Knowledge-Based Systems Institute for Informatics

Julius-Maximilians- Chair for X .
I UNIVERSITAT INFORMATICS | ||||I | fl
WURZBURG Efficient Algorithms and

Stick Graphs with
Length Constraints

Steven Chaplick, Philipp Kindermann, Andre Loffler,
Florian Thiele, Alexander Wolff, Alexander Zaft, and
Johannes Zink

Introduction

e Given a collection & of geometric objects

Introduction

e Given a collection & of geometric objects

e The intersection graph G of § has
— § as its vertex set
— an edge for each two elements of S
that intersect or touch each other.

Introduction

e Given a collection & of geometric objects

e The intersection graph G of § has
— § as its vertex set
— an edge for each two elements of S

that intersect or touch each other.
e S: line segments m /

Introduction

e Given a collection & of geometric objects

e The intersection graph G of § has
— § as its vertex set
— an edge for each two elements of S

that intersect or touch each other.
e S: line segments = G: segment grapiﬁ\\ /

Introduction

e Given a collection & of geometric objects

e The intersection graph G of § has
— § as its vertex set
— an edge for each two elements of S

that intersect or touch each other.
e S: line segments = G: segment grapiﬁ\\ /

e S: horizontal & vertical segments

Introduction

e Given a collection S of geometric objects

grid intersec. graphs

e The intersection graph G of S has
— § as its vertex set
— an edge for each two elements of &

that intersect or touch each other.
e S: line segments = G: segment grapiﬁ\\ /
e S: horizontal & vertical segments
= G: grid intersection graph

Introduction

e Given a collection S of geometric objects

The intersection graph G of S has
— § as its vertex set
— an edge for each two elements of &

that intersect or touch each other.
S: line segments = G: segment grapiﬁ\\ /

grid intersec. graphs

S: horizontal & vertical segments

= G: grid intersection graph

S: horizontal & vertical segments grounc
on a line of slope —1

ed

Introduction

e Given a collection & of geometric objects

The intersection graph G of S has
— § as its vertex set
— an edge for each two elements of S

that intersect or touch each other.
S: line segments = G: segment grapiﬁ\\ /

segment graphs

grid intersec. graphs

stick graphs

S: horizontal & vertical segments

= G: grid intersection graph

S: horizontal & vertical segments grounc
on a line of slope —1 = G: stick graph

ed

Introduction

e Given a collection & of geometric objects

The intersection graph G of S has
— § as its vertex set
— an edge for each two elements of S

that intersect or touch each other.
S: line segments = G: segment grapiﬁ\\ /

segment graphs

grid intersec. graphs

stick graphs

S: horizontal & vertical segments

= G: grid intersection graph

S: horizontal & vertical segments grounc
on a line of slope —1 = G: stick graph

ed

S: horizontal & vertical segments grounded on

two parallel lines

Introduction

Given a collection § of geometric objects

The intersection graph G of S has
— § as its vertex set
— an edge for each two elements of S

that intersect or touch each other.
S: line segments = G: segment grapiﬁ\\ /

segment graphs

grid intersec. graphs

stick graphs

bip.
permu.
graphs

S: horizontal & vertical segments

= G: grid intersection graph

S: horizontal & vertical segments grounded
on a line of slope —1 = G: stick graph

S: horizontal & vertical segments grounded on
two parallel lines =- G: bipartite permutation graph

Computational Complexity

Recognition problem:
Decide whether a given graph is an intersection graph.

Computational Complexity 3

Recognition problem:
Decide whether a given graph is an intersection graph.

How hard for each class?

segment graphs

grid Iintersec. graphs

stick graphs

bip.
permu.
graphs

Computational Complexity 3

Recognition problem:
Decide whether a given graph is an intersection graph.

How hard for each class?
segment graphs: dR-complete «—

[Kratochvil, Matousek '94; Matousek '14]

segment graphs

grid Iintersec. graphs

stick graphs

bip.
permu.
graphs

Computational Complexity 3

Recognition problem:
Decide whether a given graph is an intersection graph.

How hard for each class?
segment graphs: dR-complete «—

[Kratochvil, Matousek '94; Matousek '14]

grid intersection graphs: NP-complete
<_

segment graphs
[Kratochvil '94]

grid Iintersec. graphs

stick graphs

bip.
permu.
graphs

Computational Complexity 3

Recognition problem:
Decide whether a given graph is an intersection graph.

How hard for each class?
segment graphs: dR-complete «—

[Kratochvil, Matousek '94; Matousek '14]

grid intersection graphs: NP-complete segment graphs
[Kratochvil '94] -

grid Iintersec. graphs
stick graphs

bip.
permu.

(bipart.) permutation graphs: linear time —

[Spinrad et al. '87; Kratsch et al. '06]

Computational Complexity 3

Recognition problem:
Decide whether a given graph is an intersection graph.

How hard for each class?
segment graphs: dR-complete «—

[Kratochvil, Matousek '94; Matousek '14]

grid intersection graphs: NP-complete segment graphs
[Kratochvil '94] -

grid Iintersec. graphs

stick graphs: - stick graphs

bip.
permu.

(bipart.) permutation graphs: linear time —

[Spinrad et al. '87; Kratsch et al. '06]

Computational Complexity 3

Recognition problem:
Decide whether a given graph is an intersection graph.

How hard for each class?
segment graphs: dR-complete «—

[Kratochvil, Matousek '94; Matousek '14]

grid intersection graphs: NP-complete segment graphs
[Kratochvil '94] -

grid Iintersec. graphs

stick graphs: 707 <— stick graphs

remains open... bip.

permu.

(bipart.) permutation graphs: linear time —

[Spinrad et al. '87; Kratsch et al. '06]

Versions of Stick Graph Recognition

Versions of Stick Graph Recognition

Given a bipartite Graph G = (AUB, E), does G admit a stick
representation ...

Versions of Stick Graph Recognition

Given a bipartite Graph G = (AUB, E), does G admit a stick
representation ...

o STICK: ...?

Versions of Stick Graph Recognition

Given a bipartite Graph G = (AUB, E), does G admit a stick

representation ... |
I |
e STICK: ...? N

Versions of Stick Graph Recognition

Given a bipartite Graph G = (AUB, E), does G admit a stick

representation ... |
I |
e STICK: ...? N

e STICKAx:
...1f a permutation of the vertices in A is given?

Versions of Stick Graph Recognition

Given a bipartite Graph G = (AUB, E), does G admit a stick

representation ... |
I |
e STICK: ...? N

e STICKax: J—‘l‘_ AR

...1f a permutation of the vertices in A is given?

Versions of Stick Graph Recognition

Given a bipartite Graph G = (AUB, E), does G admit a stick

representation ... |
I |
e STICK: ...? N

e STICKax: J—‘l‘_ AR

...1f a permutation of the vertices in A is given?

o ST'CKAB:
... 1f a permutation of the vertices in A and a
permutation of the vertices in B is given?

Versions of Stick Graph Recognition

Given a bipartite Graph G = (AUB, E), does G admit a stick

representation ... |
I |
e STICK: ...? N

e STICKax: J—‘l‘_ AR

...1f a permutation of the vertices in A is given?

T =

o ST'CKAB:
... 1f a permutation of the vertices in A and a
permutation of the vertices in B is given?

Versions of Stick Graph Recognition

Given a bipartite Graph G = (AUB, E), does G admit a stick
representation ... |
| |

e STICK: ...? RN

e STICKax: J—‘l‘_ AR

...1f a permutation of the vertices in A is given?

J_ T

o ST'CKAB:

... 1f a permutation of the vertices in A and a
permutation of the vertices in B is given?

e STICK®™:
... if a stick length for each vertex (and possibly
permutations of A, or A and B) is given?

Versions of Stick Graph Recognition

Given a bipartite Graph G = (AUB, E), does G admit a stick
representation ... |
| |

e STICK: ...? RN

e STICKax: J—‘l‘_ AR

...1f a permutation of the vertices in A is given?

J_ T

o ST'CKAB:

... 1f a permutation of the vertices in A and a
permutation of the vertices in B is given?

= =+

o STICKf: — —

... if a stick length for each vertex (and possibly
permutations of A, or A and B) is given?

Versions of Stick Graph Recognition

Given a bipartite Graph G = (AUB, E), does G admit a stick

representation ...
| .

... 1f a permutation of the vertices in A and a
permutation of the vertices in B is given?

| ot
e STICK®™: T A
... if a stick length for each vertex (and possibly

permutations of A, or A and B) is given?

e STICK: ...7 ‘L % -
JT[_‘ ++ ® I
e STICKj,: ') %I_ =41
...if a permutation of the vertices in A is given? L 3
®
| +—1 r 0
o STICKjpg: '-I- N > ,QLQQ_?'
D
O
=
<

Versions of Stick Graph Recognition

Given a bipartite Graph G = (AUB, E), does G admit a stick

representation ...
| .

e STICK: ...7 | '+ -
J'—f -+ ®
e STICKq: '] € &
...if a permutation of the vertices in A is given? g 3
. i + 0
o ST'CKAB: '-I- ‘l__'_ > QLO%I-
... If a permutation of the vertices in A and a %
permutation of the vertices in B is given? } ;
btk)
o STICK': T < 5
... if a stick length for each vertex (and possibly %3

permutations of A, or A and B) is given?

Complexity of Recognition

STICK,

STICKix

AB

Complexity of Recognition

" STICK, STICKfix
?

A | 7

AB | O(JA||B])

[De Luca et al. GD'18]

Complexity of Recognition

our results
" STICK, STICK'™
?
A |
AB | O(|Al[B])

[De Luca et al. GD'18]

Complexity of Recognition
our results

x STICK, STICKix

? ?

A | 7 O(AIB]) 2

AB | O(JA||B]) ?

[De Luca et al. GD'18]

Complexity of Recognition
our results

x STICK, STICKix

? ?

A | 7 O(AIB]) 2

AB | O(Al[B]) O([E])| 2

[De Luca et al. GD'18]

Complexity of Recognition

our results
" STICK, STICK'™
? ? NP-complete

A | 7 O(AIB]) 2

AB | O(Al[B]) O([E])| 2

[De Luca et al. GD'18]

Complexity of Recognition

our results
X STICK, STICKfix
? ? NP-complete

A | 70 O(AlBI]) 72 NP-complete

AB | O(Al[B]) O([E])| 2

[De Luca et al. GD'18]

Complexity of Recognition

our results
X STICK, STICKSix
? ? NP-complete

A | 70 O(AlBI]) 72 NP-complete

In general:

AB |O(Al[B]) O(IE[)] 2 NP-complete

[De Luca et al. GD'18]

Complexity of Recognition

our results
" STICK, STICKfix
? ? NP-complete
A | 7 O(AlB]) 2 NP-complete
in general:
AB |O(|Al|B]) O(|E])] 2 NP-complete

[De Luca et al. GD'18]

w /o isolated vtc.:

O((IA] + |Bl)?)

Complexity of Recognition

our results
" STICK, STICKfix
? ? NP-complete
next
A | 7t (O(AlBl)))?2 NP-complete
in general:
AB |O(|Al[B]) O(lE])] 2 NP-complete

[De Luca et al. GD'18]

w /o isolated vtc.:

O((I1A] + |Bl)?)

Complexity of Recognition

our results
x STICK, STICKix
? NP-complete
next
A | 7t (O(A]BI) NP-complete
in general:
AB | O(|A[|B]) O(|E]) NP-complete

[De Luca et al. GD'18]

afterwards

w /o isolated vtc.:

O((IA] + |Bl)?)

Algorithm for STICKA

* STICK, STICK™
? NP-complete
A O(|Al|B|) NP-complete
in general:
AB O(|E]) NP-complete

w /o isolated vtc.:

O((IA] + |Bl)?)

Algorithm for STICKa

e Sweep-line along the ordered vertical sticks in A:
enter event (i) and exit event (i») for each a; € A

Algorithm for STICKa

e Sweep-line along the ordered vertical sticks in A:
enter event (i) and exit event (i») for each a; € A

o letpe{i i-},
G' := subgraph induced by aq, ..., a; and their neighbors,
BP := vertices in B that intersect the sweep-line at event p

Algorithm for STICKA

e Sweep-line along the ordered vertical sticks in A:
enter event (i) and exit event (i») for each a; € A

o letpe{i i-},
G' := subgraph induced by aq, ..., a; and their neighbors,
BP := vertices in B that intersect the sweep-line at event p

e (Rooted) tree data structure TP:

Algorithm for STICKA

e Sweep-line along the ordered vertical sticks in A:
enter event (i) and exit event (i») for each a; € A

o letpe{i i-},
G' := subgraph induced by aq, ..., a; and their neighbors,
BP := vertices in B that intersect the sweep-line at event p
e (Rooted) tree data structure TP: -

— contains two types of nodes: leaves and non-leaves

Algorithm for STICKA

e Sweep-line along the ordered vertical sticks in A:
enter event (i) and exit event (i») for each a; € A

o letpe{i i-},
G' := subgraph induced by aq, ..., a; and their neighbors,
BP := vertices in B that intersect the sweep-line at event p
e (Rooted) tree data structure TP: -

— contains two types of nodes: leaves and non-leaves
— each leaf corresponds to a vertex in BP

Algorithm for STICKA

e Sweep-line along the ordered vertical sticks in A:
enter event (i) and exit event (i») for each a; € A

o letpe{i i-},
G' := subgraph induced by aq, ..., a; and their neighbors,
BP := vertices in B that intersect the sweep-line at event p

e (Rooted) tree data structure TP: -

— contains two types of nodes: leaves and non-leaves
— each leaf corresponds to a vertex in BP

— the order of leaves is free: the order of non-leaves is fixed

Algorithm for STICKA

e Sweep-line along the ordered vertical sticks in A:
enter event (i) and exit event (i») for each a; € A

o letpe{i i-},
G' := subgraph induced by aq, ..., a; and their neighbors,
BP := vertices in B that intersect the sweep-line at event p

e (Rooted) tree data structure TP: -
— contains two types of nodes: leaves and non-leaves
— each leaf corresponds to a vertex in BP

— the order of leaves is free: the order of non-leaves is fixed
— encodes all realizable permutations of BP

Algorithm for STICKA

e Sweep-line along the ordered vertical sticks in A:
enter event (i) and exit event (i») for each a; € A

o letpe{i i-},
G' := subgraph induced by aq, ..., a; and their neighbors,
BP := vertices in B that intersect the sweep-line at event p

e (Rooted) tree data structure TP: -

— contains two types of nodes: leaves and non-leaves
— each leaf corresponds to a vertex in BP

— the order of leaves is free: the order of non-leaves is fixed
— encodes all realizable permutations of BP

Algorithm for STICKA

e Sweep-line along the ordered vertical sticks in A:
enter event (i) and exit event (i») for each a; € A

o letpe{i i-},
G' := subgraph induced by aq, ..., a; and their neighbors,
BP := vertices in B that intersect the sweep-line at event p

e (Rooted) tree data structure TP: -

— contains two types of nodes: leaves and non-leaves
— each leaf corresponds to a vertex in BP

— the order of leaves is free: the order of non-leaves is fixed
— encodes all realizable permutations of BP

Example for STICKa

I =0 Event: Start

fixed order

a1 d? a3

G: g ? 7{ GO -

by by bz bs bs bg

free order

Example for STICKa

I =1 Event: 1 Bl = {bl, b, b4}
fixed order
ai an as d1
” ﬁ?? % 3 > ° m‘
b1 b, bz by bs bg b1 b by
free order
— | b
— b
Tl . = >
by 1
@ bH

Example for STICKa

I =1 Event: 1~ Bl = {bl, b, b4}
fixed order
ai an as d1
S AN
b1 b b3 by bs bg b1 b by
free order
by
—t— b
—— b
1- .
T \
b1
@ bH

Example for STICKa

| = 2 Event: 2 B? = {bl, b>, b3, by, b5}
fixed order
ai an as ai a2
Y R AN
b1 b, bz by bs bg by b, b3 by bs
free order
by
by
b
’TQ ; @ b,
ar . b3
by —| bs
b>
a2
b3

Example for STICKa

| = 2 Event: 2~

a1 d? a3

G: g ? 7(G2

by b> b3z by bs be

B2+ _ { b2,

di da»

by b bz by bs

ba, bs)}

a1

A

Example for STICKa

| =3 Event: 3

fixed order

a1 d? a3

G:ﬁ‘z?

by b> b3z by bs be

free order

B3 = {by, ba, bs, bg}

di

a2

G3 2??

by b> b3 bs bs bg

@ Ly

® b

@ L

a1

—+ bs

a2

Example for STICK,p

| =3 Event: 3-

fixed order

a1 d? a3

G:ﬁ‘??

by b> b3z by bs be

free order

T3+ :

by b> b3 by bs beg

by
b1
b,
al — 1 b3
bs
al 1 b6

Example for STICK,p

| =3 Event: End

fixed order

a1 d? a3

G:ﬁé?

by by bz bs bs bg

free order

Example for STICK,p

| =3 Event: End

fixed order

a1 d? a3

G:ﬁ‘z?

by b> b3z by bs be

free order

Runtime in O(|A| - |B|)

by
b1
b,
al — 1 b3
bs
al 1 b6

STICKY with isolated vertices 9
* STICK, STICK'™
? NP-complete
A O(|Al|B|) NP-complete
In general:
AB O(|E]) NP-complete
w/o isolated vtc.:
O((|Al +1BI)*)

Hardness of STICK‘CAbE3

e NP-hardness by reduction from MONOTONE-3-SAT

Hardness of STICK‘CAbE3

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:
false

Hardness of STICK‘CAbE3

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:
true

Hardness of STICK‘CAbE3

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:

Hardness of STICK‘CAbE3

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:

Hardness of STICK‘C'X

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:
false

(4
K “

Hardness of STICK‘C'X

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:
false

e Clause gadget: %o “

Hardness of STICK‘C'X

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:
false

e Clause gadget: %o “

Hardness of STICK‘C'X

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:
false

e Clause gadget: %o “

Hardness of STICK‘CAbE3

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:
false

e Clause gadget: %o “

Hardness of STICK‘CAbE3

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:

false
%
%
e Clause gadget: %o
— e
x1 = true § %a@g‘ |

Hardness of STICK‘C'X

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:

false
%
%
e Clause gadget: %o
TR “ |
=t || %/“@f |

Xo = true '

Hardness of STICK‘CAbE3

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:
false

e Clause gadget: %o “

Hardness of STICK‘CAbE3

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:
false

e Clause gadget: %o “

Hardness of STICK‘CAbE3

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:
false

e Clause gadget: %o “

Hardness of STICK‘CAbE3

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:
false

e Clause gadget: %o “

Hardness of STICK‘CAbE3

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:

false
4
%
e Clause gadget: %o
TR P
x1 = true § | %a@g‘ H—
)

Hardness of STICK‘CAbE3

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:
false

%
%
e Clause gadget: %o
—_— 1|
‘ X1 = true § %382‘ ||
&
Xy = false;

Hardness of STICK‘CAbE3

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:
false

%
%
e Clause gadget: %o
—_— 1|
‘ X1 = true § %382‘ ||
&
Xy = false;

Hardness of STICK‘CAbE3

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:
false

e Clause gadget: %o “

Hardness of STICK‘CAbE3

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:
false

e Clause gadget: %o “

Hardness of STICK‘C'X

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:
false

%
%

o Clause gadget: ({9@
6o “

X1 = false; H @

Xy = false; ||

X3 = true §
empty

Hardness of STICK‘CAbE3

e NP-hardness by reduction from MONOTONE-3-SAT

e Variable gadget:
false

e Clause gadget: %o “

Example

MONOTONE-3-SAT formula:
(X1 V Xo V X3)/\

(X2 \V4 X3 \V4 X4)/\

(—IX1 V —xo V _IX4)

MONOTONE-3-SAT formula:
(Xl V Xo V X3)/\
(X2 \V4 X3 \V4 X4)/\
(—IX1 V —xo V _IX4)

X4

X3

—|X2

ula:
NE-3-SAT form

O

NOT

MO

/\
(_IX1 —1X? —1XY

X1

MONOTONE-3-SAT formula:
(Xl V Xo V X3)/\

(X2 \V4 X3 \V4 X4)/\

(—IX1 V —xo V _IX4)

MONOTONE-3-SAT formula:
(X1 V Xo V X3)/\

(X2 \V4 X3 \V4 X4)/\

(—IX1 V —xo V _IX4)

MONOTONE-3-SAT formula:
(Xl V Xo V X3)/\

(X2 \V4 X3 \V4 X4)/\

(—IX1 V —xo V _IX4)

MONOTONE-3-SAT formula:
(Xl V Xo V X3)/\

(X2 \V4 X3 \V4 X4)/\

(—IX1 V —xo V _IX4)

MONOTONE-3-SAT formula:
(Xl V Xo V X3)/\

(X2 \V4 X3 \V4 X4)/\

(—IX1 V —xo V _IX4)

MONOTONE-3-SAT formula:
(Xl V Xo V X3)/\

(X2 \V4 X3 \V4 X4)/\

(—IX1 V —xo V _IX4)

STICKY without isolated vertices 12

* STICK, STICK'
? NP-complete
A O(|Al|B|) NP-complete

in general:

NP-complete

w /o isolated vtc.:

O((IA] + |Bl)?)

AB O(|E|)

Uniqueness Lemma

Lemma:

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICKag,
the order of vertices on the ground line is the same
after removing all isolated vertices. This order can be

found in time O(|E|).

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICKag,
the order of vertices on the ground line is the same
after removing all isolated vertices. This order can be

found in time O(|E|).
Proof (Sketch):

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICKag,
the order of vertices on the ground line is the same
after removing all isolated vertices. This order can be

found in time O(|E|).

Proof (Sketch):
e Assume: stick representations /1, [have different order

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICKag,
the order of vertices on the ground line is the same
after removing all isolated vertices. This order can be

found in time O(|E|).

Proof (Sketch):
e Assume: stick representations /1, [have different order

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICKag,
the order of vertices on the ground line is the same
after removing all isolated vertices. This order can be

found in time O(|E|).

Proof (Sketch):
e Assume: stick representations /1, [have different order

e Wlog.a<binl{and b<ain /[,

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICKag,
the order of vertices on the ground line is the same
after removing all isolated vertices. This order can be

found in time O(|E|).

Proof (Sketch):
e Assume: stick representations /1, [have different order

e Wlog.a<binliandb<ainl, = abé¢E

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICKag,
the order of vertices on the ground line is the same
after removing all isolated vertices. This order can be

found in time O(|E|).

Proof (Sketch):
e Assume: stick representations /1, [have different order

e Wlog.a<binliandb<ainl, = abé¢E

o

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICKag,
the order of vertices on the ground line is the same
after removing all isolated vertices. This order can be

found in time O(|E|).

Proof (Sketch):
e Assume: stick representations /1, [have different order

e Wlog.a<binliandb<ainl, = abé¢E

e b isadjacenttoa= b < b

o

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICKag,
the order of vertices on the ground line is the same
after removing all isolated vertices. This order can be

found in time O(|E|).

Proof (Sketch):
e Assume: stick representations /1, [have different order

e Wlog.a<binliandb<ainl, = abé¢E

e b isadjacenttoa= b < b

‘a
b/
— b

1 [

o

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICKag,
the order of vertices on the ground line is the same
after removing all isolated vertices. This order can be

found in time O(|E|).

Proof (Sketch):
e Assume: stick representations /1, [have different order

e Wlog.a<binliandb<ainl, = abé¢E

e b isadjacenttoa= b < b

a b/
‘ b
— b

1 [

o

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICKag,
the order of vertices on the ground line is the same
after removing all isolated vertices. This order can be

found in time O(|E|).

Proof (Sketch):
e Assume: stick representations /1, [have different order

e Wlog.a<binliandb<ainl, = abé¢E

e b isadjacenttoa= b < b
e 2’ isadjacentto b= a< a a

a b/
‘ b
— b

1 [

o

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICKag,
the order of vertices on the ground line is the same
after removing all isolated vertices. This order can be

found in time O(|E|).

Proof (Sketch):
e Assume: stick representations /1, [have different order

e Wlog.a<binliandb<ainl, = abé¢E

e b isadjacenttoa= b < b
e 2’ isadjacentto b= a< a a

a b/
‘ b
—— b

1 [

o

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICKag,
the order of vertices on the ground line is the same
after removing all isolated vertices. This order can be

found in time O(|E|).

Proof (Sketch):
e Assume: stick representations /1, [have different order

e Wlog.a<binliandb<ainl, = abé¢E

e b isadjacenttoa= b < b
e 2’ isadjacentto b= a< a a

a b/
‘ b
—— b

1 [

o

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICKag,
the order of vertices on the ground line is the same
after removing all isolated vertices. This order can be

found in time O(|E|).

Proof (Sketch):
e Assume: stick representations /1, [have different order

e Wlog.a<binliandb<ainl, = abé¢E

e b isadjacenttoa= b < b
e 2’ isadjacentto b= a< a a

d b/
4— b’ _bahl. é
—— b

1 [

fix

Linear Program for STICKYG

e No isolated vertices = Compute ordering v;

fix

Linear Program for STICKYG

e No isolated vertices = Compute ordering vq, ...,

e Variable x; for the x-coordinate of v;'s footpoint

fix

Linear Program for STICKYG

e No isolated vertices = Compute ordering vy, ..., v,
e Variable x; for the x-coordinate of v;'s footpoint

e Constraints: x; < --- < X,

Linear Program for STICKI!

e No isolated vertices = Compute ordering vy, ..., v,
e Variable x; for the x-coordinate of v;'s footpoint
e Constraints: x; < --- < X,

e For each vertex 2 more constraints incorporating the
predefined stick-lengths:
— for intersecting its last neighbor
— for not intersecting its first non-neighbor

Linear Program for STICKI!

No isolated vertices = Compute ordering vy, ..., v,
Variable x; for the x-coordinate of v;'s footpoint
Constraints: x3 < -+ < X,

For each vertex 2 more constraints incorporating the
predefined stick-lengths:

— for intersecting its last neighbor

— for not intersecting its first non-neighbor

Is a system of difference constraints = can be modeled as
a shortest-path problem in a directed weighted graph

Linear Program for STICKI!

No isolated vertices = Compute ordering vy, ..., v,
Variable x; for the x-coordinate of v;'s footpoint
Constraints: x3 < -+ < X,

For each vertex 2 more constraints incorporating the
predefined stick-lengths:

— for intersecting its last neighbor

— for not intersecting its first non-neighbor

Is a system of difference constraints = can be modeled as
a shortest-path problem in a directed weighted graph

= Solvable in O((|A| + |B])?) time with Bellman—Ford

Linear Program for STICKI!

No isolated vertices = Compute ordering vy, ..., v,
Variable x; for the x-coordinate of v;'s footpoint
Constraints: x3 < -+ < X,

For each vertex 2 more constraints incorporating the
predefined stick-lengths:

— for intersecting its last neighbor

— for not intersecting its first non-neighbor

Is a system of difference constraints = can be modeled as
a shortest-path problem in a directed weighted graph

= Solvable in O((|A| + |B])?) time with Bellman—Ford

= Isolated vertices make STICK}%, NP-hard

Summary

* STICK, STICKix
still open NP-complete
A O(|A||B]) NP-complete
in general:
AB O(|E]) NP-complete
w /o isolated vtc.:
O((IA] + 1Bl)?)

Summary

* STICK, STICKix
still open NP-complete
A O(|A||B]) NP-complete
in general:
AB O(|E]) NP-complete
w /o isolated vtc.:
O((IA] + 1Bl)?)

Summary

* STICK, STICKix
still open NP-complete
A O(|A||B]) NP-complete
in general:
AB O(|E]) NP-complete
w /o isolated vtc.:
O((IA] + 1Bl)?)

