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Given a collection § of geometric objects

The intersection graph G of S has
— § as its vertex set
— an edge for each two elements of S

that intersect or touch each other.
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S: horizontal & vertical segments

= G: grid intersection graph

S: horizontal & vertical segments grounded
on a line of slope —1 = G: stick graph

S: horizontal & vertical segments grounded on
two parallel lines =- G: bipartite permutation graph
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our results
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next
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[De Luca et al. GD'18]
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| =3 Event: 3

fixed order

a1 d? a3

G:ﬁ‘z?

by b> b3z by bs be

free order

B3 = {by, ba, bs, bg}

di

a2

G3 2??

by b> b3 bs bs bg

@ Ly

® b

@ L

a1

—+ bs
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Example for STICK,p

| =3 Event: End

fixed order

a1 d? a3

G:ﬁ‘z?

by b> b3z by bs be

free order

Runtime in O(|A| - |B|)

by
b1
b,
al — 1 b3
bs
al 1 b6
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