Computing Large Matchings Fast

Ignaz Rutter

Karlsruhe University

Alexander Wolff

TU Eindhoven

Overview

(9) Introduction

- Definitions and known results
- Warm-up: simple algorithms for maxdeg-k graphs
(2) Graphs with maxdeg 3
- 3-regular graphs
- Graphs with maxdeg 3
(3) The missing algorithm and maximum matchings
- 3-connected planar graphs
- Graphs with bounded-degree block trees

Overview

(9) Introduction

- Definitions and known results
- Warm-up: simple algorithms for maxdeg-k graphs
(2) Graphs with maxdeg 3
- 3-regular graphs
- Graphs with maxdeg 3
(3) The missing algorithm and maximum matchings
- 3-connected planar graphs
- Graphs with bounded-degree block trees

Matching

Given an undirected graph $G=(V, E) \ldots$

Matching

Given an undirected graph $G=(V, E)$...
...a matching is a set M of independent edges.

Matching

A free vertex is a vertex that is not incident to an edge of M.

Matching

An augmenting path is a path that alternates between matching and non-matching edges, and starts and ends at different free vertices.

Matching

An augmenting path is a path that alternates between matching and non-matching edges, and starts and ends at different free vertices.

Matching

A maximum matching is a matching of maximum cardinality.

Matching

Theorem (Berge)

A matching is maximum \Leftrightarrow there is no augmenting path.

Known results

Let $G=(V, E)$ and $n=|V|, m=|E|$.

- Maximum matchings take $O(\sqrt{n} \cdot m)$ time.
- If $m=\Theta(n): O\left(n^{1.5}\right)$ running time, e.g., graphs with constant maxdeg or planar graphs.

Known results

Let $G=(V, E)$ and $n=|V|, m=|E|$.

- Maximum matchings take $O(\sqrt{n} \cdot m)$ time.
- If $m=\Theta(n): O\left(n^{1.5}\right)$ running time,
e.g., graphs with constant maxdeg or planar graphs.
- Algorithms based on fast matrix multiplication: dense graphs: $\quad O\left(n^{2.38}\right)$ time [Mucha, Sankowski '04] graphs of bounded genus: $O\left(n^{1.19}\right)$ time [Yuster, Zwick SODA'07] H-minor free graphs:
$O\left(n^{1.32}\right)$ time
-" -

Known results

Let $G=(V, E)$ and $n=|V|, m=|E|$.

- Maximum matchings take $O(\sqrt{n} \cdot m)$ time.
- If $m=\Theta(n): O\left(n^{1.5}\right)$ running time,
e.g., graphs with constant maxdeg or planar graphs.
- Algorithms based on fast matrix multiplication:
dense graphs:
$O\left(n^{2.38}\right)$ time
[Mucha, Sankowski '04] graphs of bounded genus: $O\left(n^{1.19}\right)$ time [Yuster, Zwick SODA'07] H-minor free graphs: $\quad O\left(n^{1.32}\right)$ time
-" -
- LEDA and Boost: $O(n m \alpha(n, m))$ time, based on repeatedly finding augmenting paths.

Known results

Results on the existence of matchings in certain graph classes.
[Biedl, Demaine, Duncan, Fleischer, Kobourov, '04]

Graph	Bound 1	Bound 2
3-connected, planar	$\frac{n+4}{3}$	$\frac{2 n+4-\ell_{4}}{4}$
maxdeg 3	$\frac{n-1}{3}$	$\frac{3 n-n_{2}-2 \ell_{2}}{6}$
3-regular	$\frac{4 n-1}{9}$	$\frac{3 n-2 \ell_{2}}{6}$

Known results

Results on the existence of matchings in certain graph classes. [Biedl, Demaine, Duncan, Fleischer, Kobourov, '04]

Graph	Bound 1	Bound 2
3-connected, planar	$\frac{n+4}{3}$	$\frac{2 n+4-\ell_{4}}{4}$
maxdeg 3	$\frac{n-1}{3}$	$\frac{3 n-n_{2}-2 \ell_{2}}{6}$
3-regular	$\frac{4 n-1}{9}$	$\frac{3 n-2 \ell_{2}}{6}$

There are linear-time reductions:
[Biedl SODA'01]

- max. matchings in planar graphs \rightarrow in triangulated planar graphs
- max. matchings in general graphs \rightarrow in 3-regular graphs

Our results

We present algorithms that

- are relatively simple,
- run in $O(n$ polylog n) time,
- implement all (but one) of the bounds of Biedl et al. and thus
- give good guarantees on the size of the computed matchings.

Overview

(1) Introduction

- Definitions and known results
- Warm-up: simple algorithms for maxdeg-k graphs
(2) Graphs with maxdeg 3
- 3-regular graphs
- Graphs with maxdeg 3
(3) The missing algorithm and maximum matchings
- 3-connected planar graphs
- Graphs with bounded-degree block trees

Maximum matchings in trees

Strategy PickLeafEdges:
As long as the graph has a leaf (i.e., a vertex of degree 1)

- Pick an arbitrary leaf u and match it to its parent v.
- Remove u and v from the graph.

Maximum matchings in trees

Strategy PickLeafEdges:
As long as the graph has a leaf (i.e., a vertex of degree 1)

- Pick an arbitrary leaf u and match it to its parent v.
- Remove u and v from the graph.

This computes a maximum matching in a tree.

Maximum matchings in trees

What is known about $|M|$?

Maximum matchings in trees

What is known about $|M|$?

Bound maxdeg by k :

$$
|M| \geq \frac{m}{k}=\frac{n-1}{k}
$$

From trees to graphs

Theorem

A tree with maxdeg k has a matching of size at least $(n-1) / k$. Such a matching can be computed in linear time.

From trees to graphs

Theorem

A tree with maxdeg k has a matching of size at least $(n-1) / k$. Such a matching can be computed in linear time.

Corollary

maxdeg-3-graphs: \mid matching $\mid \geq(n-1) / 3$ in $O(n)$ time.

From trees to graphs

Theorem

A tree with maxdeg k has a matching of size at least $(n-1) / k$. Such a matching can be computed in linear time.

Corollary

maxdeg-3-graphs: \mid matching $\mid \geq(n-1) / 3$ in $O(n)$ time.

Corollary

3-connected planar graph: \mid matching $\mid \geq(n-1) / 3$ in $O(n)$ time.

From trees to graphs

Theorem

A tree with maxdeg k has a matching of size at least $(n-1) / k$. Such a matching can be computed in linear time.

Corollary

maxdeg-3-graphs: \mid matching $\mid \geq(n-1) / 3$ in $O(n)$ time.

Corollary

3-connected planar graph: \mid matching $\mid \geq(n-1) / 3$ in $O(n)$ time.

Proof: A spanning tree with maxdeg 3 exists and can be computed in $O(n)$ time.
[Barnette '66]
[Czumaj, Strothmann '97]

Overview

Graph Bound 1 Bound 2

3 -connected + planar $\frac{n+4}{3} \quad \frac{2 n+4-\ell_{4}}{4}$ max-deg 3

$$
\frac{n-1}{3}
$$

$$
\frac{3 n-n_{2}-2 \ell_{2}}{6}
$$

3-regular

$$
\frac{4 n-1}{9}
$$

$$
\frac{3 n-2 \ell_{2}}{6}
$$

Overview

Graph Bound 1 Bound 2

3 -connected + planar $\frac{n+4}{3} \quad \frac{2 n+4-\ell_{4}}{4}$ max-deg 3

$$
\frac{n-1}{3} \sqrt{ } \quad \frac{3 n-n_{2}-2 \ell_{2}}{6}
$$

3-regular

$$
\frac{4 n-1}{9}
$$

$\frac{3 n-2 \ell_{2}}{6}$

Overview

Graph Bound 1 Bound 2

3-connected + planar $\quad \frac{n+4}{3} \quad \frac{2 n+4-\ell_{4}}{4}$ max-deg 3

$$
\frac{n-1}{3} \sqrt{ } \quad \frac{3 n-n_{2}-2 \ell_{2}}{6}
$$

3-regular

$$
\frac{4 n-1}{9} \quad \frac{3 n-2 \ell_{2}}{6}
$$

An augmenting path can be computed in $O(n)$ time.

Overview

Graph Bound 1 Bound 2

3-connected + planar $\quad \frac{n+4}{3} \sqrt{ } \quad \frac{2 n+4-\ell_{4}}{4}$ max-deg 3

$$
\frac{n-1}{3} \sqrt{ } \quad \frac{3 n-n_{2}-2 \ell_{2}}{6}
$$

3-regular

$$
\frac{4 n-1}{9} \quad \frac{3 n-2 \ell_{2}}{6}
$$

An augmenting path can be computed in $O(n)$ time.

Overview

(1) Introduction

- Definitions and known results
- Warm-up: simple algorithms for maxdeg-k graphs
(2) Graphs with maxdeg 3
- 3-regular graphs
- Graphs with maxdeg 3
(3) The missing algorithm and maximum matchings
- 3-connected planar graphs
- Graphs with bounded-degree block trees

Bridge

Bridge

2-block tree

2-block tree

2-block tree

3-regular graphs whose 2-block tree is a path

Theorem (Petersen, 1891)

Every 3-regular graph whose 2-block tree is a path has a perfect matching.

3-regular graphs whose 2-block tree is a path

Theorem (Petersen, 1891)

Every 3-regular graph whose 2-block tree is a path has a perfect matching.

Theorem (Biedl, Bose, Demaine, Lubiw, '01)

Such a matching can be computed in $O\left(n \log ^{4} n\right)$ time.

Arbitrary 3-regular graphs

Biedl et al.: Every 3-regular graph whose 2-block tree has ℓ_{2} leaves has a matching of size at least $\left(3 n-2 \ell_{2}\right) / 6 \ldots$

Theorem

... such that every free vertex is incident to a bridge.

Arbitrary 3 -regular graphs

Biedl et al.: Every 3-regular graph whose 2-block tree has ℓ_{2} leaves has a matching of size at least $\left(3 n-2 \ell_{2}\right) / 6 \ldots$

Theorem

... such that every free vertex is incident to a bridge.

- constructive proof: induction on ℓ_{2}
- known: theorem holds for $\ell_{2}=1,2$
- treat cases $\ell_{2}=3,4$ separately

Arbitrary 3 -regular graphs

Biedl et al.: Every 3-regular graph whose 2-block tree has ℓ_{2} leaves has a matching of size at least $\left(3 n-2 \ell_{2}\right) / 6 \ldots$

Theorem

... such that every free vertex is incident to a bridge.

- constructive proof: induction on ℓ_{2}
- known: theorem holds for $\ell_{2}=1,2$
- treat cases $\ell_{2}=3,4$ separately
matching size $\left(3 n-2 \ell_{2}\right) / 6$:
$\Rightarrow\left(3 n-2 \ell_{2}\right) / 3=n-2 \ell_{2} / 3$ matched vertices
$\Rightarrow 2$ free vertices for every 3 leaves of the 2-block tree

Introduction
Graphs with maxdeg 3
The missing algorithm and maximum matchings

3-regular graphs

Graphs with maxdeg 3

Case $\ell_{2} \geq 5$: Cutting leaves

3-regular graphs

Graphs with maxdeg 3

Case $\ell_{2} \geq 5$: Cutting leaves

Repairing the cuts

$3 \times$

Repairing the cuts

Repairing the cuts

- Compute matchings in all four components.

Repairing the cuts

- Compute matchings in all four components.

Repairing the cuts

- Compute matchings in all four components.

Repairing the cuts

Repairing the cuts

Repairing the cuts

- Compute matchings in all four components.
- v is not incident to a bridge and hence is not free.
$3 \times$

$\ell_{2}(M C)=\ell_{2}(G)-3$.
$\#$ freevertices $_{G}=\#$ freevertices $M C+3$

Repairing the cuts

- Compute matchings in all four components.
- v is not incident to a bridge and hence is not free.
- Add one of the bridges.
$\ell_{2}(M C)=\ell_{2}(G)-3$.
$\#$ freevertices $_{G}=\#$ freevertices $_{M C}+3-1$

Repairing the cuts

- Compute matchings in all four components.
- v is not incident to a bridge and hence is not free.
- Add one of the bridges.
$\ell_{2}(M C)=\ell_{2}(G)-3$.
$\#$ freevertices $_{G}=\#$ freevertices $_{M C}+3-1=\#$ freevertices $_{M C}+2$.

Repairing the cuts

- Compute matchings in all four components.
- v is not incident to a bridge and hence is not free.
- Add one of the bridges.
- All free vertices are incident to a bridge.
$\ell_{2}(M C)=\ell_{2}(G)-3$.
$\#$ freevertices $_{G}=\#$ freevertices $_{M C}+3-1=\#$ freevertices $_{M C}+2$.

Overview

(1) Introduction

- Definitions and known results
- Warm-up: simple algorithms for maxdeg-k graphs
(2) Graphs with maxdeg 3
- 3-regular graphs
- Graphs with maxdeg 3
(3) The missing algorithm and maximum matchings
- 3-connected planar graphs
- Graphs with bounded-degree block trees

Graphs with maxdeg 3

Add dummy edges and vertices to make graph 3-regular...

Graphs with maxdeg 3

Add dummy edges and vertices to make graph 3-regular...

... apply previous algorithm, and remove dummies.

Overview

Graph	Bound 1	Bound 2
3-connected + planar	$\frac{n+4}{3} \sqrt{ }$	$\frac{2 n+4-\ell_{4}}{4}$
max-deg 3	$\frac{n-1}{3} \sqrt{ }$	$\frac{3 n-n_{2}-2 \ell_{2}}{6}$
3-regular	$\frac{4 n-1}{9}$	$\frac{3 n-2 \ell_{2}}{6}$

Overview

Graph	Bound 1	Bound 2
3-connected + planar	$\frac{n+4}{3} \sqrt{ }$	$\frac{2 n+4-\ell_{4}}{4}$
max-deg 3	$\frac{n-1}{3} \sqrt{ }$	$\frac{3 n-n_{2}-2 \ell_{2}}{6} \sqrt{ }$
3-regular	$\frac{4 n-1}{9} \sqrt{ }$	$\frac{3 n-2 \ell_{2}}{6} \sqrt{ }$

Overview

Graph	Bound 1	Bound 2
3-connected + planar	$\frac{n+4}{3} \sqrt{ }$	$\frac{2 n+4-\ell_{4}}{4}$
max-deg 3	$\frac{n-1}{3} \sqrt{ }$	$\frac{3 n-n_{2}-2 \ell_{2}}{6} \sqrt{ }$
3-regular	$\frac{4 n-1}{9} \sqrt{ }$	$\frac{3 n-2 \ell_{2}}{6} \sqrt{ }$

Overview

(1) Introduction

- Definitions and known results
- Warm-up: simple algorithms for maxdeg-k graphs
(2) Graphs with maxdeg 3
- 3-regular graphs
- Graphs with maxdeg 3
(3) The missing algorithm and maximum matchings
- 3-connected planar graphs
- Graphs with bounded-degree block trees

Separating triplets and the 4-block tree

4-block tree:

Algorithm: same story as before?

Cut off leaves and compute perfect matchings in 3-connected planar graphs whose 4-block tree is a path.

Algorithm: same story as before?

Cut off leaves and compute perfect matchings in 3-connected planar graphs whose 4-block tree is a path.

Algorithm: same story as before?

Cut off leaves and compute perfect matchings in 3-connected planar graphs whose 4-block tree is a path.

- Hamiltonian cycles take $O(n)$ time in 4-connected planar graphs. [Chiba, Nishizeki '89]
- Compute matchings in 4-blocks and combine by DP.

From 4-block paths to 4-block trees

Lemma

Let G be a 3-connected planar graph whose 4-block tree is a path. A (nearly) perfect matching in G can be computed in $O(n)$ time.

From 4-block paths to 4-block trees

Lemma

Let G be a 3-connected planar graph whose 4-block tree is a path. A (nearly) perfect matching in G can be computed in $O(n)$ time.

Sizes of matchings
in 3-connected planar graph whose 4-block tree has ℓ_{4} leaves:
Biedl et al.: $\frac{2 n+4-\ell_{4}}{4}$ existence
Our algorithm: $\frac{2 n+4-6 \ell_{4}}{4}$ in $O(n \alpha(n))$ time.
Triangulation: $\frac{2 n+4-2 \ell_{4}}{4}$ in $O(n)$ time.

Overview

Graph
Bound 1 Bound 2
3-connected planar $\quad \frac{n+4}{3} \sqrt{ } \quad \frac{2 n+4-6 \ell_{4}}{4} \sqrt{ }$
maxdeg 3

$$
\frac{n-1}{3} \sqrt{ } \quad \frac{3 n-n_{2}-2 \ell_{2}}{6} \sqrt{ }
$$

3-regular

$$
\frac{4 n-1}{9} \sqrt{ } \quad \frac{3 n-2 \ell_{2}}{6} \sqrt{ }
$$

Overview

(1) Introduction

- Definitions and known results
- Warm-up: simple algorithms for maxdeg-k graphs
(2) Graphs with maxdeg 3
- 3-regular graphs
- Graphs with maxdeg 3
(3) The missing algorithm and maximum matchings
- 3-connected planar graphs
- Graphs with bounded-degree block trees

Bounded-degree block trees

Theorem

Let G be a 3-connected planar graph with bounded-deg. 4-block tree. Maximum matching takes $O(n \alpha(n))$ time.

Proof:

- Compute local matchings in 4-blocks.
- Count number of free vertices for every configuration.
- Use DP to find a maximum matching.

Bounded-degree block trees

Theorem

Let G be a 3-connected planar graph with bounded-deg. 4-block tree. Maximum matching takes $O(n \alpha(n))$ time.

Theorem

Let G be a 3-regular graph with bounded-deg. 2-block tree. Maximum matching takes $O\left(n \log ^{4} n\right)$ time; planar case: $O(n)$ time.

Bounded-degree block trees

Theorem

Let G be a 3-connected planar graph with bounded-deg. 4-block tree. Maximum matching takes $O(n \alpha(n))$ time.

Theorem

Let G be a 3-regular graph with bounded-deg. 2-block tree. Maximum matching takes $O\left(n \log ^{4} n\right)$ time; planar case: $O(n)$ time.

Can we do better??

Bounded-degree block trees

Theorem

Let G be a 3-connected planar graph with bounded-deg. 4-block tree. Maximum matching takes $O(n \alpha(n))$ time.

Theorem

Let G be a 3-regular graph with bounded-deg. 2-block tree. Maximum matching takes $O\left(n \log ^{4} n\right)$ time; planar case: $O(n)$ time.

Can we do better??
There are linear-time reductions:
[Biedl SODA'01]

- max. matchings in planar graphs \rightarrow in triangulated planar graphs
- max. matchings in general graphs \rightarrow in 3-regular graphs

Conclusion and open questions

graph class	bound on matching size		runtime
	type-1	type-2	$O(\cdot)$
3-regular	$(4 n-1) / 9$	$\left(3 n-2 \ell_{2}\right) / 6$	$n \log ^{4} n$
maxdeg-3	$(n-1) / 3$	$\left(3 n-n_{2}-2 \ell_{2}\right) / 6$	$n \mid n \log ^{4} n$
3-connected, planar, $n \geq 10$	$(n+4) / 3$	$\left(2 n+4-6 \ell_{4}\right) / 4$	$n \mid n \alpha(n)$
3-regular planar	$\left(3 n-6 \ell_{2}\right) / 6$	n	
triangulated, planar	$\left(2 n+4-2 \ell_{4}\right) / 4$		n
maxdeg-k		$(n-1) / k$	n
3-reg., \quad bnd.-deg 2-bt	maximum		$n \log ^{4} n$
3-reg., planar, bnd.-deg 2-bt	maximum	n	
3-conn., planar, bnd.-deg 4-bt	maximum	$n \alpha(n)$	

- Improve running time in the planar case!
- Remove 6!

