IC-Planar: Two crossings share
no vertices

RAC: Right angle crossings

RAC1: with ≤ 1 bends per edge
RAC0: with straight-line edges

poly(n)

RACpoly: in polynomial area

p
ol

y(
n

)

Planar: No crossings


︸ ︷︷ ︸

2

Related Work

= {graph G | G has a NIC-planar drawing}

planar

IC-planar

NIC-planar

1-planar

E?

contained in
(even for fixed embedding)

contained in
(unknown for fixed embedding)

incomparable

3

Related Work

planar

IC-planar

NIC-planar

1-planar

RAC1

RAC0

RAC2

E?

contained in
(even for fixed embedding)

contained in
(unknown for fixed embedding)

incomparable

3

Related Work

planar

IC-planar

NIC-planar

1-planar
RACpoly

1

RAC1

RAC0

RACpoly
0

RACpoly
2

RAC2

E?

contained in
(even for fixed embedding)

contained in
(unknown for fixed embedding)

incomparable

RACpoly
3

3

Related Work

[de Fraysseix, Pach, Pollack,
1990]
[Schnyder, 1990]

planar

IC-planar

NIC-planar

1-planar
RACpoly

1

RAC1

RAC0

RACpoly
0

RACpoly
2

RAC2

E?

contained in
(even for fixed embedding)

contained in
(unknown for fixed embedding)

incomparable

RACpoly
3

3

Related Work

planar

IC-planar

NIC-planar

1-planar
RACpoly

1

RAC1

RAC0

RACpoly
0

RACpoly
2

RAC2

RACpoly
3 = all graphsE? [Didimo, Eades, Liotta,

2009]

E?

contained in
(even for fixed embedding)

contained in
(unknown for fixed embedding)

incomparable

E? RACpoly
3 = all graphs

3

Related Work

[Didimo, Eades, Liotta,
2009]
[Eades, Liotta, 2011]

planar

IC-planar

NIC-planar

1-planar
RACpoly

1

RAC1

RAC0

RACpoly
0

RACpoly
2

RAC2

RACpoly
3 = all graphsE?

E?

contained in
(even for fixed embedding)

contained in
(unknown for fixed embedding)

incomparable

3

Related Work

[Brandenburg, Didimo,
Evans, Kindermann, Liotta,
Montecchiani, 2015]

planar

IC-planar

NIC-planar

1-planar
RACpoly

1

RAC1

RAC0

RACpoly
0

RACpoly
2

RAC2

RACpoly
3 = all graphsE?

E
?

E?

contained in
(even for fixed embedding)

contained in
(unknown for fixed embedding)

incomparable

E
?

3

Related Work

[Liotta, Montecchiani, 2015]

planar

IC-planar

NIC-planar

1-planar
RACpoly

1

RAC1

RAC0

RACpoly
0

RACpoly
2

RAC2

RACpoly
3 = all graphsE?

E
?

E?

contained in
(even for fixed embedding)

contained in
(unknown for fixed embedding)

incomparable

3

Related Work

[Didimo, Liotta, Mehrabi,
Montecchiani, 2016]

planar

IC-planar

NIC-planar

1-planar
RACpoly

1

RAC1

RAC0

RACpoly
0

RACpoly
2

RAC2

RACpoly
3 = all graphs

E?

E?

E
?

E?

contained in
(even for fixed embedding)

contained in
(unknown for fixed embedding)

incomparable

E?

3

Related Work

[Bachmaier, Brandenburg,
Hanauer, Neuwirth,
Reislhuber, 2017]

planar

IC-planar

NIC-planar

1-planar
RACpoly

1

RAC1

RAC0

RACpoly
0

RACpoly
2

RAC2

RACpoly
3 = all graphs

E?

E?

E
?

E?

contained in
(even for fixed embedding)

contained in
(unknown for fixed embedding)

incomparable

3

Related Work

Our results

planar

IC-planar

NIC-planar

1-planar
RACpoly

1

RAC1

RAC0

RACpoly
0

RACpoly
2

RAC2

RACpoly
3 = all graphs

E?

E?

E
?

E?

contained in
(even for fixed embedding)

contained in
(unknown for fixed embedding)

incomparable

3

Related Work

Our results

planar

IC-planar

NIC-planar

1-planar
RACpoly

1

RAC1

RAC0

RACpoly
0

RACpoly
2

RAC2

RACpoly
3 = all graphs

E?

E?

E
?

E?

contained in
(even for fixed embedding)

contained in
(unknown for fixed embedding)

incomparable

3

Related Work

Our results

planar

IC-planar

NIC-planar

1-planar
RACpoly

1

RAC1

RAC0

RACpoly
0

RACpoly
2

RAC2

RACpoly
3 = all graphs

E?

E?

E
?

E?

contained in
(even for fixed embedding)

contained in
(unknown for fixed embedding)

incomparable

3

Related Work

Our results

planar

IC-planar

NIC-planar

1-planar
RACpoly

1

RAC1

RAC0

RACpoly
0

RACpoly
2

RAC2

RACpoly
3 = all graphs

E?

E?

w
/o

B
-configuration

E
?

E?

contained in
(even for fixed embedding)

contained in
(unknown for fixed embedding)

incomparable

3

Related Work

planar

IC-planar

NIC-planar

1-planar
RACpoly

1

RAC1

RAC0

RACpoly
0

RACpoly
2

RAC2

RACpoly
3 = all graphs

E?

E?

w
/o

B
-configuration

E
?

Our main result:

E?

contained in
(even for fixed embedding)

contained in
(unknown for fixed embedding)

incomparable

NIC-plane graphs
⊆ RACpoly

1

3

NIC-plane graphs ⊆ RACpoly
1

4

NIC-plane graphs ⊆ RACpoly
1

Algorithm
in O(n) time:

4

NIC-plane graphs ⊆ RACpoly
1

Algorithm
in O(n) time:

Input:
NIC-plane graph (G , E) with n vertices

4

NIC-plane graphs ⊆ RACpoly
1

Algorithm
in O(n) time: Graph G with

a NIC-planar
embedding EInput:

NIC-plane graph (G , E) with n vertices

4

NIC-plane graphs ⊆ RACpoly
1

Algorithm
in O(n) time: Graph G with

a NIC-planar
embedding EInput:

NIC-plane graph (G , E) with n vertices

Output:
1-bend RAC drawing Γ of G according to E
Every vertex, bend point, and crossing point of Γ lies on a grid
of size O(n)× O(n)

4

The Shift Algorithm

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

5

The Shift Algorithm

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

Idea:

5

The Shift Algorithm

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

Idea:

• Triangulate given plane graph.

5

The Shift Algorithm

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

Idea:

• Triangulate given plane graph.

5

The Shift Algorithm

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

Idea:

• Triangulate given plane graph.

• Compute a canonical ordering of
the vertices v1, v2, . . . , vn.

5

The Shift Algorithm

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

Idea:

• Triangulate given plane graph.

• Compute a canonical ordering of
the vertices v1, v2, . . . , vn.

v6

v5

v4

v3

v1 v2

5

The Shift Algorithm

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

Idea:

• Triangulate given plane graph.

• Compute a canonical ordering of
the vertices v1, v2, . . . , vn.

• Draw the graph:

v6

v5

v4

v3

v1 v2

5

The Shift Algorithm

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

Idea:

• Triangulate given plane graph.

• Compute a canonical ordering of
the vertices v1, v2, . . . , vn.

• Draw the graph:

– Start with triangle v1, v2, v3.

v6

v5

v4

v3

v1 v2

5

The Shift Algorithm

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

v1 v2
v3

Idea:

• Triangulate given plane graph.

• Compute a canonical ordering of
the vertices v1, v2, . . . , vn.

• Draw the graph:

– Start with triangle v1, v2, v3.

v6

v5

v4

v3

v1 v2

5

The Shift Algorithm

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

– For vk :
Shift first & last neighbor of vk .

v1 v2
v3

Idea:

• Triangulate given plane graph.

• Compute a canonical ordering of
the vertices v1, v2, . . . , vn.

• Draw the graph:

– Start with triangle v1, v2, v3.

v6

v5

v4

v3

v1 v2

5

The Shift Algorithm

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

– For vk :
Shift first & last neighbor of vk .

v1 v2
v3

Idea:

• Triangulate given plane graph.

• Compute a canonical ordering of
the vertices v1, v2, . . . , vn.

• Draw the graph:

– Start with triangle v1, v2, v3.

v6

v5

v4

v3

v1 v2

5

The Shift Algorithm

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

– For vk :
Shift first & last neighbor of vk .

v1 v2
v3

Idea:

• Triangulate given plane graph.

• Compute a canonical ordering of
the vertices v1, v2, . . . , vn.

• Draw the graph:

– Start with triangle v1, v2, v3.

– Add vk to the outer face.

v6

v5

v4

v3

v1 v2

5

The Shift Algorithm

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

– For vk :
Shift first & last neighbor of vk .

v1 v2
v3

v4

Idea:

• Triangulate given plane graph.

• Compute a canonical ordering of
the vertices v1, v2, . . . , vn.

• Draw the graph:

– Start with triangle v1, v2, v3.

– Add vk to the outer face.

v6

v5

v4

v3

v1 v2

5

The Shift Algorithm

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

– For vk :
Shift first & last neighbor of vk .

v1 v2
v3

v4

Idea:

• Triangulate given plane graph.

• Compute a canonical ordering of
the vertices v1, v2, . . . , vn.

• Draw the graph:

– Start with triangle v1, v2, v3.

– Add vk to the outer face.

v6

v5

v4

v3

v1 v2

⇒ all slopes on outer face ±1
(except for v1v2)

5

The Shift Algorithm

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

– For vk :
Shift first & last neighbor of vk .

v1 v2
v3

v4

Idea:

• Triangulate given plane graph.

• Compute a canonical ordering of
the vertices v1, v2, . . . , vn.

• Draw the graph:

– Start with triangle v1, v2, v3.

– Add vk to the outer face.

v6

v5

v4

v3

v1 v2

⇒ all slopes on outer face ±1
(except for v1v2)

5

The Shift Algorithm

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

– For vk :
Shift first & last neighbor of vk .

v1 v2

v5 v4
v3

Idea:

• Triangulate given plane graph.

• Compute a canonical ordering of
the vertices v1, v2, . . . , vn.

• Draw the graph:

– Start with triangle v1, v2, v3.

– Add vk to the outer face.

v6

v5

v4

v3

v1 v2

⇒ all slopes on outer face ±1
(except for v1v2)

5

The Shift Algorithm

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

– For vk :
Shift first & last neighbor of vk .

v4v5

v1 v2
v3

Idea:

• Triangulate given plane graph.

• Compute a canonical ordering of
the vertices v1, v2, . . . , vn.

• Draw the graph:

– Start with triangle v1, v2, v3.

– Add vk to the outer face.

v6

v5

v4

v3

v1 v2

⇒ all slopes on outer face ±1
(except for v1v2)

5

The Shift Algorithm

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

– For vk :
Shift first & last neighbor of vk .

v4v5

v1 v2
v3

v6

Idea:

• Triangulate given plane graph.

• Compute a canonical ordering of
the vertices v1, v2, . . . , vn.

• Draw the graph:

– Start with triangle v1, v2, v3.

– Add vk to the outer face.

v6

v5

v4

v3

v1 v2

⇒ all slopes on outer face ±1
(except for v1v2)

5

The Shift Algorithm

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

– For vk :
Shift first & last neighbor of vk .

v4v5

v1 v2
v3

v6

Idea:

• Triangulate given plane graph.

• Compute a canonical ordering of
the vertices v1, v2, . . . , vn.

• Draw the graph:

– Start with triangle v1, v2, v3.

– Add vk to the outer face.

v6

v5

v4

v3

v1 v2
Resulting grid size:
(2n − 4)× (n − 2)

⇒ all slopes on outer face ±1
(except for v1v2)

5

The Shift Algorithm

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

– For vk :
Shift first & last neighbor of vk .

v4v5

v1 v2
v3

v6

Idea:

• Triangulate given plane graph.

• Compute a canonical ordering of
the vertices v1, v2, . . . , vn.

• Draw the graph:

– Start with triangle v1, v2, v3.

– Add vk to the outer face.

v6

v5

v4

v3

v1 v2
Resulting grid size:
(2n − 4)× (n − 2)

⇒ all slopes on outer face ±1
(except for v1v2)

5

The Shift Algorithm

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

– For vk :
Shift first & last neighbor of vk .

v4v5

v1 v2
v3

v6

Idea:

• Triangulate given plane graph.

• Compute a canonical ordering of
the vertices v1, v2, . . . , vn.

• Draw the graph:

– Start with triangle v1, v2, v3.

– Add vk to the outer face.

v6

v5

v4

v3

v1 v2
Resulting grid size:
(2n − 4)× (n − 2)

⇒ all slopes on outer face ±1
(except for v1v2)

5

Approach that Nearly Works 6

Approach that Nearly Works

• Input: a NIC-plane graph

6

Approach that Nearly Works

• Input: a NIC-plane graph

6

Approach that Nearly Works

• Enclose each crossing by a so called empty kite ()

• Input: a NIC-plane graph

6

Approach that Nearly Works

• Enclose each crossing by a so called empty kite ()

• Input: a NIC-plane graph

vdummy

6

Approach that Nearly Works

• Replace each pair of crossing edges by a single edge

• Enclose each crossing by a so called empty kite ()

• Input: a NIC-plane graph

vdummy

6

Approach that Nearly Works

• Replace each pair of crossing edges by a single edge

• Enclose each crossing by a so called empty kite ()

• Input: a NIC-plane graph

vdummy

6

Approach that Nearly Works

• Replace each pair of crossing edges by a single edge

• Enclose each crossing by a so called empty kite ()

• Draw the obtained plane graph with the Shift Algorithm

• Input: a NIC-plane graph

vdummy

6

Approach that Nearly Works

• Replace each pair of crossing edges by a single edge

• Enclose each crossing by a so called empty kite ()

• Draw the obtained plane graph with the Shift Algorithm

• Input: a NIC-plane graph

vdummy

6

Approach that Nearly Works

• Replace each pair of crossing edges by a single edge

• Enclose each crossing by a so called empty kite ()

• Draw the obtained plane graph with the Shift Algorithm

• Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

• Input: a NIC-plane graph

vdummy

6

Approach that Nearly Works

• Replace each pair of crossing edges by a single edge

• Enclose each crossing by a so called empty kite ()

• Draw the obtained plane graph with the Shift Algorithm

• Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

• Input: a NIC-plane graph

vdummy

6

Approach that Nearly Works

• Replace each pair of crossing edges by a single edge

• Enclose each crossing by a so called empty kite ()

• Draw the obtained plane graph with the Shift Algorithm

• Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

• Input: a NIC-plane graph

vdummy

6

Approach that Nearly Works

• Replace each pair of crossing edges by a single edge

• Enclose each crossing by a so called empty kite ()

• Draw the obtained plane graph with the Shift Algorithm

• Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

• Input: a NIC-plane graph

vdummy

grid point on the
Thales’ circle

6

Approach that Nearly Works

• Replace each pair of crossing edges by a single edge

• Enclose each crossing by a so called empty kite ()

• Draw the obtained plane graph with the Shift Algorithm

• Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

• Input: a NIC-plane graph

vdummy

grid point on the
Thales’ circle

6

Approach that Nearly Works

• Replace each pair of crossing edges by a single edge

• Enclose each crossing by a so called empty kite ()

• Draw the obtained plane graph with the Shift Algorithm

• Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

• Input: a NIC-plane graph

vdummy

grid points for
the bends

6

Approach that Nearly Works

• Replace each pair of crossing edges by a single edge

• Enclose each crossing by a so called empty kite ()

• Draw the obtained plane graph with the Shift Algorithm

• Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

• Input: a NIC-plane graph

vdummy

X

6

Approach that Nearly Works

• Replace each pair of crossing edges by a single edge

• Enclose each crossing by a so called empty kite ()

• Draw the obtained plane graph with the Shift Algorithm

• Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

• Input: a NIC-plane graph

vdummy

X

6

Approach that Nearly Works

• Replace each pair of crossing edges by a single edge

• Enclose each crossing by a so called empty kite ()

• Draw the obtained plane graph with the Shift Algorithm

• Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

• Input: a NIC-plane graph

vdummy

X

6

Approach that Nearly Works

• Replace each pair of crossing edges by a single edge

• Enclose each crossing by a so called empty kite ()

• Draw the obtained plane graph with the Shift Algorithm

• Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

• Input: a NIC-plane graph

vdummy

X
very slim

6

Approach that Nearly Works

• Replace each pair of crossing edges by a single edge

• Enclose each crossing by a so called empty kite ()

• Draw the obtained plane graph with the Shift Algorithm

• Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

• Input: a NIC-plane graph

vdummy

X

6

Approach that Nearly Works

• Replace each pair of crossing edges by a single edge

• Enclose each crossing by a so called empty kite ()

• Draw the obtained plane graph with the Shift Algorithm

• Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

• Input: a NIC-plane graph

vdummy

X

6

Approach that Nearly Works

• Replace each pair of crossing edges by a single edge

• Enclose each crossing by a so called empty kite ()

• Draw the obtained plane graph with the Shift Algorithm

• Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

• Input: a NIC-plane graph

vdummy

X

6

Approach that Nearly Works

• Replace each pair of crossing edges by a single edge

• Enclose each crossing by a so called empty kite ()

• Draw the obtained plane graph with the Shift Algorithm

• Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

• Input: a NIC-plane graph

vdummy

X

6

Approach that Nearly Works

• Replace each pair of crossing edges by a single edge

• Enclose each crossing by a so called empty kite ()

• Draw the obtained plane graph with the Shift Algorithm

• Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

• Input: a NIC-plane graph

vdummy

X
bad
configu-
ration!

6

Our Algorithm
bad
configu-
ration!

7

Our Algorithm

Solution:
bad
configu-
ration!• Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

7

Our Algorithm

Solution:
bad
configu-
ration!• Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

• Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).

7

Our Algorithm

Solution:
bad
configu-
ration!• Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

• Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up
instead of top-down.

7

Our Algorithm

Solution:
bad
configu-
ration!• Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

start with
an empty
quadrangle

• Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up
instead of top-down.

7

Our Algorithm

Solution:
bad
configu-
ration!• Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

v42

• Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up
instead of top-down.

7

Our Algorithm

Solution:
bad
configu-
ration!• Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

v42

Insert the
diagonal

• Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up
instead of top-down.

7

Our Algorithm

Solution:
bad
configu-
ration!• Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

v42

Insert the
diagonal

• Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up
instead of top-down.

7

Our Algorithm

Solution:
bad
configu-
ration!• Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

v42

v55
• Use the algorithm by Harel and Sardas

(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up
instead of top-down.

7

Our Algorithm

Solution:
bad
configu-
ration!• Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

v42

v55
v61• Use the algorithm by Harel and Sardas

(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up
instead of top-down.

7

Our Algorithm

Solution:
bad
configu-
ration!• Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

v42

v55
v61

v94

• Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up
instead of top-down.

7

Our Algorithm

Solution:
bad
configu-
ration!• Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

v42

v55
v61

v94

• Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).

• Now only three “good” cases can appear:

It builds a canonical ordering bottom-up
instead of top-down.

7

Our Algorithm

Solution:
bad
configu-
ration!• Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

v42

v55
v61

v94

• Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).

• Now only three “good” cases can appear:

Case 1

It builds a canonical ordering bottom-up
instead of top-down.

7

Our Algorithm

Solution:
bad
configu-
ration!• Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

v42

v55
v61

v94

• Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).

• Now only three “good” cases can appear:

Case 1

It builds a canonical ordering bottom-up
instead of top-down.

7

Our Algorithm

Solution:
bad
configu-
ration!• Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

v42

v55
v61

v94

• Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).

• Now only three “good” cases can appear:

Case 1

It builds a canonical ordering bottom-up
instead of top-down.

7

Our Algorithm

Solution:
bad
configu-
ration!• Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

v42

v55
v61

v94

• Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).

• Now only three “good” cases can appear:

Case 1 Case 2

It builds a canonical ordering bottom-up
instead of top-down.

7

Our Algorithm

Solution:
bad
configu-
ration!• Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

v42

v55
v61

v94

• Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).

• Now only three “good” cases can appear:

Case 1 Case 2

It builds a canonical ordering bottom-up
instead of top-down.

7

Our Algorithm

Solution:
bad
configu-
ration!• Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

v42

v55
v61

v94

• Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).

• Now only three “good” cases can appear:

Case 1 Case 2

It builds a canonical ordering bottom-up
instead of top-down.

7

Our Algorithm

Solution:
bad
configu-
ration!• Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

v42

v55
v61

v94

• Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).

• Now only three “good” cases can appear:

Case 1 Case 2 Case 3

It builds a canonical ordering bottom-up
instead of top-down.

7

Our Algorithm

Solution:
bad
configu-
ration!• Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

v42

v55
v61

v94

• Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).

• Now only three “good” cases can appear:

Case 1 Case 2 Case 3

It builds a canonical ordering bottom-up
instead of top-down.

7

Our Algorithm

Solution:
bad
configu-
ration!• Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

v42

v55
v61

v94

• Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).

• Now only three “good” cases can appear:

Case 1 Case 2 Case 3

It builds a canonical ordering bottom-up
instead of top-down.

7

Summary 8

Summary

• Runs in O(n) time.

8

Summary

• Runs in O(n) time.

• Resulting drawing is
NIC-planar RAC with
≤ 1 bend per edge.

8

Summary

• Runs in O(n) time.

• Resulting drawing is
NIC-planar RAC with
≤ 1 bend per edge.

• Grid of size at most
(16n− 32)× (8n− 16).

8

Summary

• Runs in O(n) time.

• Resulting drawing is
NIC-planar RAC with
≤ 1 bend per edge.

• Grid of size at most
(16n− 32)× (8n− 16).

• Needs NIC-planar
embedding as input;
this embedding is
preserved.

8

Summary

• Runs in O(n) time.

• Resulting drawing is
NIC-planar RAC with
≤ 1 bend per edge.

• Grid of size at most
(16n− 32)× (8n− 16).

• Needs NIC-planar
embedding as input;
this embedding is
preserved.

planar

IC-planar

NIC-planar

1-planar
RACpoly

1

RAC1

RAC0

RACpoly
0

RACpoly
2

RAC2

RACpoly
3 = all graphsE?

w
/o

B
-configuration

8

Summary

• Runs in O(n) time.

• Resulting drawing is
NIC-planar RAC with
≤ 1 bend per edge.

• Grid of size at most
(16n− 32)× (8n− 16).

• Needs NIC-planar
embedding as input;
this embedding is
preserved.

Our main result:
NIC-plane graphs ⊆ RACpoly

1

planar

IC-planar

NIC-planar

1-planar
RACpoly

1

RAC1

RAC0

RACpoly
0

RACpoly
2

RAC2

RACpoly
3 = all graphsE?

w
/o

B
-configuration

8

Summary

• Runs in O(n) time.

• Resulting drawing is
NIC-planar RAC with
≤ 1 bend per edge.

• Grid of size at most
(16n− 32)× (8n− 16).

• Needs NIC-planar
embedding as input;
this embedding is
preserved.

Open question:
1-planar graphs ⊆ RACpoly

1 ?

planar

IC-planar

NIC-planar

1-planar
RACpoly

1

RAC1

RAC0

RACpoly
0

RACpoly
2

RAC2

RACpoly
3 = all graphsE?

w
/o

B
-configuration

?

8

Summary

• Runs in O(n) time.

• Resulting drawing is
NIC-planar RAC with
≤ 1 bend per edge.

• Grid of size at most
(16n− 32)× (8n− 16).

• Needs NIC-planar
embedding as input;
this embedding is
preserved.

Open question:
1-planar graphs ⊆ RACpoly

1 ?

planar

IC-planar

NIC-planar

1-planar
RACpoly

1

RAC1

RAC0

RACpoly
0

RACpoly
2

RAC2

RACpoly
3 = all graphs

?

?

?

E?

w
/o

B
-configuration

?

More open questions

E?

8

