

Stick Graphs with Length Constraints

Steven Chaplick, Philipp Kindermann, Andre Löffler, Florian Thiele, Alexander Wolff, Alexander Zaft, and **Johannes Zink**

ullet Given a collection ${\cal S}$ of geometric objects

- ullet Given a collection ${\mathcal S}$ of geometric objects
- ullet The intersection graph G of ${\mathcal S}$ has
 - -S as its vertex set
 - an edge for each two elements of \mathcal{S} that intersect or touch each other.

- ullet Given a collection ${\mathcal S}$ of geometric objects
- ullet The intersection graph G of ${\mathcal S}$ has
 - -S as its vertex set
 - an edge for each two elements of \mathcal{S} that intersect or touch each other.
- \bullet S: line segments

1

ullet Given a collection ${\mathcal S}$ of geometric objects

- ullet The intersection graph G of ${\mathcal S}$ has
 - -S as its vertex set
 - an edge for each two elements of \mathcal{S} that intersect or touch each other.
- S: line segments \Rightarrow G: segment graph

ullet Given a collection ${\mathcal S}$ of geometric objects

ullet The intersection graph G of ${\mathcal S}$ has

- -S as its vertex set
- an edge for each two elements of \mathcal{S} that intersect or touch each other.
- S: line segments \Rightarrow G: segment graph
- S: horizontal & vertical segments

ullet Given a collection ${\mathcal S}$ of geometric objects

ullet The intersection graph G of ${\mathcal S}$ has

-S as its vertex set

- an edge for each two elements of \mathcal{S} that intersect or touch each other.

• S: line segments \Rightarrow G: segment graph

• S: horizontal & vertical segments

 \Rightarrow G: grid intersection graph

segment graphs grid intersec. graphs

ullet Given a collection ${\mathcal S}$ of geometric objects

ullet The intersection graph G of ${\mathcal S}$ has

- -S as its vertex set
- an edge for each two elements of \mathcal{S} that intersect or touch each other.
- S: line segments \Rightarrow G: segment graph
- S: horizontal & vertical segments
 - \Rightarrow G: grid intersection graph
- ullet ${\cal S}$: horizontal & vertical segments grounded on a line of slope -1

ullet Given a collection ${\mathcal S}$ of geometric objects

- ullet The intersection graph G of ${\mathcal S}$ has
 - -S as its vertex set
 - an edge for each two elements of \mathcal{S} that intersect or touch each other.
- S: line segments \Rightarrow G: segment graph
- S: horizontal & vertical segments
 - \Rightarrow G: grid intersection graph
- \mathcal{S} : horizontal & vertical segments grounded on a line of slope $-1 \Rightarrow G$: stick graph

segment graphs
grid intersec. graphs
stick graphs

ullet Given a collection ${\mathcal S}$ of geometric objects

ullet The intersection graph G of ${\mathcal S}$ has

- -S as its vertex set
- an edge for each two elements of \mathcal{S} that intersect or touch each other.
- S: line segments \Rightarrow G: segment graph
- S: horizontal & vertical segments
 - \Rightarrow G: grid intersection graph
- \mathcal{S} : horizontal & vertical segments grounded on a line of slope $-1 \Rightarrow G$: stick graph
- S: horizontal & vertical segments grounded on two parallel lines

segment graphs
grid intersec. graphs
stick graphs

- ullet Given a collection ${\mathcal S}$ of geometric objects
- ullet The intersection graph G of ${\mathcal S}$ has
 - -S as its vertex set
 - an edge for each two elements of \mathcal{S} that intersect or touch each other.
- S: line segments \Rightarrow G: segment graph
- S: horizontal & vertical segments
 - \Rightarrow G: grid intersection graph
- \mathcal{S} : horizontal & vertical segments grounded on a line of slope $-1 \Rightarrow G$: stick graph
- S: horizontal & vertical segments grounded on two parallel lines $\Rightarrow G$: bipartite permutation graph

segment graphs
grid intersec. graphs
stick graphs
bip.
permu.
graphs

Recognition problem:

Decide whether a given graph is an intersection graph.

Recognition problem:

Decide whether a given graph is an intersection graph.

How hard for each class?

Recognition problem:

Decide whether a given graph is an intersection graph.

How hard for each class?

segment graphs: $\exists \mathbb{R}$ -complete

[Kratochvíl, Matoušek '94; Matoušek '14]

segment graphs
grid intersec. graphs
stick graphs
bip.
permu.
graphs

Recognition problem:

Decide whether a given graph is an intersection graph.

How hard for each class? segment graphs: $\exists \mathbb{R}$ -complete

[Kratochvíl, Matoušek '94; Matoušek '14]

grid intersection graphs: NP-complete

[Kratochvíl '94]

segment graphs
grid intersec. graphs
stick graphs
bip.
permu.
graphs

Recognition problem:

Decide whether a given graph is an intersection graph.

How hard for each class? segment graphs: $\exists \mathbb{R}$ -complete [Kratochvíl, Matoušek '94; Matoušek '14] grid intersection graphs: NP-complete segment graphs [Kratochvíl '94] grid intersec. graphs stick graphs bip. permu. (bipart.) permutation graphs: linear time graphs [Spinrad et al. '87; Kratsch et al. '06]

Recognition problem:

Decide whether a given graph is an intersection graph.

Recognition problem:

Decide whether a given graph is an intersection graph.

```
How hard for each class?
segment graphs: \exists \mathbb{R}-complete
[Kratochvíl, Matoušek '94; Matoušek '14]
grid intersection graphs: NP-complete
                                             segment graphs
[Kratochvíl '94]
                                           grid intersec. graphs
stick graphs: ???
                                               stick graphs
   remains open...
                                                   bip.
                                                 permu.
(bipart.) permutation graphs: linear time
                                                  graphs
[Spinrad et al. '87; Kratsch et al. '06]
```

Given a bipartite Graph $G = (A \dot{\cup} B, E)$, does G admit a stick representation . . .

Given a bipartite Graph $G = (A \dot{\cup} B, E)$, does G admit a stick representation . . .

• **STICK**:?

Given a bipartite Graph $G = (A \dot{\cup} B, E)$, does G admit a stick representation . . .

• STICK: ...?

Given a bipartite Graph $G = (A \dot{\cup} B, E)$, does G admit a stick representation ...

• STICK: ...?

• STICK_A:

... if a permutation of the vertices in A is given?

Given a bipartite Graph $G = (A \dot{\cup} B, E)$, does G admit a stick representation . . .

• STICK: ...?

• STICK_A:

... if a permutation of the vertices in A is given?

Given a bipartite Graph $G = (A \dot{\cup} B, E)$, does G admit a stick representation . . .

• STICK: ...?

• STICK_A:

... if a permutation of the vertices in A is given?

• STICKAB:

... if a permutation of the vertices in A and a permutation of the vertices in B is given?

Given a bipartite Graph $G = (A \dot{\cup} B, E)$, does G admit a stick representation . . .

• **STICK**: ...?

• STICK_A:

 \dots if a permutation of the vertices in A is given?

• STICK_{AB}:

Given a bipartite Graph $G = (A \dot{\cup} B, E)$, does G admit a stick representation . . .

• STICK: ...?

• STICK_A:

... if a permutation of the vertices in A is given?

• STICKAB:

... if a permutation of the vertices in A and a permutation of the vertices in B is given?

• STICK₊fix:

... if a stick length for each vertex (and possibly permutations of A, or A and B) is given?

Given a bipartite Graph $G = (A \dot{\cup} B, E)$, does G admit a stick representation . . .

• **STICK:** ...?

• STICK_A:

 \dots if a permutation of the vertices in A is given?

• STICK_{AB}:

... if a permutation of the vertices in A and a permutation of the vertices in B is given?

• STICK₊fix:

... if a stick length for each vertex (and possibly permutations of A, or A and B) is given?

Given a bipartite Graph $G = (A \dot{\cup} B, E)$, does G admit a stick representation ...

• **STICK**: ...?

STICK_△:

... if a permutation of the vertices in A is given?

• STICKAB:

 \dots if a permutation of the vertices in A and a permutation of the vertices in B is given?

• STICK^{fix}:

...if a stick length for each vertex (and possibly permutations of A, or A and B) is given?

Given a bipartite Graph $G = (A \dot{\cup} B, E)$, does G admit a stick representation . . .

• **STICK:**?

##

• STICK_A:

 \dots if a permutation of the vertices in A is given?

• STICKAB:

... if a permutation of the vertices in A and a permutation of the vertices in B is given?

• STICK_{*}fix:

... if a stick length for each vertex (and possibly permutations of A, or A and B) is given?

First investigated by De Luca et al. [GD'18]

for a bipartite graph $G = (A \cup B, E)$

*	STICK _*	STICK _*
A		
AB		

for a bipartite graph $G = (A \cup B, E)$

*	STICK _*	STICK _*		
	?	?		
A	$\mathbf{?}^1$?		
AB	O(A B) [De Luca et al. GD'18]	?		

¹an $O(|A|^3|B|^3)$ time algorithm proposed by De Luca et al. turned out to be wrong

for a bipartite graph $G = (A \cup B, E)$

*	STICK _*	STICK _*		
	?	?		
A	$\mathbf{?}^1$?		
AB	O(A B) [De Luca et al. GD'18]	?		

¹an $O(|A|^3|B|^3)$ time algorithm proposed by De Luca et al. turned out to be wrong

for a bipartite graph $G = (A \cup B, E)$

*	STICK _*		STICK _*	
	?		?	
A	? ¹	O(A B)	?	
AB	O(A B) [De Luca et al. GD'18]		?	

¹an $O(|A|^3|B|^3)$ time algorithm proposed by De Luca et al. turned out to be wrong

for a bipartite graph $G = (A \cup B, E)$

*	STICK _*		STICK _*	
		?	?	
A	? ¹	O(A B)	?	
AB	O(A [De Luca et	B) $O(E)$ al. GD'18]	?	

¹an $O(|A|^3|B|^3)$ time algorithm proposed by De Luca et al. turned out to be wrong

for a bipartite graph $G = (A \cup B, E)$

*	STICK _*		STICK _*	
		?	?	NP-complete
A	? ¹	O(A B)	?	
AB	O(A [De Luca e	B) $O(E)$ t al. GD'18]	?	

¹an $O(|A|^3|B|^3)$ time algorithm proposed by De Luca et al. turned out to be wrong

for a bipartite graph $G = (A \cup B, E)$

*	5	STICK _*		STICK _*
		?	?	NP-complete
A	? ¹	O(A B)	?	NP-complete
AB	O(A [De Luca e	B) $O(E)$ t al. GD'18]	?	

¹an $O(|A|^3|B|^3)$ time algorithm proposed by De Luca et al. turned out to be wrong

for a bipartite graph $G = (A \cup B, E)$

*	STICK _*			STICK _*
		?	?	NP-complete
A	? ¹	O(A B)	?	NP-complete
AB	O(A [De Luca et	B) $O(E)$ al. GD'18]	?	in general: NP-complete

¹an $O(|A|^3|B|^3)$ time algorithm proposed by De Luca et al. turned out to be wrong

for a bipartite graph $G = (A \cup B, E)$

*	STICK _*				STICK _*
		?		?	NP-complete
A	? ¹	0	(A B)	?	NP-complete
AB	O(A [De Luca e	B) t al. GD':	O(E)	?	in general: NP-complete w/o isolated vtc.: $O((A + B)^2)$

¹an $O(|A|^3|B|^3)$ time algorithm proposed by De Luca et al. turned out to be wrong

for a bipartite graph $G = (A \cup B, E)$

*	STICK _*		STICK _*
	next?	?	NP-complete
A	?1 $O(A B)$?	NP-complete
AB	O(A B) $O(E)$ [De Luca et al. GD'18]	?	in general: NP-complete w/o isolated vtc.: $O((A + B)^2)$

¹an $O(|A|^3|B|^3)$ time algorithm proposed by De Luca et al. turned out to be wrong

for a bipartite graph $G = (A \cup B, E)$

our results

*	STICK _*		STICK _*	
	next?	?	NP-complete	
A	?1 $O(A B)$?	NP-complete	
AB	O(A B) $O(E)$ [De Luca et al. GD'18]	?	in general: NP-complete w/o isolated vtc.:	
afterwards $O((A + B)^2)$				

¹an $O(|A|^3|B|^3)$ time algorithm proposed by De Luca et al. turned out to be wrong

*	STICK _*	STICK _*
	?	NP-complete
A	O(A B)	NP-complete
AB	O(E)	in general: NP-complete w/o isolated vtc.: $O((A + B)^2)$

Sweep-line along the ordered vertical sticks in A:
 enter event (i) and exit event (i→) for each a_i ∈ A

- Sweep-line along the ordered vertical sticks in A:
 enter event (i) and exit event (i→) for each a_i ∈ A
- Let $p \in \{i, i \rightarrow \}$, $G^i := \text{subgraph induced by } a_1, \dots, a_i \text{ and their neighbors,}$ $B^p := \text{vertices in } B \text{ that intersect the sweep-line at event } p$

- Sweep-line along the ordered vertical sticks in A:
 enter event (i) and exit event (i→) for each a_i ∈ A
- Let $p \in \{i, i \to \}$, $G^i := \text{subgraph induced by } a_1, \ldots, a_i \text{ and their neighbors,}$ $B^p := \text{vertices in } B \text{ that intersect the sweep-line at event } p$
- (Rooted) tree data structure \mathcal{T}^p :

- Sweep-line along the ordered vertical sticks in A:
 enter event (i) and exit event (i→) for each a_i ∈ A
- Let $p \in \{i, i \to \}$, $G^i := \text{subgraph induced by } a_1, \dots, a_i \text{ and their neighbors,}$ $B^p := \text{vertices in } B \text{ that intersect the sweep-line at event } p$
- (Rooted) tree data structure \mathcal{T}^p :
 - contains two types of nodes: leaves and non-leaves

- Sweep-line along the ordered vertical sticks in A:
 enter event (i) and exit event (i→) for each a_i ∈ A
- Let $p \in \{i, i \to \}$, $G^i := \text{subgraph induced by } a_1, \dots, a_i \text{ and their neighbors,}$ $B^p := \text{vertices in } B \text{ that intersect the sweep-line at event } p$
- (Rooted) tree data structure \mathcal{T}^p :
 - contains two types of nodes: leaves and non-leaves
 - each leaf corresponds to a vertex in B^p

- Sweep-line along the ordered vertical sticks in A:
 enter event (i) and exit event (i→) for each a_i ∈ A
- Let $p \in \{i, i \to \}$, $G^i := \text{subgraph induced by } a_1, \dots, a_i \text{ and their neighbors,}$ $B^p := \text{vertices in } B \text{ that intersect the sweep-line at event } p$
- (Rooted) tree data structure \mathcal{T}^p :
 - contains two types of nodes: leaves and non-leaves
 - each leaf corresponds to a vertex in B^p
 - the order of leaves is free; the order of non-leaves is fixed

- Sweep-line along the ordered vertical sticks in A:
 enter event (i) and exit event (i→) for each a_i ∈ A
- Let $p \in \{i, i \to \}$, $G^i := \text{subgraph induced by } a_1, \dots, a_i \text{ and their neighbors,}$ $B^p := \text{vertices in } B \text{ that intersect the sweep-line at event } p$
- (Rooted) tree data structure \mathcal{T}^p :
 - contains two types of nodes: leaves and non-leaves
 - each leaf corresponds to a vertex in B^p
 - the order of leaves is free; the order of non-leaves is fixed
 - encodes all realizable permutations of B^p

- Sweep-line along the ordered vertical sticks in A:
 enter event (i) and exit event (i→) for each a_i ∈ A
- Let $p \in \{i, i \to \}$, $G^i := \text{subgraph induced by } a_1, \dots, a_i \text{ and their neighbors,}$ $B^p := \text{vertices in } B \text{ that intersect the sweep-line at event } p$
- (Rooted) tree data structure \mathcal{T}^p :
 - contains two types of nodes: leaves and non-leaves
 - each leaf corresponds to a vertex in B^p
 - the order of leaves is free; the order of non-leaves is fixed
 - encodes all realizable permutations of B^p

- Sweep-line along the ordered vertical sticks in A:
 enter event (i) and exit event (i→) for each a_i ∈ A
- Let $p \in \{i, i \to \}$, $G^i := \text{subgraph induced by } a_1, \dots, a_i \text{ and their neighbors,}$ $B^p := \text{vertices in } B \text{ that intersect the sweep-line at event } p$
- (Rooted) tree data structure \mathcal{T}^p :
 - contains two types of nodes: leaves and non-leaves
 - each leaf corresponds to a vertex in B^p
 - the order of leaves is free; the order of non-leaves is fixed
 - encodes all realizable permutations of B^p

$$B^0 = \emptyset$$

 G^0

$$B^1 = \{b_1, b_2, b_4\}$$

$$\mathcal{T}^{1 o}$$
:
 b_1
 b_2
 b_4

$$B^{1\rightarrow} = \{b_1, b_2, b_4\}$$

$$\mathcal{T}^2$$
:
$$b_4$$

$$b_1$$

$$b_2$$

$$b_3$$

$$b_5$$

$$B^2 = \{b_1, b_2, b_3, b_4, b_5\}$$

$$B^{2\rightarrow} = \{b_1, b_2, b_3, b_4, b_5\}$$

 G^2 :

Runtime in $O(|A| \cdot |B|)$

STICK^{fix}_{AB} with isolated vertices

*	STICK _*	STICK _*
	?	NP-complete
A	O(A B)	NP-complete
AB	O(E)	in general: NP-complete w/o isolated vtc.: $O((A + B)^2)$

NP-hardness by reduction from MONOTONE-3-SAT

• Variable gadget:

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:

NP-hardness by reduction from MONOTONE-3-SAT

• Variable gadget:

$$(x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor \neg x_4)$$

$$(x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor \neg x_4)$$

$$(x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor \neg x_4)$$

$$(x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor \neg x_4)$$

$$(x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor \neg x_4)$$

$$(x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor \neg x_4)$$

$$(x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor \neg x_4)$$

$$(x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor \neg x_4)$$

STICK_{AB} without isolated vertices

*	STICK _*	STICK _*
	?	NP-complete
A	O(A B)	NP-complete
AB	O(E)	in general: NP-complete w/o isolated vtc.: $O((A + B)^2)$

Lemma:

Lemma: In all stick representations of an instance of STICK_{AB}, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time O(|E|).

Lemma: In all stick representations of an instance of STICK_{AB}, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time O(|E|).

Lemma: In all stick representations of an instance of STICK_{AB}, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time O(|E|).

Proof (Sketch):

• Assume: stick representations Γ_1 , Γ_2 have different order

Lemma: In all stick representations of an instance of STICK_{AB}, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time O(|E|).

Proof (Sketch):

• Assume: stick representations Γ_1 , Γ_2 have different order

Lemma: In all stick representations of an instance of STICK_{AB}, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time O(|E|).

- Assume: stick representations Γ_1 , Γ_2 have different order
- W.I.o.g. a < b in Γ_1 and b < a in Γ_2

Lemma: In all stick representations of an instance of STICK_{AB}, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time O(|E|).

- Assume: stick representations Γ_1 , Γ_2 have different order
- W.I.o.g. a < b in Γ_1 and b < a in $\Gamma_2 \implies ab \notin E$

Lemma: In all stick representations of an instance of STICK_{AB}, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time O(|E|).

- Assume: stick representations Γ_1 , Γ_2 have different order
- W.I.o.g. a < b in Γ_1 and b < a in $\Gamma_2 \implies ab \notin E$

Lemma: In all stick representations of an instance of STICK_{AB}, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time O(|E|).

- Assume: stick representations Γ_1 , Γ_2 have different order
- W.I.o.g. a < b in Γ_1 and b < a in $\Gamma_2 \implies ab \notin E$
- b' is adjacent to $a \Rightarrow b' < b$

Lemma: In all stick representations of an instance of STICK_{AB}, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time O(|E|).

- Assume: stick representations Γ_1 , Γ_2 have different order
- W.I.o.g. a < b in Γ_1 and b < a in Γ_2 $\Rightarrow ab \notin E$
- b' is adjacent to $a \Rightarrow b' < b$

Lemma: In all stick representations of an instance of STICK_{AB}, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time O(|E|).

- Assume: stick representations Γ_1 , Γ_2 have different order
- W.I.o.g. a < b in Γ_1 and b < a in Γ_2 $\Rightarrow ab \notin E$
- b' is adjacent to $a \Rightarrow b' < b$

Lemma: In all stick representations of an instance of STICK_{AB}, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time O(|E|).

- Assume: stick representations Γ_1 , Γ_2 have different order
- W.I.o.g. a < b in Γ_1 and b < a in $\Gamma_2 \implies ab \notin E$
- b' is adjacent to $a \Rightarrow b' < b$
- a' is adjacent to $b \Rightarrow a < a'$

Lemma: In all stick representations of an instance of STICK_{AB}, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time O(|E|).

- Assume: stick representations Γ_1 , Γ_2 have different order
- W.I.o.g. a < b in Γ_1 and b < a in $\Gamma_2 \implies ab \notin E$
- b' is adjacent to $a \Rightarrow b' < b$
- a' is adjacent to $b \Rightarrow a < a'$

Lemma: In all stick representations of an instance of STICK_{AB}, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time O(|E|).

- Assume: stick representations Γ_1 , Γ_2 have different order
- W.I.o.g. a < b in Γ_1 and b < a in $\Gamma_2 \implies ab \notin E$
- b' is adjacent to $a \Rightarrow b' < b$
- a' is adjacent to $b \Rightarrow a < a'$

Lemma: In all stick representations of an instance of STICK_{AB}, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time O(|E|).

- Assume: stick representations Γ_1 , Γ_2 have different order
- W.I.o.g. a < b in Γ_1 and b < a in Γ_2 $\Rightarrow ab \notin E$
- b' is adjacent to $a \Rightarrow b' < b$
- a' is adjacent to $b \Rightarrow a < a'$

• No isolated vertices \Rightarrow Compute ordering v_1, \ldots, v_n

- No isolated vertices \Rightarrow Compute ordering v_1, \ldots, v_n
- Variable x_i for the x-coordinate of v_i 's footpoint

- No isolated vertices \Rightarrow Compute ordering v_1, \ldots, v_n
- Variable x_i for the x-coordinate of v_i 's footpoint
- Constraints: $x_1 < \cdots < x_n$

- No isolated vertices \Rightarrow Compute ordering v_1, \ldots, v_n
- Variable x_i for the x-coordinate of v_i 's footpoint
- Constraints: $x_1 < \cdots < x_n$
- For each vertex 2 more constraints incorporating the predefined stick-lengths:
 - for intersecting its last neighbor
 - for not intersecting its first non-neighbor

- No isolated vertices \Rightarrow Compute ordering v_1, \ldots, v_n
- Variable x_i for the x-coordinate of v_i 's footpoint
- Constraints: $x_1 < \cdots < x_n$
- For each vertex 2 more constraints incorporating the predefined stick-lengths:
 - for intersecting its last neighbor
 - for not intersecting its first non-neighbor
- Is a system of difference constraints ⇒ can be modeled as a shortest-path problem in a directed weighted graph

- No isolated vertices \Rightarrow Compute ordering v_1, \ldots, v_n
- Variable x_i for the x-coordinate of v_i 's footpoint
- Constraints: $x_1 < \cdots < x_n$
- For each vertex 2 more constraints incorporating the predefined stick-lengths:
 - for intersecting its last neighbor
 - for not intersecting its first non-neighbor
- Is a system of difference constraints ⇒ can be modeled as a shortest-path problem in a directed weighted graph
 - \Rightarrow Solvable in $O((|A| + |B|)^2)$ time with Bellman–Ford

- No isolated vertices \Rightarrow Compute ordering v_1, \ldots, v_n
- Variable x_i for the x-coordinate of v_i 's footpoint
- Constraints: $x_1 < \cdots < x_n$
- For each vertex 2 more constraints incorporating the predefined stick-lengths:
 - for intersecting its last neighbor
 - for not intersecting its first non-neighbor
- Is a system of difference constraints ⇒ can be modeled as a shortest-path problem in a directed weighted graph
 - \Rightarrow Solvable in $O((|A| + |B|)^2)$ time with Bellman–Ford
- ⇒ Isolated vertices make STICK^{fix}_{AB} NP-hard

Summary

*	STICK _*	STICK _*
	still open	NP-complete
A	O(A B)	NP-complete
AB	O(A B) $O(E)$ [De Luca et al. GD'18]	in general: NP-complete w/o isolated vtc.: $O((A + B)^2)$

Summary

*	STICK _*	STICK _*
	still open	NP-complete (by reduction from 3-PARTITION)
A	O(A B)	NP-complete
AB	O(A B) $O(E)$ [De Luca et al. GD'18]	in general: NP-complete w/o isolated vtc.: $O((A + B)^2)$

Summary

*	STICK _*	STICK _*
	still open	NP-complete (by reduction from 3-PARTITION)
A	O(A B)	NP-complete (by reduction from MONO-3-SAT)
AB	O(A B) $O(E)$ [De Luca et al. GD'18]	in general: NP-complete w/o isolated vtc.: $O((A + B)^2)$