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grid intersection graphs: NP-complete
[Kratochv́ıl ’94]

3



Computational Complexity

segment graphs

bip.
permu.
graphs

stick graphs

grid intersec. graphs

Recognition problem:
Decide whether a given graph is an intersection graph.

How hard for each class?
segment graphs: ∃R-complete
[Kratochv́ıl, Matoušek ’94; Matoušek ’14]
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STICKfix
AB without isolated vertices

O(|A||B |)

O(|E |)

NP-complete

NP-complete

NP-complete

O((|A|+ |B |)2)

in general:

w/o isolated vtc.:

STICKfix
?STICK??

A

AB

?
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