Variants of the Segment Number of a Graph

Yoshio Okamoto

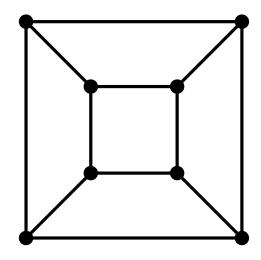
University of Electro-Communications, Chōfu, Japan and RIKEN Center for Advanced Intelligence Project, Tokyo, Japan

Alexander Ravsky

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Science of Ukraine, Lviv, Ukraine

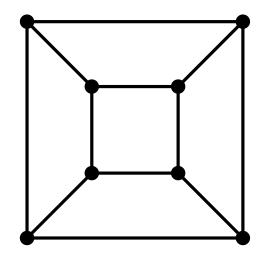
Alexander Wolff

Julius-Maximilians-Universität Würzburg, Germany



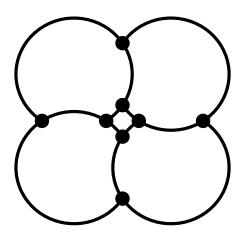
Slope number

[Wade & Chu 1994]

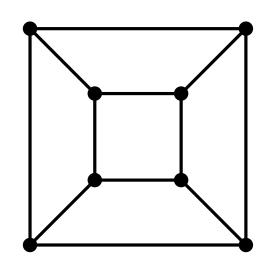


Slope number

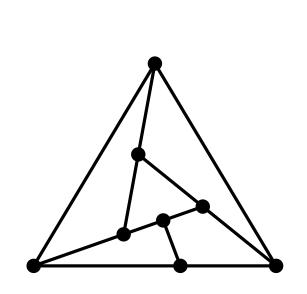
[Wade & Chu 1994]

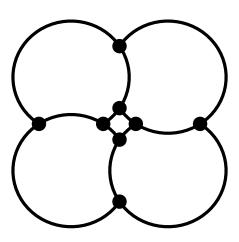


Arc number [Schulz 2015]



Slope number [Wade & Chu 1994]



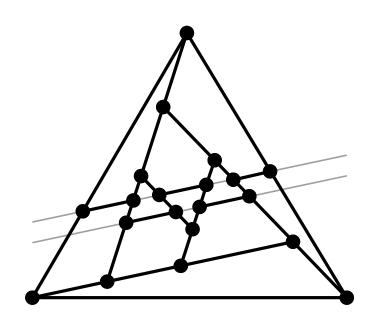


Arc number [Schulz 2015]

Segment number $(seg_2(G))$

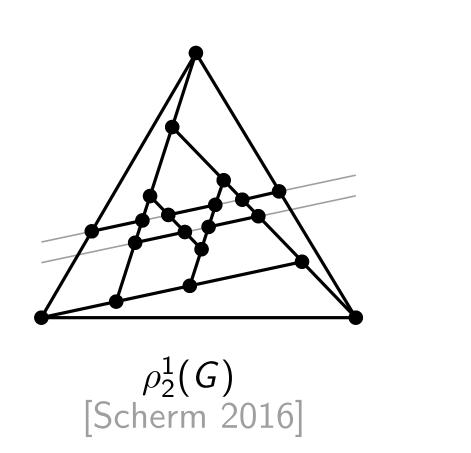
[Dujmović et al. 2007]

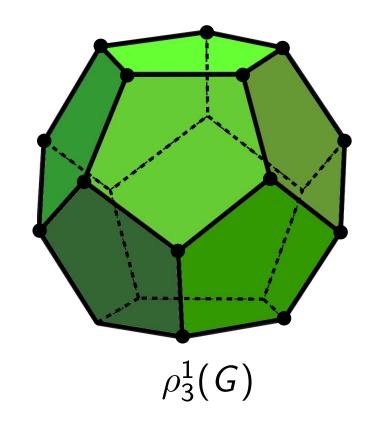
Line cover number [Chaplick et al. 2016]



 $\rho_2^1(G)$ [Scherm 2016]

Line cover number [Chaplick et al. 2016]





Line cover number [Chaplick et al. 2016]

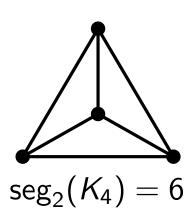
The segment number of a graph G is the minimum number of segments constituting a straight-line drawing of G.

The segment number of a graph G is the minimum number of segments constituting a straight-line drawing of G.

 $seg_2(G)$, where G is planar.

The segment number of a graph G is the minimum number of segments constituting a straight-line drawing of G.

 $seg_2(G)$, where G is planar.



The segment number of a graph G is the minimum number of segments constituting a straight-line drawing of G.

 $seg_2(G)$, where G is planar.

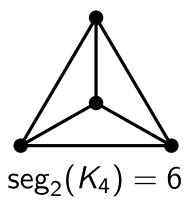
 $seg_{\angle}(G)$, where G is planar, drawings are 2D, bends are OK, but no crossings.

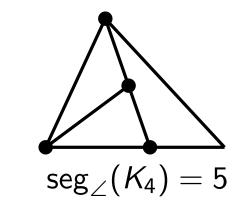


The segment number of a graph G is the minimum number of segments constituting a straight-line drawing of G.

 $seg_2(G)$, where G is planar.

 $seg_{\angle}(G)$, where G is planar, drawings are 2D, bends are OK, but no crossings.



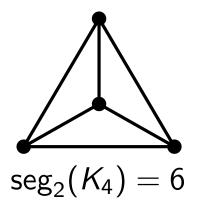


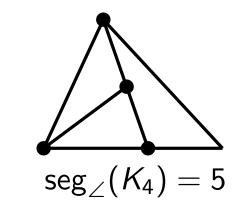
The segment number of a graph G is the minimum number of segments constituting a straight-line drawing of G.

 $seg_2(G)$, where G is planar.

 $seg_{\angle}(G)$, where G is planar, drawings are 2D, bends are OK, but no crossings.

 $seg_3(G)$, where drawings are 3D, no bends, no crossings.



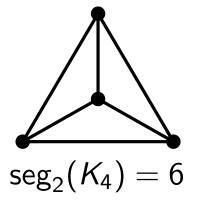


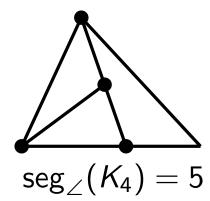
The segment number of a graph G is the minimum number of segments constituting a straight-line drawing of G.

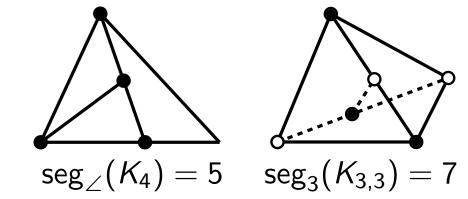
 $seg_2(G)$, where G is planar.

 $seg_{/}(G)$, where G is planar, drawings are 2D, bends are OK, but no crossings.

 $seg_3(G)$, where drawings are 3D, no bends, no crossings.







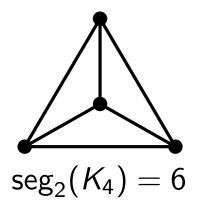
The segment number of a graph G is the minimum number of segments constituting a straight-line drawing of G.

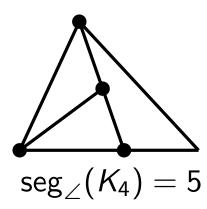
 $seg_2(G)$, where G is planar.

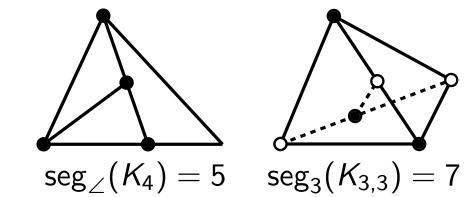
 $seg_{\nearrow}(G)$, where G is planar, drawings are 2D, bends are OK, but no crossings.

 $seg_3(G)$, where drawings are 3D, no bends, no crossings.

 $seg_{\times}(G)$, where drawings are 2D, crossings are OK, but no bends and no overlaps.







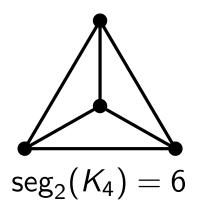
The segment number of a graph G is the minimum number of segments constituting a straight-line drawing of G.

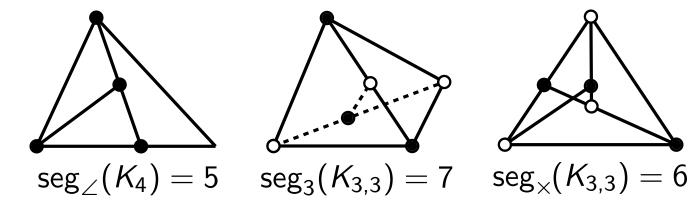
 $seg_2(G)$, where G is planar.

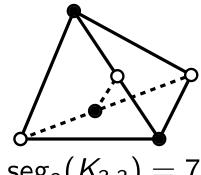
 $seg_{\nearrow}(G)$, where G is planar, drawings are 2D, bends are OK, but no crossings.

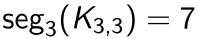
 $seg_3(G)$, where drawings are 3D, no bends, no crossings.

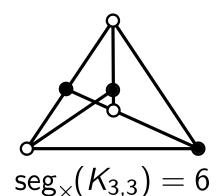
 $seg_{\times}(G)$, where drawings are 2D, crossings are OK, but no bends and no overlaps.











$$seg_{\times}(G) \leq seg_3(G)$$

$$seg_{\times}(G) \leq seg_3(G)$$

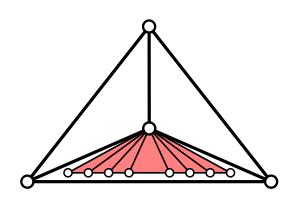
$$seg_{\times}(G) \leq seg_3(G)$$

 $seg_{3,\times,\angle}(G) \leq seg_2(G)$ for any planar G.

 $seg_2(G)/seg_{3,\times,\angle}(G) = 2 + o(1)$ for a family of planar G.

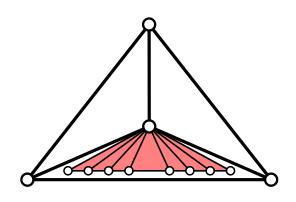
$$seg_{\times}(G) \leq seg_3(G)$$

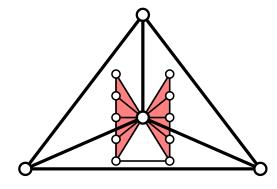
$$seg_2(G)/seg_{3.\times.\angle}(G) = 2 + o(1)$$
 for a family of planar G .



$$seg_{\times}(G) \leq seg_3(G)$$

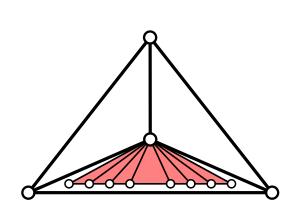
$$seg_2(G)/seg_{3,\times,\angle}(G) = 2 + o(1)$$
 for a family of planar G .

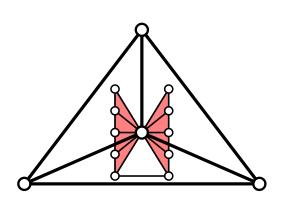


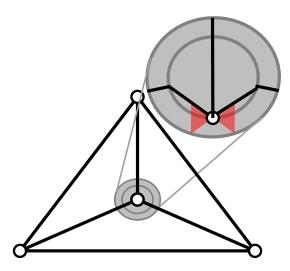


$$seg_{\times}(G) \leq seg_3(G)$$

$$seg_2(G)/seg_{3,\times,\angle}(G) = 2 + o(1)$$
 for a family of planar G .

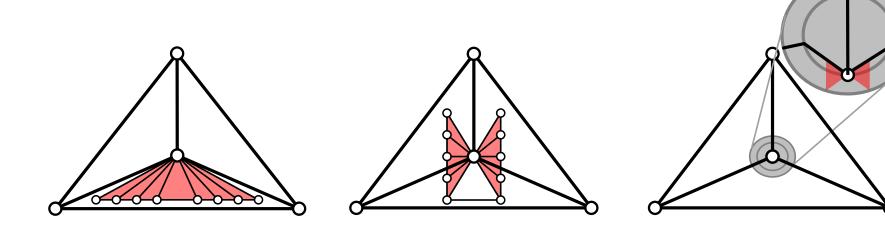


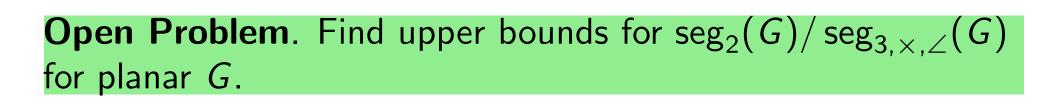


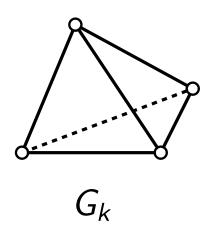


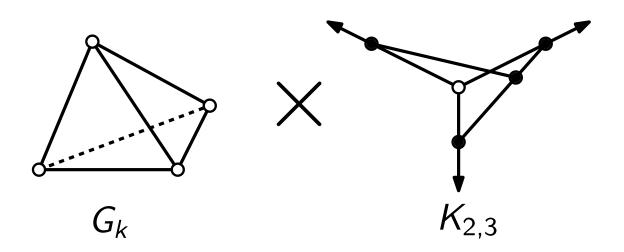
$$seg_{\times}(G) \leq seg_3(G)$$

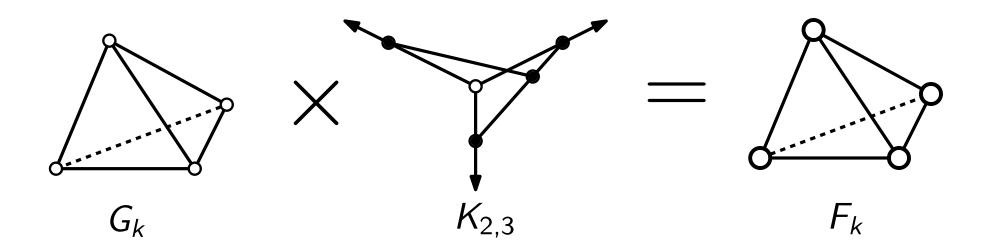
$$seg_2(G)/seg_{3,\times,\angle}(G) = 2 + o(1)$$
 for a family of planar G .

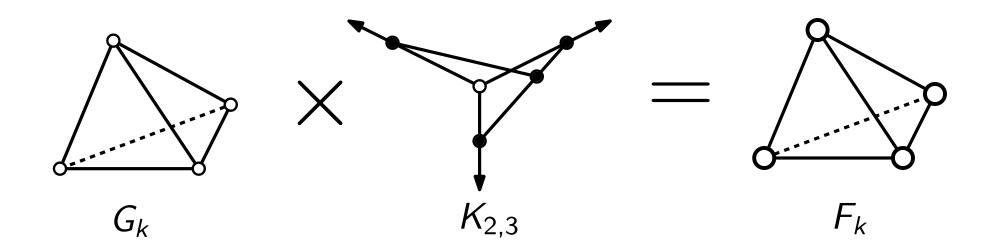




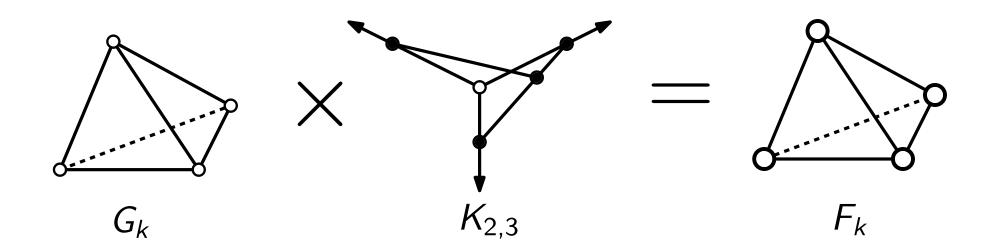








$$\frac{\operatorname{seg}_3(F_k)}{\operatorname{seg}_{\times}(F_k)} = \frac{7k/2}{5k/2+3} \to \frac{7}{5}.$$



$$\frac{\operatorname{seg}_3(F_k)}{\operatorname{seg}_{\times}(F_k)} = \frac{7k/2}{5k/2+3} \to \frac{7}{5}.$$

Open Problem. Can you do better?

Bounds on segment numbers of cubic graphs

G is a cubic graph with $n \ge 6$ vertices. $n/2 \le \sec_{2,3,\angle,\times}(G) \le \frac{3n}{2}$ and $\sec_{2,3,\angle,\times}(\sqcup K_4) = \frac{3n}{2}$.

Bounds on segment numbers of cubic graphs

G is a cubic graph with $n \ge 6$ vertices.

$$n/2 \le \text{seg}_{2,3,\angle,\times}(G) \le \frac{3n/2}{2}$$
 and $\text{seg}_{2,3,\angle,\times}(\sqcup K_4) = \frac{3n}{2}$.

γ	$seg_2(G)^*$	$seg_3(G)$	$\operatorname{seg}_{\angle}(G)^*$	$\operatorname{seg}_{ imes}(G)$
1	$\frac{5n}{6}3n/2$	$5n/6^*7n/5$	5n/63n/2	$5n/6^*7n/5$
2	3n/43n/2	5 <i>n</i> /6. 7 <i>n</i> /5	3n/4n+1	$3n/4^* n + 2$
3	n/2 + 3**	7n/107n/5	n/2 + 3	n/2 $n+2$
Н	3n/43n/2	5n/6n+1	3n/4n+1	$3n/4^*n+2$

^{*} For planar G.

^{**} by [Durocher et al. 2013; Igamberdiev et al. 2017]

Computational Complexity

Given a planar graph G, it is $\exists \mathbb{R}$ -hard to compute the slope number slope(G). [Hoffmann 2017]

Computational Complexity

Given a planar graph G, it is $\exists \mathbb{R}$ -hard to compute the slope number slope(G). [Hoffmann 2017]

Given a planar graph G and an integer k, it is $\exists \mathbb{R}$ -hard to decide whether $\rho_2^1(G) \leq k$ and whether $\rho_3^1(G) \leq k$.

[Chaplick et al. 2017]

Computational Complexity

Given a planar graph G, it is $\exists \mathbb{R}$ -hard to compute the slope number slope(G). [Hoffmann 2017]

Given a planar graph G and an integer k, it is $\exists \mathbb{R}$ -hard to decide whether $\rho_2^1(G) \leq k$ and whether $\rho_3^1(G) \leq k$.

[Chaplick et al. 2017]

Given a planar graph G and an integer k, it is $\exists \mathbb{R}$ -complete to decide whether

Given a planar graph G, it is $\exists \mathbb{R}$ -hard to compute the slope number slope(G). [Hoffmann 2017]

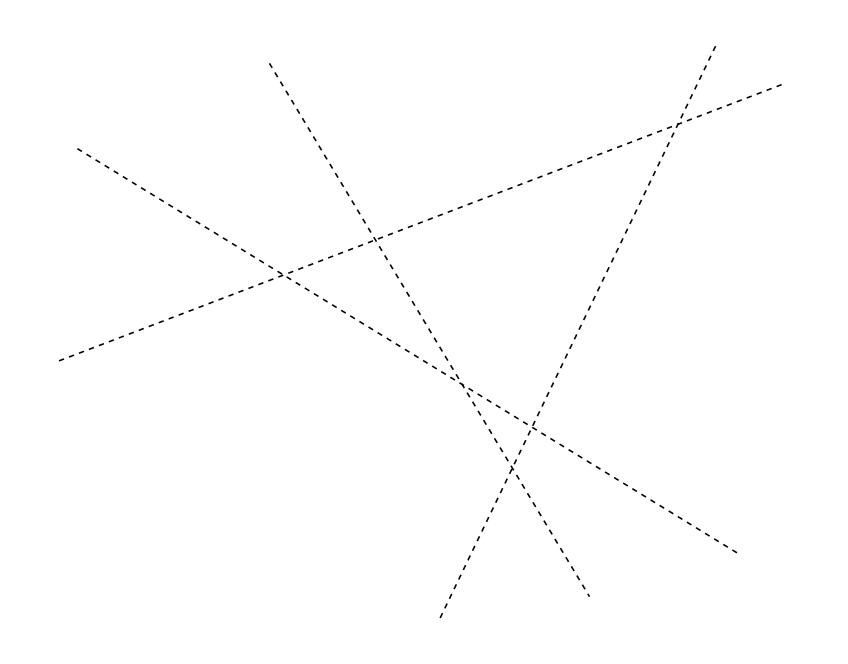
Given a planar graph G and an integer k, it is $\exists \mathbb{R}$ -hard to decide whether $\rho_2^1(G) \leq k$ and whether $\rho_3^1(G) \leq k$.

[Chaplick et al. 2017]

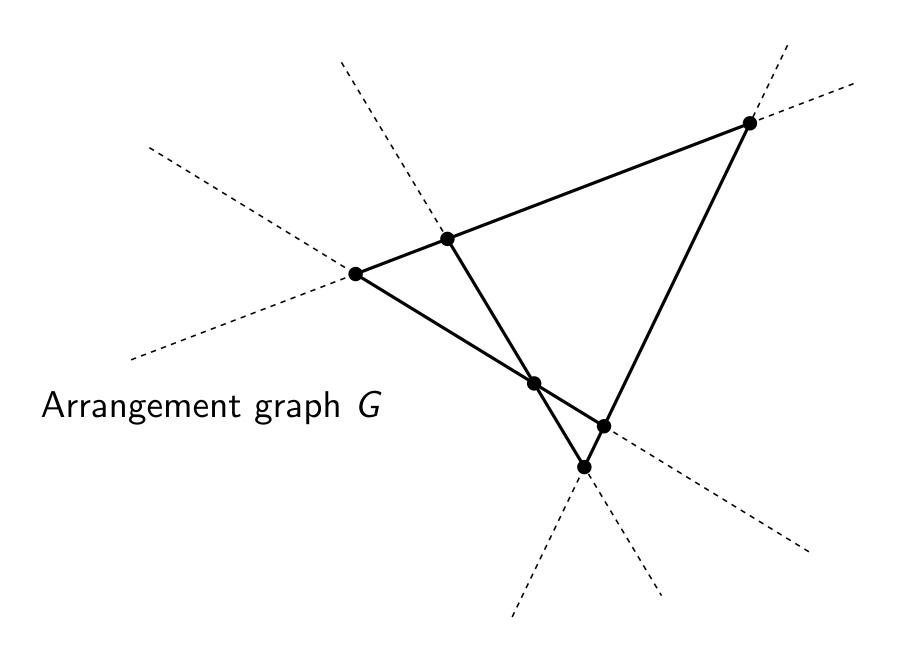
Given a planar graph G and an integer k, it is $\exists \mathbb{R}$ -complete to decide whether

- $seg_2(G) \le k$, Don't give a reference!
- $seg_3(G) \leq k$,
- $\operatorname{seg}_{\angle}(G) \leq k$,
- $seg_{\times}(G) \leq k$.

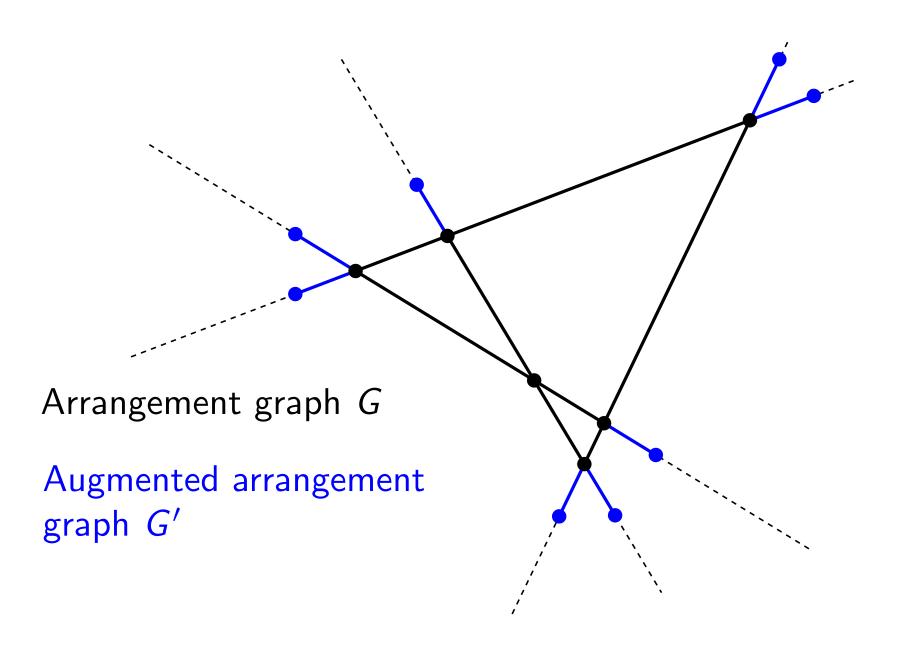
Arrangement Graphs



Arrangement Graphs



Arrangement Graphs



The Arrangement Graph Recognition problem is to decide whether a given graph is the arrangement graph of some set of lines.

The Arrangement Graph Recognition problem is to decide whether a given graph is the arrangement graph of some set of lines. It is $\exists \mathbb{R}$ -complete. [Eppstein 2014]

The Arrangement Graph Recognition problem is to decide whether a given graph is the arrangement graph of some set of lines. It is $\exists \mathbb{R}$ -complete. [Eppstein 2014]

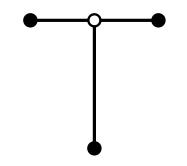
Euclidean PSEUDOLINE STRETCHABILITY is ∃R-hard.

[Matoušek 2014, Schaefer 2009]

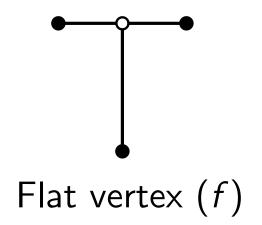
A planar graph G is an arrangement graph on k lines

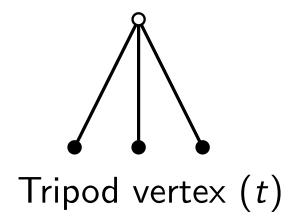
- $\Leftrightarrow \rho_2^1(G') \le k$ [Chaplick et al. 2017]
- $\Leftrightarrow seg_2(G') \leq k$
- $\Leftrightarrow \operatorname{seg}_{/}(G') \leq k$
- $\Leftrightarrow \operatorname{seg}_{\times}(G') \leq k$.

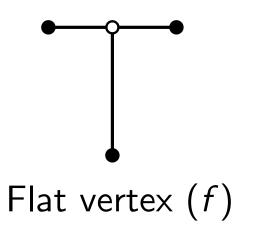
Open problem. Is any variant of segment number FPT?

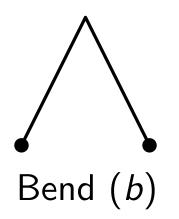


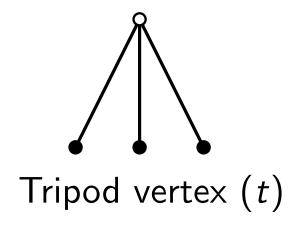
Flat vertex (f)



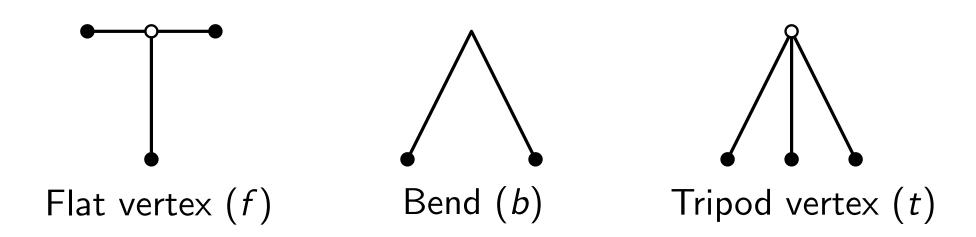








Lemma.



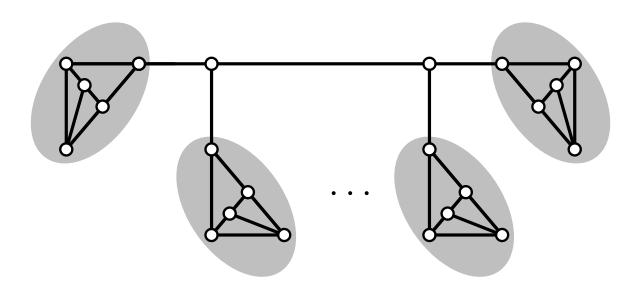
Lemma. For any straight-line drawing δ of a cubic graph with n vertices, $seg(\delta) = n/2 + t(\delta) + b(\delta)$.

Connected Cubic Graphs

For any cubic connected graph G with $n \ge 6$ vertices, $seg_3(G) \le 7n/5$.

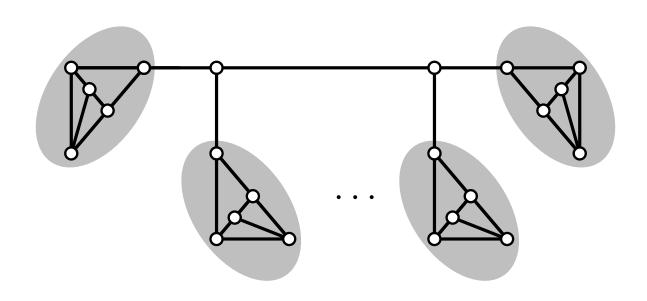
Connected Cubic Graphs

For any cubic connected graph G with $n \ge 6$ vertices, $seg_3(G) \le 7n/5$.



Connected Cubic Graphs

For any cubic connected graph G with $n \ge 6$ vertices, $seg_3(G) \le 7n/5$.



$$n = 6k - 2$$

 $seg_{2,3,\angle,\times}(G) = 5k - 1 > 5n/6$

Biconnected Cubic Graphs

For any cubic biconnected planar graph G with n vertices, $seg_{\angle}(G) \le n+1$. A corresponding drawing can be found in linear time.

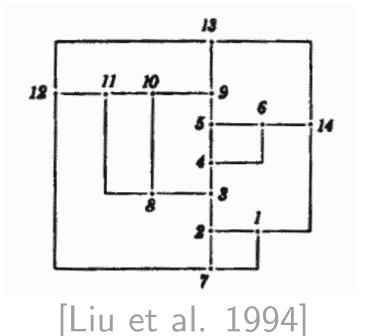
Biconnected Cubic Graphs

For any cubic biconnected planar graph G with n vertices, $seg_{\angle}(G) \le n+1$. A corresponding drawing can be found in linear time.

[Liu et al. 1994]

Biconnected Cubic Graphs

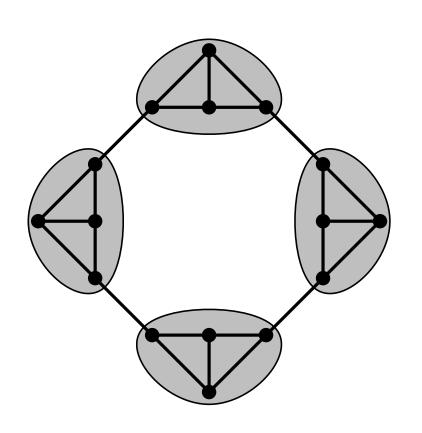
For any cubic biconnected planar graph G with n vertices, $seg_{\angle}(G) \le n+1$. A corresponding drawing can be found in linear time.



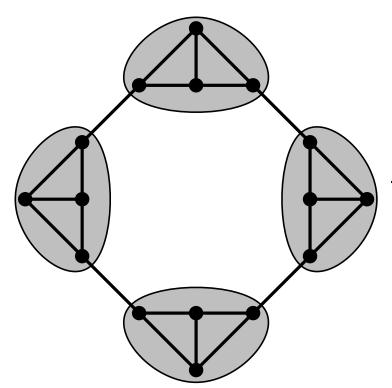
Open Problem. What about 4-regular graphs? They have 2n edges. If we bend every edge once, we already need 2n segments — and not all 4-regular graphs can be drawn with at most one bend per edge.

For any cubic Hamiltonian graph G with $n \ge 6$ vertices, $seg_3(G) \le n + 1$.

For any cubic Hamiltonian graph G with $n \ge 6$ vertices, $seg_3(G) \le n + 1$.



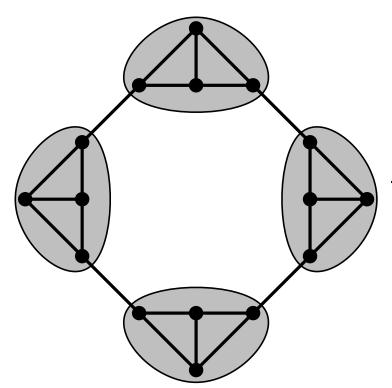
For any cubic Hamiltonian graph G with $n \ge 6$ vertices, $seg_3(G) \le n + 1$.



$$n = 4k \ \text{seg}_{2, \angle, 3, \times}(G) = 3n/4.$$

Each subgraph K' has an extreme point of its convex hull not connected to G - V(K'). It is a tripod or a bend, so $t(\delta) + b(\delta) \ge k$ and, by Lemma, $seg_{2,3,\angle,\times}(G) \ge 2k + t(\delta) + b(\delta) \ge 3k$.

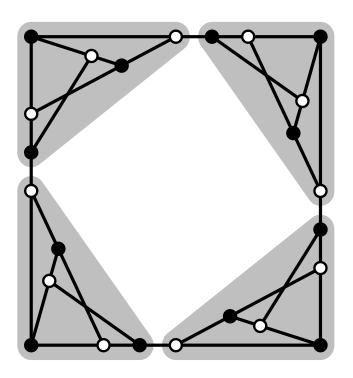
For any cubic Hamiltonian graph G with $n \ge 6$ vertices, $seg_3(G) \le n + 1$.



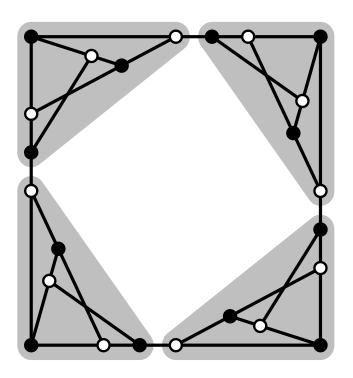
$$n = 4k \ \text{seg}_{2, \angle, 3, \times}(G) = 3n/4.$$

Each subgraph K' has an extreme point of its convex hull not connected to G - V(K'). It is a tripod or a bend, so $t(\delta) + b(\delta) \ge k$ and, by Lemma, $seg_{2,3,\angle,\times}(G) \ge 2k + t(\delta) + b(\delta) \ge 3k$.

$$k \ge 3$$
, $n = 6k$, $seg_3(G) = 5n/6$, $seg_{\times}(G) = 2n/3$



$$k \ge 3$$
, $n = 6k$, $seg_3(G) = 5n/6$, $seg_{\times}(G) = 2n/3$



Open Problems: Improve Non-tight Bounds!

G is a cubic graph with $n \ge 6$ vertices.

$$n/2 \le \text{seg}_{2,3,\angle,\times}(G) \le \frac{3n/2}{2}$$
 and $\text{seg}_{2,3,\angle,\times}(\sqcup K_4) = \frac{3n}{2}$.

$\overline{\gamma}$	$seg_2(G)^*$	$seg_3(G)$	$\operatorname{seg}_{\angle}(G)^*$	$\operatorname{seg}_{ imes}(G)$
1	$\frac{5n}{6}3n/2$	$5n/6^*7n/5$	5n/63n/2	$5n/6^*7n/5$
2	3n/43n/2	$\frac{5n}{6}$. $\frac{7n}{5}$	3n/4n+1	$3n/4^* n + 2$
3	n/2 + 3**	7n/107n/5	n/2 + 3	n/2 $n+2$
Н	3n/43n/2	5n/6n+1	3n/4n+1	$3n/4^*n+2$

^{*} For planar G.

^{**} by [Durocher et al. 2013; Igamberdiev et al. 2017]

