
Snapping Graph Drawings to the Grid Optimally

Andre Löffler, Thomas C. van Dijk, Alexander Wolff

Chair for Computer Science I:
Algorithms, Complexity and Knowledge-Based Systems

University of Würzburg

19. September 2016

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Introduction

Snap-rounding:

• Used to overcome precision-related problems of computational
geometry.

• Conform to list of desired properties:
• Fixed-precision representation (e.g. integer coordinates)
• Geometric similarity (no large vertex movements)
• Topological similarity (equivalence up to the collapsing of features)

Our question:

What about topological equivalence?

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Introduction

Snap-rounding:
• Used to overcome precision-related problems of computational

geometry.

• Conform to list of desired properties:
• Fixed-precision representation (e.g. integer coordinates)
• Geometric similarity (no large vertex movements)
• Topological similarity (equivalence up to the collapsing of features)

Our question:

What about topological equivalence?

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Introduction

Snap-rounding:
• Used to overcome precision-related problems of computational

geometry.
• Conform to list of desired properties:

• Fixed-precision representation (e.g. integer coordinates)
• Geometric similarity (no large vertex movements)
• Topological similarity (equivalence up to the collapsing of features)

Our question:

What about topological equivalence?

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Introduction

Snap-rounding:
• Used to overcome precision-related problems of computational

geometry.
• Conform to list of desired properties:

• Fixed-precision representation (e.g. integer coordinates)
• Geometric similarity (no large vertex movements)
• Topological similarity (equivalence up to the collapsing of features)

Our question:

What about topological equivalence?

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Intuition

Snap-rounding: Topologically valid:

• Snap-rounding already is topologically equivalent.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Intuition

Snap-rounding: Topologically valid:

• Snap-rounding already is topologically equivalent.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Intuition

Snap-rounding: Topologically valid:

• Snap-rounding already is topologically equivalent.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Intuition

Snap-rounding: Topologically valid:

• Snap-rounding alters incidences and forces edges to collapse.
• Rounding to the nearest grid point changes the embedding of the

upper-left vertex.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Intuition

Snap-rounding: Topologically valid:

• Snap-rounding alters incidences and forces edges to collapse.
• Rounding to the nearest grid point changes the embedding of the

upper-left vertex.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Intuition

Snap-rounding: Topologically valid:

• Snap-rounding alters incidences and forces edges to collapse.
• Rounding to the nearest grid point changes the embedding of the

upper-left vertex.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Intuition

Snap-rounding: Topologically valid:

• Snap-rounding alters incidences and forces edges to collapse.

• Rounding to the nearest grid point changes the embedding of the
upper-left vertex.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Intuition

Snap-rounding: Topologically valid:

• Snap-rounding alters incidences and forces edges to collapse.
• Rounding to the nearest grid point changes the embedding of the

upper-left vertex.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Intuition

Snap-rounding: Topologically valid:

• Snap-rounding heavily modifies this graph.
• “Rounding” dense structures with no features collapsing is closely

related to creating minimum-area drawings.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Intuition

Snap-rounding: Topologically valid:

• Snap-rounding heavily modifies this graph.
• “Rounding” dense structures with no features collapsing is closely

related to creating minimum-area drawings.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Intuition

Snap-rounding: Topologically valid:

• Snap-rounding heavily modifies this graph.
• “Rounding” dense structures with no features collapsing is closely

related to creating minimum-area drawings.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Intuition

Snap-rounding: Topologically valid:

• Snap-rounding heavily modifies this graph.

• “Rounding” dense structures with no features collapsing is closely
related to creating minimum-area drawings.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Intuition

Snap-rounding: Topologically valid:

• Snap-rounding heavily modifies this graph.
• “Rounding” dense structures with no features collapsing is closely

related to creating minimum-area drawings.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Topologically Safe Snapping

• We relax on geometric similarity and allow for larger vertex
movements.

• We do not allow for features to collapse.

Problem (Topologially Safe Snapping)
Graph G = (V ,E) with given embedding,
bounding box B = [0,Xmax]× [0,Ymax].

Round G to integer coordinates within B, preserving the given
embedding and minimizing total vertex movement.

• Movement is measured in Manhattan-distance.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Topologically Safe Snapping

• We relax on geometric similarity and allow for larger vertex
movements.

• We do not allow for features to collapse.

Problem (Topologially Safe Snapping)
Graph G = (V ,E) with given embedding,
bounding box B = [0,Xmax]× [0,Ymax].

Round G to integer coordinates within B, preserving the given
embedding and minimizing total vertex movement.

• Movement is measured in Manhattan-distance.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Topologically Safe Snapping

• We relax on geometric similarity and allow for larger vertex
movements.

• We do not allow for features to collapse.

Problem (Topologially Safe Snapping)
Graph G = (V ,E) with given embedding,
bounding box B = [0,Xmax]× [0,Ymax].

Round G to integer coordinates within B, preserving the given
embedding and minimizing total vertex movement.

• Movement is measured in Manhattan-distance.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Topologically Safe Snapping

• We relax on geometric similarity and allow for larger vertex
movements.

• We do not allow for features to collapse.

Problem (Topologially Safe Snapping)
Graph G = (V ,E) with given embedding,
bounding box B = [0,Xmax]× [0,Ymax].

Round G to integer coordinates within B, preserving the given
embedding and minimizing total vertex movement.

• Movement is measured in Manhattan-distance.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Our Contribution

• NP-hardness proof for Topologially Safe Snapping.

• Integer Linear Program (ideas only)

• Experimental Evaluation

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Our Contribution

• NP-hardness proof for Topologially Safe Snapping.

• Integer Linear Program (ideas only)

• Experimental Evaluation

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Our Contribution

• NP-hardness proof for Topologially Safe Snapping.

• Integer Linear Program (ideas only)

• Experimental Evaluation

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

The NP-hardness proof

NP-Hardness

• We reduce from Planar Monotone 3SAT.

• For reduction, consider a decision variant:

Problem (Cost-bound Topologially Safe Snapping)
Graph G = (V ,E) with given embedding,
bounding box B = [0,Xmax]× [0,Ymax], cost-bound cmin ∈ R+.

Can G be rounded to integer coordinates within B, preserving the given
embedding with total movement of cmin?

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

NP-Hardness

• We reduce from Planar Monotone 3SAT.
• For reduction, consider a decision variant:

Problem (Cost-bound Topologially Safe Snapping)
Graph G = (V ,E) with given embedding,
bounding box B = [0,Xmax]× [0,Ymax], cost-bound cmin ∈ R+.

Can G be rounded to integer coordinates within B, preserving the given
embedding with total movement of cmin?

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

PM3SAT-formula

(X ∨ Z)

(X ∨ Y)

X Y Z

(X ∨ Y ∨ Z)

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

PM3SAT-formula

(X ∨ Z)

(X ∨ Y)

X Y Z

(X ∨ Y ∨ Z)

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Our Construction

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Our Construction

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Our Construction

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Our Construction

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Tunnels & Pushes

• For a PM3SAT-formula F , our construction resembles its graph.

• White vertices always cost at least 1 to be rounded.
• If F is satisfiable, no black vertex needs to be moved.
• Edges form tunnels

that transmit pushes.

• Topological safety ensures consistency of transmission.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Tunnels & Pushes

• For a PM3SAT-formula F , our construction resembles its graph.
• White vertices always cost at least 1 to be rounded.
• If F is satisfiable, no black vertex needs to be moved.

• Edges form tunnels

that transmit pushes.

• Topological safety ensures consistency of transmission.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Tunnels & Pushes

• For a PM3SAT-formula F , our construction resembles its graph.
• White vertices always cost at least 1 to be rounded.
• If F is satisfiable, no black vertex needs to be moved.
• Edges form tunnels

that transmit pushes.
• Topological safety ensures consistency of transmission.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Tunnels & Pushes

• For a PM3SAT-formula F , our construction resembles its graph.
• White vertices always cost at least 1 to be rounded.
• If F is satisfiable, no black vertex needs to be moved.
• Edges form tunnels

that transmit pushes.
• Topological safety ensures consistency of transmission.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Tunnels & Pushes

• For a PM3SAT-formula F , our construction resembles its graph.
• White vertices always cost at least 1 to be rounded.
• If F is satisfiable, no black vertex needs to be moved.
• Edges form tunnels that transmit pushes.

• Topological safety ensures consistency of transmission.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Tunnels & Pushes

• For a PM3SAT-formula F , our construction resembles its graph.
• White vertices always cost at least 1 to be rounded.
• If F is satisfiable, no black vertex needs to be moved.
• Edges form tunnels that transmit pushes.

• Topological safety ensures consistency of transmission.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Tunnels & Pushes

• For a PM3SAT-formula F , our construction resembles its graph.
• White vertices always cost at least 1 to be rounded.
• If F is satisfiable, no black vertex needs to be moved.
• Edges form tunnels that transmit pushes.
• Topological safety ensures consistency of transmission.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Clauses

• At the center, there is a decider vertex
with (up to) three possibible target
grid points.

• Following one arrow, rounding
generates pushes.

• Blocking the bottom tunnel gives
clause-gadgets for two variables.

• All-unnegated gadgets are constructed
mirroring at a horizontal line.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Clauses

• At the center, there is a decider vertex
with (up to) three possibible target
grid points.

• Following one arrow, rounding
generates pushes.

• Blocking the bottom tunnel gives
clause-gadgets for two variables.

• All-unnegated gadgets are constructed
mirroring at a horizontal line.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Clauses

• At the center, there is a decider vertex
with (up to) three possibible target
grid points.

• Following one arrow, rounding
generates pushes.

• Blocking the bottom tunnel gives
clause-gadgets for two variables.

• All-unnegated gadgets are constructed
mirroring at a horizontal line.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Clauses

• At the center, there is a decider vertex
with (up to) three possibible target
grid points.

• Following one arrow, rounding
generates pushes.

• Blocking the bottom tunnel gives
clause-gadgets for two variables.

• All-unnegated gadgets are constructed
mirroring at a horizontal line.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Variables

• Has tunnel connections for negated
and unnegated occurances.

• Grows horizontally with number of
occurances.

• At the left wall, there is an assignment
vertex.

• Following one arrow blocks tunnels on
this side and creates pushes.

• Moving the assignment vertex up
equals a true-assignment, false
otherwise.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Variables

• Has tunnel connections for negated
and unnegated occurances.

• Grows horizontally with number of
occurances.

• At the left wall, there is an assignment
vertex.

• Following one arrow blocks tunnels on
this side and creates pushes.

• Moving the assignment vertex up
equals a true-assignment, false
otherwise.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Variables

• Has tunnel connections for negated
and unnegated occurances.

• Grows horizontally with number of
occurances.

• At the left wall, there is an assignment
vertex.

• Following one arrow blocks tunnels on
this side and creates pushes.

• Moving the assignment vertex up
equals a true-assignment, false
otherwise.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Variables

• Has tunnel connections for negated
and unnegated occurances.

• Grows horizontally with number of
occurances.

• At the left wall, there is an assignment
vertex.

• Following one arrow blocks tunnels on
this side and creates pushes.

• Moving the assignment vertex up
equals a true-assignment, false
otherwise.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Variables

• Has tunnel connections for negated
and unnegated occurances.

• Grows horizontally with number of
occurances.

• At the left wall, there is an assignment
vertex.

• Following one arrow blocks tunnels on
this side and creates pushes.

• Moving the assignment vertex up
equals a true-assignment, false
otherwise.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Hardness Proof

Theorem
Cost-bound Topologially Safe Snapping is NP-complete.

Sketch of proof:

• Combine gadgets according to formula-graphs structure.
• Cost-bound cmin equals number of white vertices.
• If total movement cost equals cmin, truth-assignment is obtained

from assignment vertices.
• If the formula is unsatisfiable, at least one black vertex has to be

moved ⇒ cmin is exceeded.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Hardness Proof

Theorem
Cost-bound Topologially Safe Snapping is NP-complete.

Sketch of proof:
• Combine gadgets according to formula-graphs structure.

• Cost-bound cmin equals number of white vertices.
• If total movement cost equals cmin, truth-assignment is obtained

from assignment vertices.
• If the formula is unsatisfiable, at least one black vertex has to be

moved ⇒ cmin is exceeded.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Hardness Proof

Theorem
Cost-bound Topologially Safe Snapping is NP-complete.

Sketch of proof:
• Combine gadgets according to formula-graphs structure.
• Cost-bound cmin equals number of white vertices.

• If total movement cost equals cmin, truth-assignment is obtained
from assignment vertices.

• If the formula is unsatisfiable, at least one black vertex has to be
moved ⇒ cmin is exceeded.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Hardness Proof

Theorem
Cost-bound Topologially Safe Snapping is NP-complete.

Sketch of proof:
• Combine gadgets according to formula-graphs structure.
• Cost-bound cmin equals number of white vertices.
• If total movement cost equals cmin, truth-assignment is obtained

from assignment vertices.

• If the formula is unsatisfiable, at least one black vertex has to be
moved ⇒ cmin is exceeded.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Hardness Proof

Theorem
Cost-bound Topologially Safe Snapping is NP-complete.

Sketch of proof:
• Combine gadgets according to formula-graphs structure.
• Cost-bound cmin equals number of white vertices.
• If total movement cost equals cmin, truth-assignment is obtained

from assignment vertices.
• If the formula is unsatisfiable, at least one black vertex has to be

moved ⇒ cmin is exceeded.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Other results

Corollary
Topologially Safe Snapping is also NP-hard when using
Euclidean distance.

In this case it is also NP-hard to minimize the
maximum movement instead of the sum.

Corollary
Euclidean Topologially Safe Snapping with the objective to
minimize maximum movement is APX -hard.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Other results

Corollary
Topologially Safe Snapping is also NP-hard when using
Euclidean distance. In this case it is also NP-hard to minimize the
maximum movement instead of the sum.

Corollary
Euclidean Topologially Safe Snapping with the objective to
minimize maximum movement is APX -hard.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Other results

Corollary
Topologially Safe Snapping is also NP-hard when using
Euclidean distance. In this case it is also NP-hard to minimize the
maximum movement instead of the sum.

Corollary
Euclidean Topologially Safe Snapping with the objective to
minimize maximum movement is APX -hard.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Integer Linear Program

Overview

Things to handle:

• Unique vertex coordinates

(very simple)

• Planarity
• Embeddings

Basics:
• xv , yv are output coordinates.
• Objective function:

Minimize
∑
v∈V

(|xv − Xv |+ |yv − Yv |)

• Constraint: distinct vertex coordinates.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Overview

Things to handle:
• Unique vertex coordinates

(very simple)
• Planarity
• Embeddings

Basics:
• xv , yv are output coordinates.
• Objective function:

Minimize
∑
v∈V

(|xv − Xv |+ |yv − Yv |)

• Constraint: distinct vertex coordinates.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Overview

Things to handle:
• Unique vertex coordinates (very simple)

• Planarity
• Embeddings

Basics:
• xv , yv are output coordinates.
• Objective function:

Minimize
∑
v∈V

(|xv − Xv |+ |yv − Yv |)

• Constraint: distinct vertex coordinates.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Overview

Things to handle:
• Unique vertex coordinates (very simple)
• Planarity

• Embeddings
Basics:

• xv , yv are output coordinates.
• Objective function:

Minimize
∑
v∈V

(|xv − Xv |+ |yv − Yv |)

• Constraint: distinct vertex coordinates.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Overview

Things to handle:
• Unique vertex coordinates (very simple)
• Planarity
• Embeddings

Basics:
• xv , yv are output coordinates.
• Objective function:

Minimize
∑
v∈V

(|xv − Xv |+ |yv − Yv |)

• Constraint: distinct vertex coordinates.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Overview

Things to handle:
• Unique vertex coordinates (very simple)
• Planarity
• Embeddings

Basics:

• xv , yv are output coordinates.
• Objective function:

Minimize
∑
v∈V

(|xv − Xv |+ |yv − Yv |)

• Constraint: distinct vertex coordinates.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Overview

Things to handle:
• Unique vertex coordinates (very simple)
• Planarity
• Embeddings

Basics:
• xv , yv are output coordinates.

• Objective function:

Minimize
∑
v∈V

(|xv − Xv |+ |yv − Yv |)

• Constraint: distinct vertex coordinates.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Overview

Things to handle:
• Unique vertex coordinates (very simple)
• Planarity
• Embeddings

Basics:
• xv , yv are output coordinates.
• Objective function:

Minimize
∑
v∈V

(|xv − Xv |+ |yv − Yv |)

• Constraint: distinct vertex coordinates.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Overview

Things to handle:
• Unique vertex coordinates (very simple)
• Planarity
• Embeddings

Basics:
• xv , yv are output coordinates.
• Objective function:

Minimize
∑
v∈V

(|xv − Xv |+ |yv − Yv |)

• Constraint: distinct vertex coordinates.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Planarity

• Similar to Metro-Map Drawing by Nöllenburg & Wolff. [GD ’05]

• Idea: every edge has some Dmin-neighborhood that only incident
edges are allowed to intersect.

Octilinear, Dmin = 0.5
• We consider any possible direction (not only octilinear ones).
• According to bounding box size:

Dmin =
1

max{Xmax,Ymax}+ 1

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Planarity

• Similar to Metro-Map Drawing by Nöllenburg & Wolff. [GD ’05]
• Idea: every edge has some Dmin-neighborhood that only incident

edges are allowed to intersect.

Octilinear, Dmin = 0.5

• We consider any possible direction (not only octilinear ones).
• According to bounding box size:

Dmin =
1

max{Xmax,Ymax}+ 1

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Planarity

• Similar to Metro-Map Drawing by Nöllenburg & Wolff. [GD ’05]
• Idea: every edge has some Dmin-neighborhood that only incident

edges are allowed to intersect.

Octilinear, Dmin = 0.5
• We consider any possible direction (not only octilinear ones).

• According to bounding box size:

Dmin =
1

max{Xmax,Ymax}+ 1

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Planarity

• Similar to Metro-Map Drawing by Nöllenburg & Wolff. [GD ’05]
• Idea: every edge has some Dmin-neighborhood that only incident

edges are allowed to intersect.

Octilinear, Dmin = 0.5
• We consider any possible direction (not only octilinear ones).
• According to bounding box size:

Dmin =
1

max{Xmax,Ymax}+ 1

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Directions

• Generated using the Farey sequence:

0

1

0 1
0/1

1/3
1/2
2/3

1/1

• Inside [−k, k]× [−k, k] area, there are Θ(k2) directions to consider.
• Consider them to be ordered counter-clockwise.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Directions

• Generated using the Farey sequence:

0

1

0 1
0/1

1/3
1/2
2/3

1/1

• Inside [−k, k]× [−k, k] area, there are Θ(k2) directions to consider.
• Consider them to be ordered counter-clockwise.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Directions

• Generated using the Farey sequence:

0

1

0 1
0/1

1/3
1/2
2/3

1/1

• Inside [−k, k]× [−k, k] area, there are Θ(k2) directions to consider.
• Consider them to be ordered counter-clockwise.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Directions

• Generated using the Farey sequence:

0

1

0 1
0/1

1/3
1/2
2/3

1/1

• Inside [−k, k]× [−k, k] area, there are Θ(k2) directions to consider.

• Consider them to be ordered counter-clockwise.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Directions

• Generated using the Farey sequence:

0

1

0 1
0/1

1/3
1/2
2/3

1/1

• Inside [−k, k]× [−k, k] area, there are Θ(k2) directions to consider.
• Consider them to be ordered counter-clockwise.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Embeddings

• Circular order of neighbors arround any vertex must not change.

• Idea: for every vertex-neighbor pair, detect direction of that edge.
• Compare direction slopes to edge slope.

v1

v2

vD

• Map edges to directions

and compare the ordering of those
directions to the given embedding.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Embeddings

• Circular order of neighbors arround any vertex must not change.
• Idea: for every vertex-neighbor pair, detect direction of that edge.

• Compare direction slopes to edge slope.

v1

v2

vD

• Map edges to directions

and compare the ordering of those
directions to the given embedding.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Embeddings

• Circular order of neighbors arround any vertex must not change.
• Idea: for every vertex-neighbor pair, detect direction of that edge.
• Compare direction slopes to edge slope.

v1

v2

vD

• Map edges to directions

and compare the ordering of those
directions to the given embedding.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Embeddings

• Circular order of neighbors arround any vertex must not change.
• Idea: for every vertex-neighbor pair, detect direction of that edge.
• Compare direction slopes to edge slope.

v1

v2

vD

• Map edges to directions

and compare the ordering of those
directions to the given embedding.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Embeddings

• Circular order of neighbors arround any vertex must not change.
• Idea: for every vertex-neighbor pair, detect direction of that edge.
• Compare direction slopes to edge slope.

v1

v2

vD

• Map edges to directions

and compare the ordering of those
directions to the given embedding.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Embeddings

• Circular order of neighbors arround any vertex must not change.
• Idea: for every vertex-neighbor pair, detect direction of that edge.
• Compare direction slopes to edge slope.

v1

v2

vD

• Map edges to directions and compare the ordering of those
directions to the given embedding.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Integer Linear Program

Theorem
This ILP solves Topologially Safe Snapping.

• In practice, our model easily becomes too large to solve (in
reasonable time).

• We use delayed constraint generation to iteratively improve our
model.

• We generate most constraints on demand:

first iteration is simple
rounding (with unique coordinates).

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Integer Linear Program

Theorem
This ILP solves Topologially Safe Snapping.

• In practice, our model easily becomes too large to solve (in
reasonable time).

• We use delayed constraint generation to iteratively improve our
model.

• We generate most constraints on demand:

first iteration is simple
rounding (with unique coordinates).

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Integer Linear Program

Theorem
This ILP solves Topologially Safe Snapping.

• In practice, our model easily becomes too large to solve (in
reasonable time).

• We use delayed constraint generation to iteratively improve our
model.

• We generate most constraints on demand:

first iteration is simple
rounding (with unique coordinates).

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Integer Linear Program

Theorem
This ILP solves Topologially Safe Snapping.

• In practice, our model easily becomes too large to solve (in
reasonable time).

• We use delayed constraint generation to iteratively improve our
model.

• We generate most constraints on demand:

first iteration is simple
rounding (with unique coordinates).

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Integer Linear Program

Theorem
This ILP solves Topologially Safe Snapping.

• In practice, our model easily becomes too large to solve (in
reasonable time).

• We use delayed constraint generation to iteratively improve our
model.

• We generate most constraints on demand: first iteration is simple
rounding (with unique coordinates).

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Experimental Evaluation

The Setup

• Using the JAVA bindings for IBM CPLEX.

• Test system: Linux server with 16 cores (2666 MHz, 4 MB cache),
16 GB main memory.

• Numbers of rows & columns before CPLEX presolving.
• Runtime in wall-clock time.
• For delayed constraint generation, time is accumulated total.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

The Setup

• Using the JAVA bindings for IBM CPLEX.
• Test system: Linux server with 16 cores (2666 MHz, 4 MB cache),

16 GB main memory.

• Numbers of rows & columns before CPLEX presolving.
• Runtime in wall-clock time.
• For delayed constraint generation, time is accumulated total.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

The Setup

• Using the JAVA bindings for IBM CPLEX.
• Test system: Linux server with 16 cores (2666 MHz, 4 MB cache),

16 GB main memory.
• Numbers of rows & columns before CPLEX presolving.

• Runtime in wall-clock time.
• For delayed constraint generation, time is accumulated total.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

The Setup

• Using the JAVA bindings for IBM CPLEX.
• Test system: Linux server with 16 cores (2666 MHz, 4 MB cache),

16 GB main memory.
• Numbers of rows & columns before CPLEX presolving.
• Runtime in wall-clock time.

• For delayed constraint generation, time is accumulated total.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

The Setup

• Using the JAVA bindings for IBM CPLEX.
• Test system: Linux server with 16 cores (2666 MHz, 4 MB cache),

16 GB main memory.
• Numbers of rows & columns before CPLEX presolving.
• Runtime in wall-clock time.
• For delayed constraint generation, time is accumulated total.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

The Good

• Even small examples take several
seconds to solve.

• This is a very simple example!
• Delayed constraint generation gives

speed-up.

Full Delayed
rows

42 699 88

cols

11 300 110

time

10.6 s 0.5 s

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

The Good

• Even small examples take several
seconds to solve.

• This is a very simple example!
• Delayed constraint generation gives

speed-up.

Full Delayed
rows

42 699 88

cols

11 300 110

time

10.6 s 0.5 s

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

The Good

• Even small examples take several
seconds to solve.

• This is a very simple example!
• Delayed constraint generation gives

speed-up.

Full Delayed
rows 42 699

88

cols 11 300

110

time 10.6 s

0.5 s

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

The Good

• Even small examples take several
seconds to solve.

• This is a very simple example!

• Delayed constraint generation gives
speed-up.

Full Delayed
rows 42 699

88

cols 11 300

110

time 10.6 s

0.5 s

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

The Good

• Even small examples take several
seconds to solve.

• This is a very simple example!
• Delayed constraint generation gives

speed-up.

Full Delayed
rows 42 699 88
cols 11 300 110
time 10.6 s 0.5 s

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

The Bad

• We have canceled this computation
after 10 minutes using the full
model.

• Delayed constraint generation did
cut a lot of “trivial” constraints,
but...

• ...waiting more than 3 minutes is
too long for a graph on 20 vertices!

Full Delayed
rows

323 441 15 161

cols

82 816 4 044

time

† 211.6 s

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

The Bad

• We have canceled this computation
after 10 minutes using the full
model.

• Delayed constraint generation did
cut a lot of “trivial” constraints,
but...

• ...waiting more than 3 minutes is
too long for a graph on 20 vertices!

Full Delayed
rows

323 441 15 161

cols

82 816 4 044

time

† 211.6 s

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

The Bad

• We have canceled this computation
after 10 minutes using the full
model.

• Delayed constraint generation did
cut a lot of “trivial” constraints,
but...

• ...waiting more than 3 minutes is
too long for a graph on 20 vertices!

Full Delayed
rows 323 441

15 161

cols 82 816

4 044

time †

211.6 s

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

The Bad

• We have canceled this computation
after 10 minutes using the full
model.

• Delayed constraint generation did
cut a lot of “trivial” constraints,
but...

• ...waiting more than 3 minutes is
too long for a graph on 20 vertices!

Full Delayed
rows 323 441 15 161
cols 82 816 4 044
time †

211.6 s

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

The Bad

• We have canceled this computation
after 10 minutes using the full
model.

• Delayed constraint generation did
cut a lot of “trivial” constraints,
but...

• ...waiting more than 3 minutes is
too long for a graph on 20 vertices!

Full Delayed
rows 323 441 15 161
cols 82 816 4 044
time † 211.6 s

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

The Ugly

• Graph and bounding box are small,
thus the model is small.

• Using delayed constraint generation
did worsen runtime.

• Rounding this graph is very similar
to finding a minimum-area drawing

,
which is also NP-hard.

Full Delayed
rows

2 603 2 271

cols

916 816

time

4.8 s 20.2 s

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

The Ugly

• Graph and bounding box are small,
thus the model is small.

• Using delayed constraint generation
did worsen runtime.

• Rounding this graph is very similar
to finding a minimum-area drawing

,
which is also NP-hard.

Full Delayed
rows

2 603 2 271

cols

916 816

time

4.8 s 20.2 s

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

The Ugly

• Graph and bounding box are small,
thus the model is small.

• Using delayed constraint generation
did worsen runtime.

• Rounding this graph is very similar
to finding a minimum-area drawing

,
which is also NP-hard.

Full Delayed
rows 2 603

2 271

cols 916

816

time 4.8 s

20.2 s

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

The Ugly

• Graph and bounding box are small,
thus the model is small.

• Using delayed constraint generation
did worsen runtime.

• Rounding this graph is very similar
to finding a minimum-area drawing

,
which is also NP-hard.

Full Delayed
rows 2 603 2 271
cols 916 816
time 4.8 s 20.2 s

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

The Ugly

• Graph and bounding box are small,
thus the model is small.

• Using delayed constraint generation
did worsen runtime.

• Rounding this graph is very similar
to finding a minimum-area drawing

,
which is also NP-hard.

Full Delayed
rows 2 603 2 271
cols 916 816
time 4.8 s 20.2 s

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

The Ugly

• Graph and bounding box are small,
thus the model is small.

• Using delayed constraint generation
did worsen runtime.

• Rounding this graph is very similar
to finding a minimum-area drawing,
which is also NP-hard.

Full Delayed
rows 2 603 2 271
cols 916 816
time 4.8 s 20.2 s

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Conclusion

What we did:

• We introduce the problem Topologially Safe Snapping
• and provide a proof that it is NP-hard.
• We give an integer linear program to solve it,
• that can be modified to find minimum-area drawings of graphs as

well.

Open problems:
• Find better formulations for the constraints ⇒ speed-up ILP.
• Find some heuristic algorithm.
• Questions about approximability remain open.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Conclusion

What we did:
• We introduce the problem Topologially Safe Snapping

• and provide a proof that it is NP-hard.
• We give an integer linear program to solve it,
• that can be modified to find minimum-area drawings of graphs as

well.

Open problems:
• Find better formulations for the constraints ⇒ speed-up ILP.
• Find some heuristic algorithm.
• Questions about approximability remain open.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Conclusion

What we did:
• We introduce the problem Topologially Safe Snapping
• and provide a proof that it is NP-hard.

• We give an integer linear program to solve it,
• that can be modified to find minimum-area drawings of graphs as

well.

Open problems:
• Find better formulations for the constraints ⇒ speed-up ILP.
• Find some heuristic algorithm.
• Questions about approximability remain open.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Conclusion

What we did:
• We introduce the problem Topologially Safe Snapping
• and provide a proof that it is NP-hard.
• We give an integer linear program to solve it,

• that can be modified to find minimum-area drawings of graphs as
well.

Open problems:
• Find better formulations for the constraints ⇒ speed-up ILP.
• Find some heuristic algorithm.
• Questions about approximability remain open.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Conclusion

What we did:
• We introduce the problem Topologially Safe Snapping
• and provide a proof that it is NP-hard.
• We give an integer linear program to solve it,
• that can be modified to find minimum-area drawings of graphs as

well.

Open problems:
• Find better formulations for the constraints ⇒ speed-up ILP.
• Find some heuristic algorithm.
• Questions about approximability remain open.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Conclusion

What we did:
• We introduce the problem Topologially Safe Snapping
• and provide a proof that it is NP-hard.
• We give an integer linear program to solve it,
• that can be modified to find minimum-area drawings of graphs as

well.

Open problems:

• Find better formulations for the constraints ⇒ speed-up ILP.
• Find some heuristic algorithm.
• Questions about approximability remain open.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Conclusion

What we did:
• We introduce the problem Topologially Safe Snapping
• and provide a proof that it is NP-hard.
• We give an integer linear program to solve it,
• that can be modified to find minimum-area drawings of graphs as

well.

Open problems:
• Find better formulations for the constraints ⇒ speed-up ILP.

• Find some heuristic algorithm.
• Questions about approximability remain open.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Conclusion

What we did:
• We introduce the problem Topologially Safe Snapping
• and provide a proof that it is NP-hard.
• We give an integer linear program to solve it,
• that can be modified to find minimum-area drawings of graphs as

well.

Open problems:
• Find better formulations for the constraints ⇒ speed-up ILP.
• Find some heuristic algorithm.

• Questions about approximability remain open.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

Conclusion

What we did:
• We introduce the problem Topologially Safe Snapping
• and provide a proof that it is NP-hard.
• We give an integer linear program to solve it,
• that can be modified to find minimum-area drawings of graphs as

well.

Open problems:
• Find better formulations for the constraints ⇒ speed-up ILP.
• Find some heuristic algorithm.
• Questions about approximability remain open.

Andre Löffler, Thomas C. van Dijk, Alexander Wolff Snapping Graph Drawings to the Grid Optimally

	Introduction
	Conclusion

