Knowledge-Based Systems Institute for Informatics

Julius-Maximilians- Chair for X .
I UNIVERSITAT INFORMATICS | ||||I | fl
WURZBURG Efficient Algorithms and

1-Bend RAC Drawings
of NIC-Planar Graphs
in Quadratic Area

Steven Chaplick, Fabian Lipp,
Alexander Wolff, and Johannes Zink

Beyond-Planar Graphs

Types of Drawings:

Planar: No crossings

Beyond-Planar Graphs -

Types of Drawings:

1-Planar: <1 crossings per edge

Planar: No crossings

Beyond-Planar Graphs -

Types of Drawings:

1-Planar: <1 crossings per edge

Planar: No crossings

Beyond-Planar Graphs -

Types of Drawings:

1-Planar: <1 crossings per edge

NIC-Planar: Two crossings share
< 1 vertices

% Planar: No crossings

Beyond-Planar Graphs -

Types of Drawings:

1-Planar: <1 crossings per edge

NIC-Planar: Two crossings share
< 1 vertices

Planar: No crossings

Beyond-Planar Graphs

Types of Drawings:

1-Planar:

NIC-Planar:

é IC-Planar:

Planar:

< 1 crossings per edge

Two crossings share
< 1 vertices

Two crossings share
no vertices

No crossings

Beyond-Planar Graphs

Types of Drawings:

1-Planar:

NIC-Planar:

IC-Planar:

Planar:

< 1 crossings per edge

Two crossings share
< 1 vertices

Two crossings share
no vertices

No crossings

Beyond-Planar Graphs

Types of Drawings:

1-Planar:

NIC-Planar:

IC-Planar:

Planar:

RAC:

< 1 crossings per edge

Two crossings share
< 1 vertices

Two crossings share
no vertices

No crossings

Right angle crossings

Beyond-Planar Graphs -

Types of Drawings:

1-Planar: <1 crossings per edge

NIC-Planar: Two crossings share
< 1 vertices

IC-Planar: Two crossings share

no vertices
Planar: No crossings
RAC: Right angle crossings

RAC;: with < 1 bends per edge
RACy: with straight-line edges

Beyond-Planar Graphs -

Types of Drawings:

1-Planar: < 1 crossings per edge
.
NIC-Planar: Two crossings share
. < 1 vertices
-
v > IC-Planar: Two crossings share
S no vertices
Planar: No crossings
’ RAC: Right angle crossings
poE,r(n) RAC;: with < 1 bends per edge

RACp: with straight-line edges
RACPY: in polynomial area

Beyond-Planar Graphs 2

Types of Drawings:

< 1 crossings per edge
.

(C Planarb>Two crossings share

. < 1 vertices
c

> > @Pla@ Two crossings share
o
o

no vertices
(Planar? No crossings
’ RAC: Right angle crossings
poly(n) RAC;: with <1 bends per edge

RACp: with straight-line edges
RACPY: in polynomial area

Related Work 3

: {graph G | G has a NIC-planar drawing}

/ contained in

@ (even for fixed embedding)
y contained in

@ (unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

Related Work 3

/ contained in

@ (even for fixed embedding)
y contained in

@ (unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

Related Work 3

/ contained in

@ (even for fixed embedding)
y contained in

@ (unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

Related Work 3

RACEY
RACPY
RACPY

/ contained in

@ (even for fixed embedding)
% contained in

@ (unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

Related Work 3

2 ®AC = al graphs>

RACH

RACEY
RACPY
RACPY

/ contained in

@ (even for fixed embedding)
y contained in

@ (unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

Related Work 3

RACEY

/ contained in

@ (even for fixed embedding)
y contained in

@ (unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

Related Work

RAC,
RACEY
RACPY
"""""" RACEY

—
o

\
N
\
\WN
\\\\\
\
W
(%
AN

contained in
(even for fixed embedding)

contained in
(unknown for fixed embedding)

incomparable

Related Work 3

RACEY

ol
l RACP®Y
I
“ RACPY

RAC,

/ contained in
@ (even for fixed embedding)

y contained in
@ (unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

Related Work 3

4'@05/ — all g@

RAC,
RACEY

: RACE®Y

RACP?Y

, / contained in
(even for fixed embedding)
y contained in
@ (unknown for fixed embedding)

\\\\\\\\\\\\\\ incomparable

Related Work 3

RACEY

RAC,

ol
RACP®Y

/ contained in
(even for fixed embedding)
y contained in

(unknown for fixed embedding)

\
\‘\\

\\\\\\ «"Incomparable

Related Work 3

ol
RACS™Y Our results

RAC,

ol
RACP®Y

.

e
wh
\\\\\\\

/ contained in
(even for fixed embedding)
y contained in

(unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

Related Work 3

ol
RACS™Y Our results

RAC,

ol
RACP®Y

.

e
wh
\\\\\\\

/ contained in
(even for fixed embedding)
y contained in

(unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

Related Work

Our results

—
o

\
W\
W
W
\\\\
\
W\
W\
W\

contained in
(even for fixed embedding)

contained in
(unknown for fixed embedding)

incomparable

Related Work

Our results

—
o

\
W\
W
W
\\\\
\
W\
W\
W\

contained in
(even for fixed embedding)

contained in
(unknown for fixed embedding)

incomparable

Related Work 3

Our main result:

NIC-plane graphs
N C RAC?Oly

/ contained in
(even for fixed embedding)
y contained in

(unknown for fixed embedding)

\\\\\\\\\\\\ incomparable

ol
NIC-plane graphs C RACY®”

NIC-plane graphs C RACPY

Algorithm
in O(n) time:

NIC-plane graphs C RACPY

Algorithm
in O(n) time:

Input:
NIC-plane graph (G, £) with n vertices

NIC-plane graphs C RACPY

Algorithm

in O(n) time: (Graph G with
a NIC-planar

Input: S/mbedding E |

NIC-plane graph (G, £) with n vertices

NIC-plane graphs C RACPY 4

Algorithm

in O(n) time: (Graph G with
a NIC-planar

Input: S/mbedding E |

NIC-plane graph (G, £) with n vertices

Output:
1-bend RAC drawing [of G according to £

Every vertex, bend point, and crossing point of [lies on a grid

of size O(n) x O(n)

The Shift Algorithm 5

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

The Shift Algorithm

ldea:

pal

The Shift Algorithm

Idea:
e Triangulate given plane graph.

The Shift Algorithm 5

[de Fraysseix, Pach, and Pollack, 1990]
[Chrobak and Payne, 1995]

Idea:
e TIriangulate given plane graph.

The Shift Algorithm

Idea:
e Triangulate given plane graph.

e Compute a canonical ordering of
the vertices vi, o, ..., v,.

The Shift Algorithm

Idea:
e Triangulate given plane graph.

e Compute a canonical ordering of
the vertices vi, o, ..., v,.

The Shift Algorithm

Idea:
e Triangulate given plane graph.

e Compute a canonical ordering of
the vertices vi, o, ..., v,.
e Draw the graph:

The Shift Algorithm

ldea:

e Triangulate given plane graph.

e Compute a canonical ordering of
the vertices vi, o, ..., v,.
e Draw the graph:

— Start with triangle vq, v», v3.

The Shift Algorithm

ldea:

e Triangulate given plane graph.

e Compute a canonical ordering of
the vertices vi, o, ..., v,.

e Draw the graph:
— Start with triangle vq, v», v3.

The Shift Algorithm

ldea:

e Triangulate given plane graph.

e Compute a canonical ordering of
the vertices vi, o, ..., v,.

e Draw the graph:

— Start with triangle vq, v», v3.
— For vy:

Shift first & last neighbor of v.

The Shift Algorithm

ldea:

e Triangulate given plane graph.

e Compute a canonical ordering of
the vertices vi, o, ..., v,.

e Draw the graph:

— Start with triangle vq, v», v3.
— For vy:

Shift first & last neighbor of v.

The Shift Algorithm

ldea:

e Triangulate given plane graph.

e Compute a canonical ordering of
the vertices vi, o, ..., v,.

e Draw the graph:

— Start with triangle vq, v», v3.
— For vy:

Shift first & last neighbor of v.

— Add v, to the outer face.

The Shift Algorithm

ldea:

e Triangulate given plane graph.

e Compute a canonical ordering of
the vertices vi, o, ..., v,.

e Draw the graph:

— Start with triangle vq, v», v3.
— For vy:

Shift first & last neighbor of v.

— Add v, to the outer face.

The Shift Algorithm

ldea:

e Triangulate given plane graph.

e Compute a canonical ordering of
the vertices vi, o, ..., v,.

e Draw the graph:

— Start with triangle vq, v», v3.
— For vy:

Shift first & last neighbor of v.

— Add v, to the outer face.

= all slopes on outer face +1
(except for vy v»)

The Shift Algorithm

ldea:

e Triangulate given plane graph.

e Compute a canonical ordering of
the vertices vi, o, ..., v,.

e Draw the graph:

— Start with triangle vq, v», v3.
— For vy:

Shift first & last neighbor of vj.
— Add v, to the outer face.

= all slopes on outer face +1
(except for vy v»)

The Shift Algorithm

ldea:

e Triangulate given plane graph.

e Compute a canonical ordering of
the vertices vi, o, ..., v,.

e Draw the graph:

— Start with triangle vq, v», v3.
— For vy:

Shift first & last neighbor of v.

— Add v, to the outer face.

= all slopes on outer face +1
(except for vy v»)

The Shift Algorithm 5

Idea: v
e Triangulate given plane graph. V6 ‘1
e Compute a canonical ordering of '\
the vertices vi, o, ..., v,. b
e Draw the graph: V1 V2
— Start with triangle vq, v», v3.
— For vy:
Shift first & last neighbor of v. “

— Add v, to the outer face.

= all slopes on outer face +1
(except for vy v»)

The Shift Algorithm

O1

Idea: Vi
e Triangulate given plane graph. V6
e Compute a canonical ordering of \A
the vertices vi, o, ..., v,. 'b
e Draw the graph: V1 V2

— Start with triangle vq, v», v3.
— For vg: Ve

Shift first & last neighbor of vj.
— Add v, to the outer face. ‘
= all slopes on outer face £+1 K
(except for vy v») V3

V1 V2

The Shift Algorithm 5
Idea: Vi
e Triangulate given plane graph. V6
e Compute a canonical ordering of \A
the vertices vi, o, ..., v,. 'b
e Draw the graph: V1 V2

Resulting grid size:

— Start with triangle vq, vo, v3. (2n—4) x (n—2)

— For vy:

Ve
Shift first & last neighbor of vj.
— Add v, to the outer face. ‘
= all slopes on outer face £+1 K
(except for vy v») V3

V1 V2

The Shift Algorithm 5
Idea: Vi
e Triangulate given plane graph. V6
e Compute a canonical ordering of \A
the vertices vi, o, ..., v,. '&
e Draw the graph: V1 V2

Resulting grid size:

— Start with triangle vq, vo, v3. (2n—4) x (n—2)

— For vy:

Ve
Shift first & last neighbor of vj.
— Add v, to the outer face. ‘
= all slopes on outer face £+1 K
(except for vy v») V3

V1 V2

The Shift Algorithm 5
Idea: Vi
e Triangulate given plane graph. V6
e Compute a canonical ordering of \A
the vertices vi, o, ..., v,. 'b
e Draw the graph: V1 V2

. . Resulting grid size:
— Start with triangle vq, vo, v3. (2n — 4)g><g(n —2)

— For vy: V6
Shift first & last neighbor of v.
— Add v, to the outer face.

= all slopes on outer face £1 } K
(except for vy v») V3

Approach that Nearly Works

Approach that Nearly Works

e Input: a NIC-plane graph

Approach that Nearly Works

e Input: a NIC-plane graph

Approach that Nearly Works

e Input: a NIC-plane graph
e Enclose each icrossing by a so called empty kite (%)

Approach that Nearly Works

e Input: a NIC-plane graph
e Enclose each icrossing by a so called empty kite (%)

Vdummy

Approach that Nearly Works

e Input: a NIC-plane graph
e Enclose each crossing by a so called empty kite (%)

e Replace each pair of crossing edges by a single edge

Vdummy

Approach that Nearly Works

e Input: a NIC-plane graph
e Enclose each crossing by a so called empty kite (%)

e Replace each pair of crossing edges by a single edge

Vdummy

Approach that Nearly Works

e Input: a NIC-plane graph
e Enclose each crossing by a so called empty kite (%)

e Replace each pair of crossing edges by a single edge

e Draw the obtained plane graph with the Shift Algorithm

Vdummy

Approach that Nearly Works

e Input: a NIC-plane graph
e Enclose each crossing by a so called empty kite (%)

e Replace each pair of crossing edges by a single edge

e Draw the obtained plane graph with the Shift Algorithm

Vdummy

Approach that Nearly Works 6

e Input: a NIC-plane graph
e Enclose each crossing by a so called empty kite (%)

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

Vdummy

Approach that Nearly Works 6

e Input: a NIC-plane graph
e Enclose each crossing by a so called empty kite (%)

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

Vdummy

Approach that Nearly Works 6

e Input: a NIC-plane graph
e Enclose each crossing by a so called empty kite (%)

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

<

Vdummy

Approach that Nearly Works 6

e Input: a NIC-plane graph
e Enclose each crossing by a so called empty kite (%)

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

grid point on the
Thales’ circle

Vdummy

Approach that Nearly Works 6

e Input: a NIC-plane graph
e Enclose each crossing by a so called empty kite (%)

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

A grid point on the
‘y Thales’ circle

Vdummy

Approach that Nearly Works 6

e Input: a NIC-plane graph
e Enclose each crossing by a so called empty kite (%)

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

IA grid points for

the bends

Vdummy

Approach that Nearly Works 6

e Input: a NIC-plane graph
e Enclose each crossing by a so called empty kite (%)

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

@\/

Vdummy

Approach that Nearly Works 6

e Input: a NIC-plane graph
e Enclose each crossing by a so called empty kite (%)

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

Vdummy A

Approach that Nearly Works 6

e Input: a NIC-plane graph
e Enclose each crossing by a so called empty kite (%)

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

v
A= A

Approach that Nearly Works 6

e Input: a NIC-plane graph
e Enclose each crossing by a so called empty kite (%)

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

very slim
Vdummy A %

Approach that Nearly Works 6

e Input: a NIC-plane graph
e Enclose each crossing by a so called empty kite (%)

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

Vdummy -
'X

Approach that Nearly Works 6

e Input: a NIC-plane graph
e Enclose each crossing by a so called empty kite (%)

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

v
AT A

Approach that Nearly Works 6

e Input: a NIC-plane graph
e Enclose each crossing by a so called empty kite (%)

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

Approach that Nearly Works 6

e Input: a NIC-plane graph
e Enclose each crossing by a so called empty kite (%)

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

Vdummy A

v

Approach that Nearly Works 6

e Input: a NIC-plane graph
e Enclose each crossing by a so called empty kite (%)

e Replace each pair of crossing edges by a single edge
e Draw the obtained plane graph with the Shift Algorithm

e Manually reinsert the removed edges with 1 bend so that
they cross in a right angle (crossings and bends on the grid)

Vdummy é bad
configu-
ration!

Our Algorithm é 7
bad

configu-
ration!

Our Algorithm é 7
bad

Solution: configu-
. : ration!
e Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

Our Algorithm é 7
bad

Solution: configu-
. : ration!
e Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

e Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).

Our Algorithm é 7
bad

Solution: configu-
. : ration!
e Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

e Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up
iInstead of top-down.

Our Algorithm é 7
bad

Solution: configu-
. : ration!
e Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

e Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up

instead of top-down. start with
an empty

quadrangle

Our Algorithm é 7
bad

Solution: configu-
. . ration!
e Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

e Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up
iInstead of top-down.

V42

Our Algorithm é 7
bad

Solution: configu-
. : ration!
e Make the first vertex in the qudrangle

(regarding the canonical ordering)
adjacent to the other three vertices.

e Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up

iInstead of top-down. Insert the
diagonal

V42

Our Algorithm é 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

e Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up

iInstead of top-down. Insert the
diagonal

V42

Our Algorithm é 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)

adjacent to the other three vertices. Vis

e Use the algorithm by Harel and Sardas
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up
iInstead of top-down.

V42

Our Algorithm é 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)

adjacent to the other three vertices. Vis

e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up
iInstead of top-down.

V42

Our Algorithm é 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)

adjacent to the other three vertices. Vis

e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up
instead of top-down. Voa

V42

Our Algorithm é 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

VE5
e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up Va2
instead of top-down. Voa

e Now only three “good” cases can appear:

Our Algorithm é 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

VE5
e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up Va2
instead of top-down. Voa

e Now only three “good” cases can appear:

Case 1

4

Our Algorithm é 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

VE5
e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up Va2
instead of top-down. Voa

e Now only three “good” cases can appear:

Case 1

-

Our Algorithm é 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

VE5
e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up Va2
instead of top-down. Voa

e Now only three “good” cases can appear:

Case 1

-

Our Algorithm é 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

VE5
e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up Va2
instead of top-down. Voa

e Now only three “good” cases can appear:
Case 1 | Case 2 |

| A

Our Algorithm é 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

VE5
e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up Va2
instead of top-down. Voa

e Now only three “good” cases can appear:
Case 1 | Case 2 |

S| A

Our Algorithm é 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

VE5
e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up Va2
instead of top-down. Voa

e Now only three “good” cases can appear:
Case 1 | Case 2 |

S| A

Our Algorithm é 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

VE5
e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up Va2
instead of top-down. Voa

e Now only three “good” cases can appear:
Case 1 | Case 2 | Case 3

S~ A-A) A

Our Algorithm é 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

VE5
e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up Va2
instead of top-down. Voa

e Now only three good cases can appear

Case 1 | Case 2 Case 3

| Aot | B

Our Algorithm é 7
bad

Solution: configu-
; - ration!
e Make the first vertex in the qudrangle -

(regarding the canonical ordering)
adjacent to the other three vertices.

VE5
e Use the algorithm by Harel and Sardas V61
(Shift Algorithm for biconnected graphs).
It builds a canonical ordering bottom-up Va2
instead of top-down. Voa

e Now only three good cases can appear

Case 1 | Case 2 Case 3

| ot | BB

Summary

Summary

e Runs in O(n) time.

Summary

e Runs in O(n) time.

e Resulting drawing is
NIC-planar RAC with
< 1 bend per edge.

Summary

e Runs in O(n) time.

e Resulting drawing is
NIC-planar RAC with
< 1 bend per edge.

e Grid of size at most
(16n — 32) x (8n — 16).

Summary

e Runs in O(n) time.

e Resulting drawing is
NIC-planar RAC with
< 1 bend per edge.

e Grid of size at most
(16n — 32) x (8n — 16).

e Needs NIC-planar
embedding as input;
this embedding is
preserved.

Summary

e Runs in O(n) time.

e Resulting drawing is
NIC-planar RAC with
< 1 bend per edge.

e Grid of size at most

(16n — 32) x (8n — 16).

e Needs NIC-planar
embedding as input;
this embedding is
preserved.

Summary

e Runs in O(n) time.

e Resulting drawing is
NIC-planar RAC with
< 1 bend per edge.

e Grid of size at most

(16n — 32) x (8n — 16).

e Needs NIC-planar
embedding as input;
this embedding is
preserved.

Our main result:
NIC-plane graphs € RAC®Y

Summary

e Runs in O(n) time.

e Resulting drawing is
NIC-planar RAC with
< 1 bend per edge.

e Grid of size at most

(16n — 32) x (8n — 16).

e Needs NIC-planar
embedding as input;
this embedding is
preserved.

Open question:
1-planar graphs C RACP®Y ?

Summary

e Runs in O(n) time.

e Resulting drawing is
NIC-planar RAC with
< 1 bend per edge.

e Grid of size at most

(16n — 32) x (8n — 16).

e Needs NIC-planar
embedding as input;
this embedding is
preserved.

Open question:
1-planar graphs C RACP®Y ?

