Order in the Underground – How to Automate the Drawing of Metro Maps

Martin Nöllenburg and Alexander Wolff

Department of Computer Science
Karlsruhe University

GD 2005

Outline

- Modeling the Metro Map Problem
 - What is a metro map?
 - Hard and soft constraints
- Our Solution
 - Mixed-integer programming formulation
 - Experiments
 - Labeling
- NP-Hardness
 - Rectilinear vs. octilinear drawing
 - Reduction from planar 3-SAT

Outline

- Modeling the Metro Map Problem
 - What is a metro map?
 - Hard and soft constraints
- Our Solution
 - Mixed-integer programming formulation
 - Experiments
 - Labeling
- NP-Hardness
 - Rectilinear vs. octilinear drawing
 - Reduction from planar 3-SAT

What is a Metro Map?

- schematic diagram for public transport
- visualizes lines and stations
- goal: ease navigation for passengers
 - "How do I get from A to B?"
 - "Where to get off and change trains?"
- distorts geometry and scale
- improves readability

The Metro Map Problem

Given: planar embedded graph $G = (V, E), V \subset \mathbb{R}^2$,

line cover \mathcal{L} of paths or cycles in G (the metro lines),

The Metro Map Problem

Given: planar embedded graph $G = (V, E), V \subset \mathbb{R}^2$,

line cover \mathcal{L} of paths or cycles in G (the metro lines),

Goal: draw G and \mathcal{L} nicely.

What is a nice drawing?

The Metro Map Problem

Given: planar embedded graph $G = (V, E), V \subset \mathbb{R}^2$,

line cover \mathcal{L} of paths or cycles in G (the metro lines),

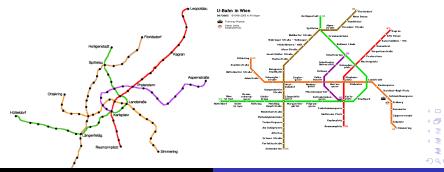
- What is a nice drawing?
- Look at real-world metro maps drawn by graphic designers and model their design principles as

The Metro Map Problem

Given: planar embedded graph $G = (V, E), V \subset \mathbb{R}^2$,

line cover \mathcal{L} of paths or cycles in G (the metro lines),

- What is a nice drawing?
- Look at real-world metro maps drawn by graphic designers and model their design principles as
 - hard constraints must be fulfilled,


The Metro Map Problem

Given: planar embedded graph $G = (V, E), V \subset \mathbb{R}^2$,

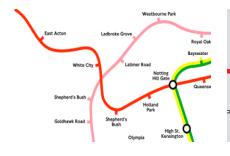
line cover \mathcal{L} of paths or cycles in G (the metro lines),

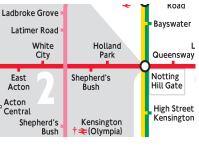
- What is a nice drawing?
- Look at real-world metro maps drawn by graphic designers and model their design principles as
 - hard constraints must be fulfilled,
 - soft constraints should hold as tightly as possible.

(H1) preserve embedding of G

- (H1) preserve embedding of G
- (H2) draw all edges as octilinear line segments, i.e., parallel to a coordinate axes or at 45° degrees

- (H1) preserve embedding of G
- (H2) draw all edges as octilinear line segments,i.e., parallel to a coordinate axes or at 45° degrees
- (H3) draw each edge e with length $\geq \ell_e$



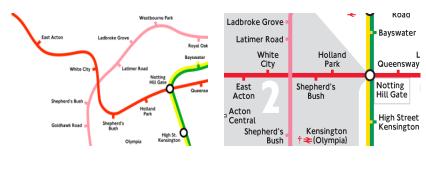

- (H1) preserve embedding of G
- (H2) draw all edges as octilinear line segments,i.e., parallel to a coordinate axes or at 45° degrees
- (H3) draw each edge e with length $\geq \ell_e$
- (H4) keep vertices d_{min} away from non-incident edges

Soft Constraints

(S1) draw metro lines with few bends

< ≣ →

Soft Constraints


- (S1) draw metro lines with few bends
- (S2) keep total edge length small

Soft Constraints

- (S1) draw metro lines with few bends
- (S2) keep total edge length small
- (S3) draw each octilinear edge similar to its geographical orientation: keep its relative position

Outline

- Modeling the Metro Map Problem
 - What is a metro map?
 - Hard and soft constraints
- Our Solution
 - Mixed-integer programming formulation
 - Experiments
 - Labeling
- NP-Hardness
 - Rectilinear vs. octilinear drawing
 - Reduction from planar 3-SAT

- Linear Programming: efficient optimization method for
 - linear constraints and objective function,
 - real-valued variables (domain \mathbb{R}).

- Linear Programming: efficient optimization method for
 - linear constraints and objective function,
 - real-valued variables (domain \mathbb{R}).
- Mixed-Integer Programming (MIP):
 - allows also integer variables (domain Z),
 - solution NP-hard in general.

- Linear Programming: efficient optimization method for
 - linear constraints and objective function,
 - real-valued variables (domain \mathbb{R}).
- Mixed-Integer Programming (MIP):
 - allows also integer variables (domain Z),
 - solution NP-hard in general.
- Still a practical method for many hard optimizat. problems.

- Linear Programming: efficient optimization method for
 - linear constraints and objective function,
 - real-valued variables (domain \mathbb{R}).
- Mixed-Integer Programming (MIP):
 - allows also integer variables (domain Z),
 - solution NP-hard in general.
- Still a practical method for many hard optimizat. problems.

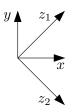
Theorem (Nöllenburg & Wolff GD'05)

The problem MetroMapLayout can be formulated as a MIP s.th.

```
linear constraints \rightarrow hard constraints, objective function \rightarrow soft constraints.
```


Sectors

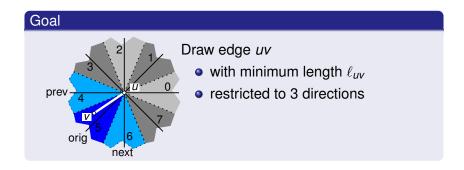
- − for each vtx. u partition plane into sectors 0–7
 - here: sec(u, v) = 5 (input)

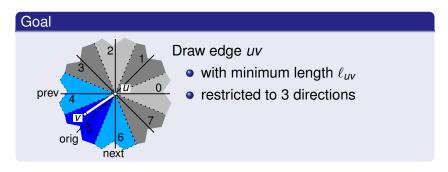

Sectors

- for each vtx. u partition plane into sectors 0–7
 - here: sec(u, v) = 5 (input)
- number octilinear edge directions accordingly
 - e.g., dir(u, v) = 4 (output)

Sectors

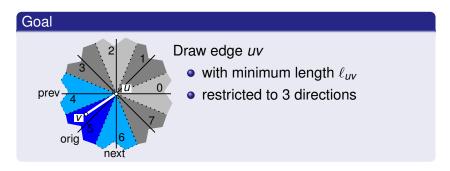
- for each vtx. u partition plane into sectors 0–7
 - here: sec(u, v) = 5 (input)
- number octilinear edge directions accordingly
 - e.g., dir(u, v) = 4 (output)




Coordinates

assign z_1 - and z_2 -coordinates to each vertex v:

•
$$z_1(v) = x(v) + y(v)$$


•
$$z_2(v) = x(v) - y(v)$$

How to model this using linear constraints?

How to model this using linear constraints?

Binary Variables $\alpha_{\mathsf{prev}}(u,v) + \alpha_{\mathsf{orig}}(u,v) + \alpha_{\mathsf{next}}(u,v) = 1$

Previous Sector

$$egin{array}{lll} y(u)-y(v) & \leq & M(1-lpha_{ extsf{prev}}(u,v)) \ -y(u)+y(v) & \leq & M(1-lpha_{ extsf{prev}}(u,v)) \ x(u)-x(v) & \geq & -M(1-lpha_{ extsf{prev}}(u,v))+\ell_{uv} \end{array}$$

Previous Sector

$$egin{array}{lll} y(u)-y(v) & \leq & M(1-lpha_{
m prev}(u,v)) \ -y(u)+y(v) & \leq & M(1-lpha_{
m prev}(u,v)) \ x(u)-x(v) & \geq & -M(1-lpha_{
m prev}(u,v))+\ell_{uv} \end{array}$$

How does this work?

Previous Sector

$$egin{array}{lll} y(u)-y(v) & \leq & M(1-lpha_{
m prev}(u,v)) \ -y(u)+y(v) & \leq & M(1-lpha_{
m prev}(u,v)) \ x(u)-x(v) & \geq & -M(1-lpha_{
m prev}(u,v))+\ell_{uv} \end{array}$$

How does this work?

Case 1:
$$\alpha_{\text{prev}}(u, v) = 0$$

 $y(u) - y(v) \leq M$
 $-y(u) + y(v) \leq M$
 $x(u) - x(v) \geq \ell_{uv} - M$

Previous Sector

$$egin{array}{lll} y(u)-y(v) & \leq & M(1-lpha_{
m prev}(u,v)) \ -y(u)+y(v) & \leq & M(1-lpha_{
m prev}(u,v)) \ x(u)-x(v) & \geq & -M(1-lpha_{
m prev}(u,v))+\ell_{uv} \end{array}$$

How does this work?

Case 2:
$$\alpha_{\text{prev}}(u, v) = 1$$

 $y(u) - y(v) \leq 0$
 $-y(u) + y(v) \leq 0$
 $x(u) - x(v) \geq \ell_{uv}$

Original Sector

$$\begin{array}{lcl} z_{2}(u) - z_{2}(v) & \leq & M(1 - \alpha_{\mathsf{orig}}(u, v)) \\ -z_{2}(u) + z_{2}(v) & \leq & M(1 - \alpha_{\mathsf{orig}}(u, v)) \\ z_{1}(u) - z_{1}(v) & \geq & -M(1 - \alpha_{\mathsf{orig}}(u, v)) + 2\ell_{uv} \end{array}$$

Original Sector

$$\begin{array}{rcl} z_2(u) - z_2(v) & \leq & M(1 - \alpha_{\mathsf{orig}}(u, v)) \\ -z_2(u) + z_2(v) & \leq & M(1 - \alpha_{\mathsf{orig}}(u, v)) \\ z_1(u) - z_1(v) & \geq & -M(1 - \alpha_{\mathsf{orig}}(u, v)) + 2\ell_{uv} \end{array}$$

Next Sector

$$\begin{array}{lcl} x(u) - x(v) & \leq & M(1 - \alpha_{\mathsf{next}}(u, v)) \\ -x(u) + x(v) & \leq & M(1 - \alpha_{\mathsf{next}}(u, v)) \\ y(u) - y(v) & \geq & -M(1 - \alpha_{\mathsf{next}}(u, v)) + \ell_{\mathit{uv}} \end{array}$$

Summary of the Model

- The above constraints enforce
 - octilinearity,
 - minimum edge length,
 - (partially) relative position

Summary of the Model

- The above constraints enforce
 - octilinearity,
 - minimum edge length,
 - (partially) relative position
- Similarly:
 - preservation of embedding
 - planarity

Summary of the Model

- The above constraints enforce
 - octilinearity,
 - minimum edge length,
 - (partially) relative position
- Similarly:
 - preservation of embedding
 - planarity
- Soft constraints: weighted sum in objective function

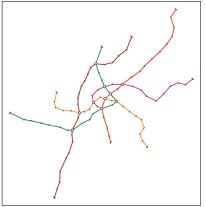
```
\text{minimize } \lambda_{\text{bends}} \operatorname{cost}_{\text{bends}} + \lambda_{\text{length}} \operatorname{cost}_{\text{length}} + \lambda_{\text{dir}} \operatorname{cost}_{\text{dir}}
```

Summary of the Model

- The above constraints enforce
 - octilinearity,
 - minimum edge length,
 - (partially) relative position
- Similarly:
 - preservation of embedding
 - planarity
- Soft constraints: weighted sum in objective function

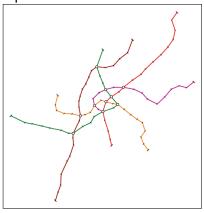
```
\text{minimize } \lambda_{\text{bends}} \operatorname{cost}_{\text{bends}} + \lambda_{\text{length}} \operatorname{cost}_{\text{length}} + \lambda_{\text{dir}} \operatorname{cost}_{\text{dir}}
```

• In total $O(|V|^2)$ constraints and variables

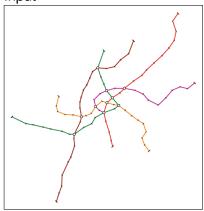

Summary of the Model

- The above constraints enforce
 - octilinearity,
 - minimum edge length,
 - (partially) relative position
- Similarly:
 - preservation of embedding
 - planarity
- Soft constraints: weighted sum in objective function

```
\text{minimize } \lambda_{\text{bends}} \operatorname{cost}_{\text{bends}} + \lambda_{\text{length}} \operatorname{cost}_{\text{length}} + \lambda_{\text{dir}} \operatorname{cost}_{\text{dir}}
```

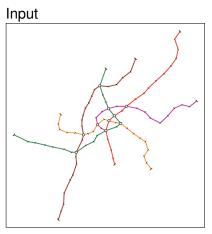

• In total $O(|V|^2)$ constraints and variables

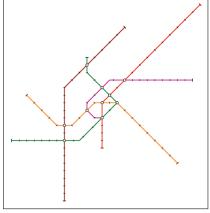
Input	V	<i>E</i>	lines
normal	90	96	F
reduced	44	50	5



Input	V	<i>E</i>	lines
normal reduced	90 44	96 50	5

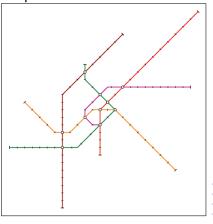
MIP	constr.	var.
normal	39363	9960
improved	23226	6048
heuristic 1	5703	1800
heuristic 2	1875	872

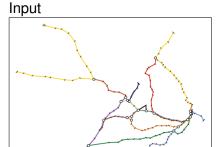



Input	V	<i>E</i>	lines
normal	90	96	F
reduced	44	50) 5

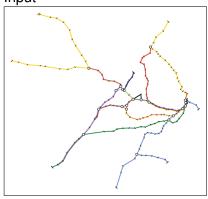
MIP	constr.	var.
normal	39363	9960
improved	23226	6048
heuristic 1	5703	1800
heuristic 2*	1875	872

*) 29 seconds w/o proof of opt.

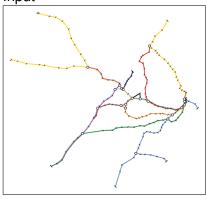

Output



Official map

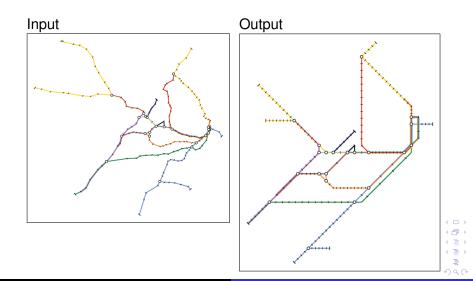

Output

Input	<i>V</i>	<i>E</i>	lines
normal reduced	174 62	183 71	10



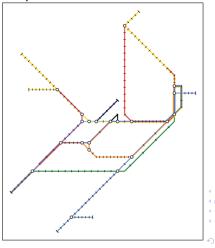
Input	V	<i>E</i>	lines
normal	174	183	10
reduced	62	71	

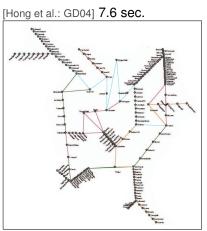
MIP	constr.	var.
normal	81416	20329
improved	45182	11545
heuristic 1	6242	2105
heuristic 2	3041	1329

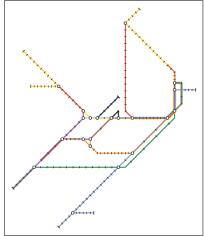


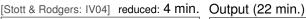
Input	<i>V</i>	<i>E</i>	lines
normal	174	183	10
reduced	62	71	

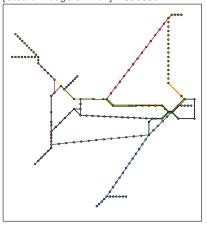
MIP	constr.	var.
normal	81416	20329
improved	45182	11545
heuristic 1*	6242	2105
heuristic 2	3041	1329

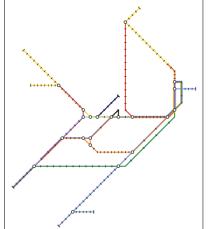

*) 22 minutes w/o proof of opt.


Official map

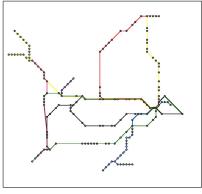

Output

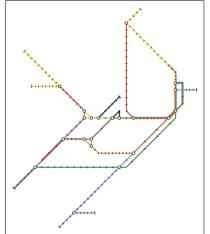

Sydney: Related Work

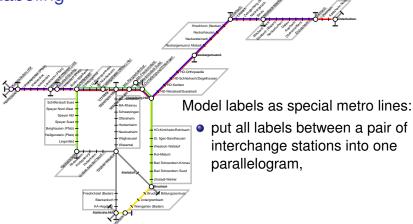



Output (22 min.)

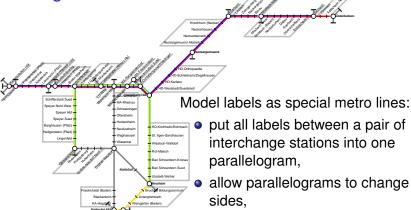
Sydney: Related Work

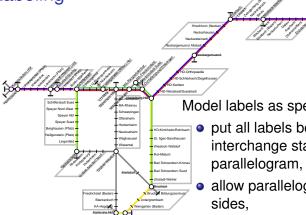




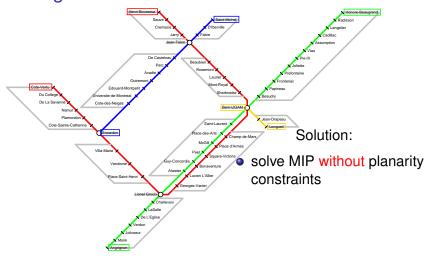

Sydney: Related Work

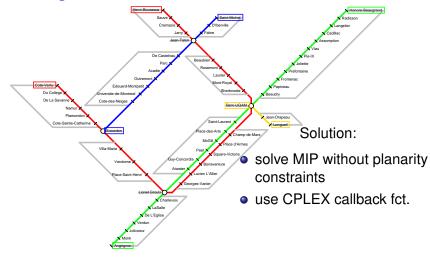
[Stott & Rodgers: IV04] normal: 28 min. Output (22 min.)

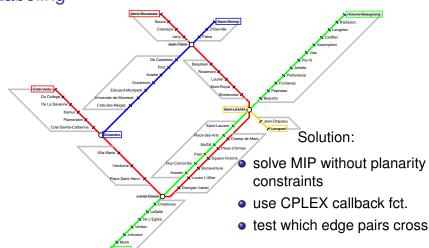


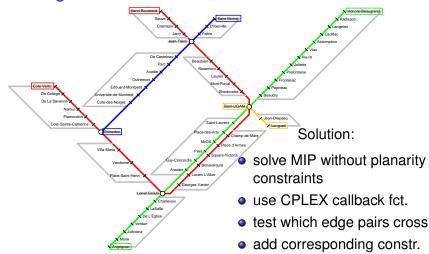


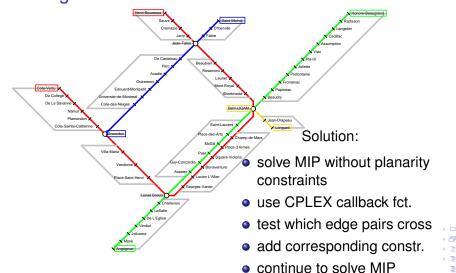
put all labels between a pair of interchange stations into one

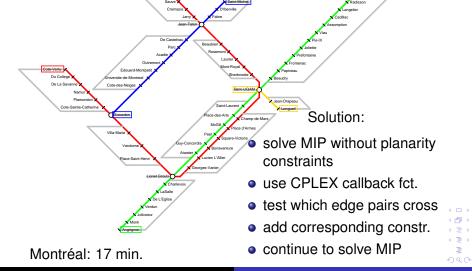


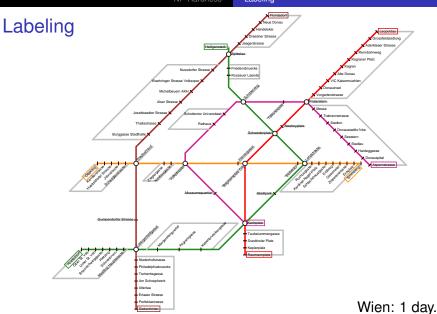

- put all labels between a pair of interchange stations into one
- allow parallelograms to change

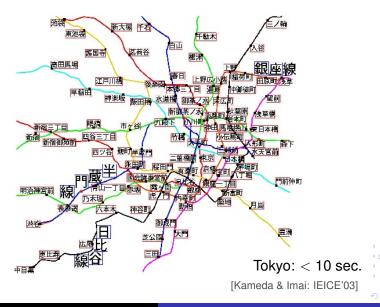



Model labels as special metro lines:


- put all labels between a pair of interchange stations into one
- allow parallelograms to change
- problem: a lot more planarity constraints :-(







Outline

- Modeling the Metro Map Problem
 - What is a metro map?
 - Hard and soft constraints
- Our Solution
 - Mixed-integer programming formulation
 - Experiments
 - Labeling
- NP-Hardness
 - Rectilinear vs. octilinear drawing
 - Reduction from planar 3-SAT

RECTILINEAR GRAPH DRAWING Decision Problem

Given a planar embedded graph *G* with max degree 4. Is there a drawing of *G* that

- preserves the embedding,
- uses straight-line edges,
- is rectilinear?

RECTILINEAR GRAPH DRAWING Decision Problem

Given a planar embedded graph *G* with max degree 4. Is there a drawing of *G* that

- preserves the embedding,
- uses straight-line edges,
- is rectilinear?

Theorem (Tamassia '87)

RECTILINEARGRAPH DRAWING can be solved efficiently.

RECTILINEAR GRAPH DRAWING Decision Problem

Given a planar embedded graph *G* with max degree 4. Is there a drawing of *G* that

- preserves the embedding,
- uses straight-line edges,
- is rectilinear?

Theorem (Tamassia '87)

RECTILINEARGRAPHDRAWING can be solved efficiently.

Proof.

By reduction to a flow problem.

RECTILINEAR GRAPH DRAWING Decision Problem

Given a planar embedded graph *G* with max degree 4. Is there a drawing of *G* that

- preserves the embedding,
- uses straight-line edges,
- is rectilinear?

Theorem (Tamassia '87)

RECTILINEARGRAPHDRAWING can be solved efficiently.

Proof.

By reduction to a flow problem.

Our Problem

METROMAPLAYOUT Decision Problem

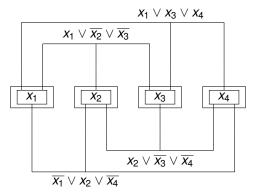
Given a planar embedded graph G with max degree 8. Is there a drawing of G that

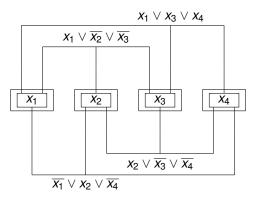
- preserves the embedding,
- uses straight-line edges,
- is octilinear?

Theorem (Nöllenburg Master'sThesis'05)

METROMAPLAYOUT is NP-hard.

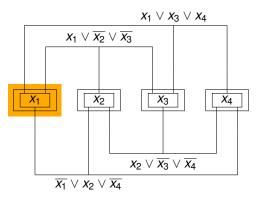
Proof.


Reduction from Planar 3-Sat to MetroMapLayout.


Outline of the Reduction

Input: planar 3-SAT formula $\varphi = (x_1 \lor x_3 \lor x_4) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land \dots$

Outline of the Reduction

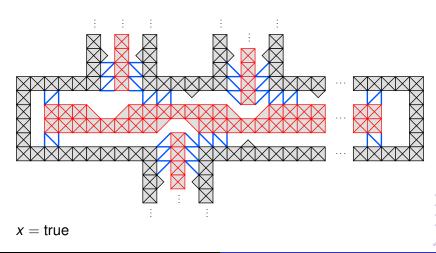

Input: planar 3-SAT formula $\varphi =$

 $(x_1 \lor x_3 \lor x_4) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land \dots$

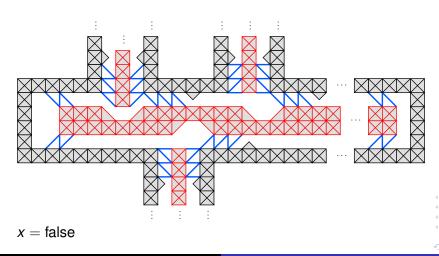
Goal: planar embedded graph G_{φ} with:

 G_{φ} has a metro map drawing $\Leftrightarrow \varphi$ satisfiable.

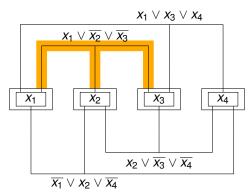
Outline of the Reduction


Input: planar 3-SAT formula $\varphi =$

 $(x_1 \lor x_3 \lor x_4) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land \dots$

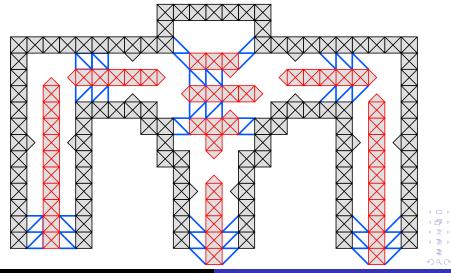

Goal: planar embedded graph G_{φ} with:

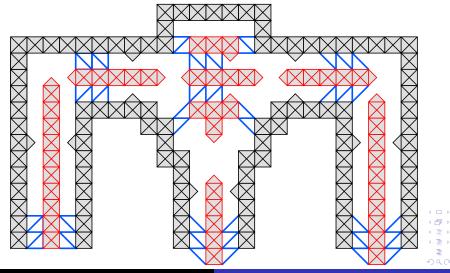
 G_{φ} has a metro map drawing $\Leftrightarrow \varphi$ satisfiable.

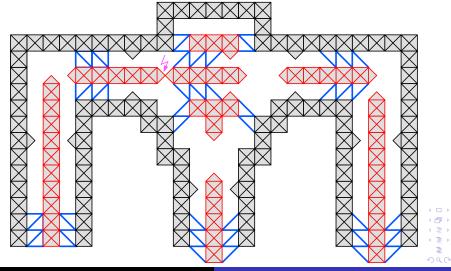

Variable Gadget

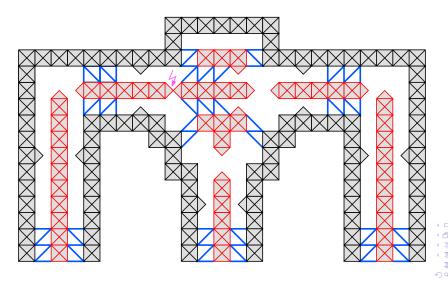
Variable Gadget

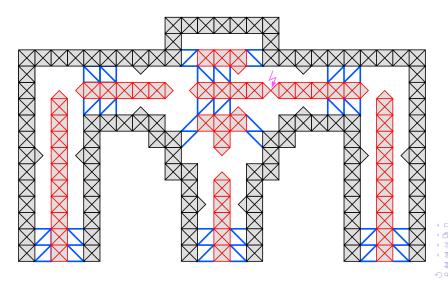
Outline of the Reduction

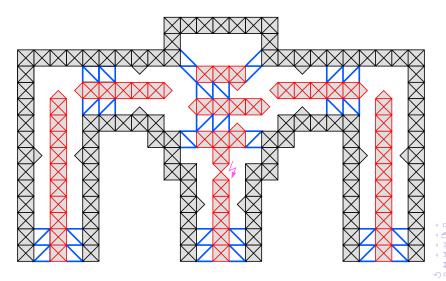



Input: planar 3-SAT formula $\varphi =$

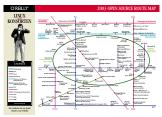

 $(x_1 \lor x_3 \lor x_4) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land \dots$


Goal: planar embedded graph G_{φ} with:

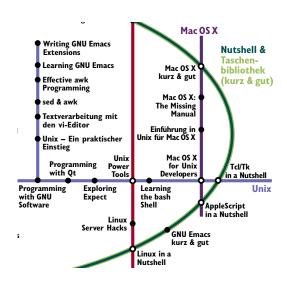

 G_{φ} has a metro map drawing $\Leftrightarrow \varphi$ satisfiable.

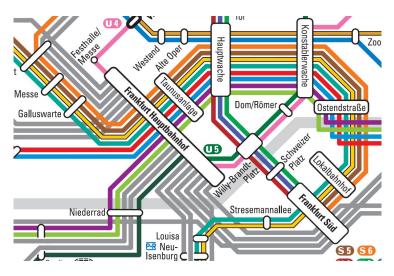






Other applications





Clipping

To do: rectangular stations & multi-edges

Summary (metro maps)

- METROMAPLAYOUT is NP-hard.
- Formulated and implemented MIP.
- Our MIP can draw any kind of sketch "nicely".
- Results comparable to manually designed maps.
- Reduced MIP size & runtime drastically.

Summary (metro maps)

- METROMAPLAYOUT is NP-hard.
- Formulated and implemented MIP.
- Our MIP can draw any kind of sketch "nicely".
- Results comparable to manually designed maps.
- Reduced MIP size & runtime drastically.

To Do

- rectangular stations
- multi-edges
- user interaction (e.g., fixing certain edge directions)