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Introduction

Snap-rounding:

• Used to overcome precision-related problems of computational
geometry.

• Conform to list of desired properties:
• Fixed-precision representation (e.g. integer coordinates)
• Geometric similarity (no large vertex movements)
• Topological similarity (equivalence up to the collapsing of features)

Our question:

What about topological equivalence?
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Intuition

Snap-rounding: Topologically valid:

• Snap-rounding already is topologically equivalent.
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Intuition

Snap-rounding: Topologically valid:

• Snap-rounding alters incidences and forces edges to collapse.
• Rounding to the nearest grid point changes the embedding of the

upper-left vertex.
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Intuition

Snap-rounding: Topologically valid:

• Snap-rounding heavily modifies this graph.
• “Rounding” dense structures with no features collapsing is closely

related to creating minimum-area drawings.
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Topologically Safe Snapping

• We relax on geometric similarity and allow for larger vertex
movements.

• We do not allow for features to collapse.

Problem (Topologially Safe Snapping)
Graph G = (V ,E) with given embedding,
bounding box B = [0,Xmax]× [0,Ymax].

Round G to integer coordinates within B, preserving the given
embedding and minimizing total vertex movement.

• Movement is measured in Manhattan-distance.
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Our Contribution

• NP-hardness proof for Topologially Safe Snapping.

• Integer Linear Program (ideas only)

• Experimental Evaluation
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The NP-hardness proof



NP-Hardness

• We reduce from Planar Monotone 3SAT.

• For reduction, consider a decision variant:

Problem (Cost-bound Topologially Safe Snapping)
Graph G = (V ,E) with given embedding,
bounding box B = [0,Xmax]× [0,Ymax], cost-bound cmin ∈ R+.

Can G be rounded to integer coordinates within B, preserving the given
embedding with total movement of cmin?
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PM3SAT-formula

(X ∨ Z)

(X ∨ Y )

X Y Z

(X ∨ Y ∨ Z)
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Our Construction
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Tunnels & Pushes

• For a PM3SAT-formula F , our construction resembles its graph.

• White vertices always cost at least 1 to be rounded.
• If F is satisfiable, no black vertex needs to be moved.
• Edges form tunnels

that transmit pushes.

• Topological safety ensures consistency of transmission.
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Clauses

• At the center, there is a decider vertex
with (up to) three possibible target
grid points.

• Following one arrow, rounding
generates pushes.

• Blocking the bottom tunnel gives
clause-gadgets for two variables.

• All-unnegated gadgets are constructed
mirroring at a horizontal line.
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Variables

• Has tunnel connections for negated
and unnegated occurances.

• Grows horizontally with number of
occurances.

• At the left wall, there is an assignment
vertex.

• Following one arrow blocks tunnels on
this side and creates pushes.

• Moving the assignment vertex up
equals a true-assignment, false
otherwise.
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Hardness Proof

Theorem
Cost-bound Topologially Safe Snapping is NP-complete.

Sketch of proof:

• Combine gadgets according to formula-graphs structure.
• Cost-bound cmin equals number of white vertices.
• If total movement cost equals cmin, truth-assignment is obtained

from assignment vertices.
• If the formula is unsatisfiable, at least one black vertex has to be

moved ⇒ cmin is exceeded.
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Other results

Corollary
Topologially Safe Snapping is also NP-hard when using
Euclidean distance.

In this case it is also NP-hard to minimize the
maximum movement instead of the sum.

Corollary
Euclidean Topologially Safe Snapping with the objective to
minimize maximum movement is APX -hard.
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Integer Linear Program



Overview

Things to handle:

• Unique vertex coordinates

(very simple)

• Planarity
• Embeddings

Basics:
• xv , yv are output coordinates.
• Objective function:

Minimize
∑
v∈V

(|xv − Xv |+ |yv − Yv |)

• Constraint: distinct vertex coordinates.
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Planarity

• Similar to Metro-Map Drawing by Nöllenburg & Wolff. [GD ’05]

• Idea: every edge has some Dmin-neighborhood that only incident
edges are allowed to intersect.

Octilinear, Dmin = 0.5
• We consider any possible direction (not only octilinear ones).
• According to bounding box size:

Dmin =
1

max{Xmax,Ymax}+ 1
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Directions

• Generated using the Farey sequence:

0

1

0 1
0/1

1/3
1/2
2/3

1/1

• Inside [−k, k]× [−k, k] area, there are Θ(k2) directions to consider.
• Consider them to be ordered counter-clockwise.
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Embeddings

• Circular order of neighbors arround any vertex must not change.

• Idea: for every vertex-neighbor pair, detect direction of that edge.
• Compare direction slopes to edge slope.

v1

v2

vD

• Map edges to directions

and compare the ordering of those
directions to the given embedding.
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Integer Linear Program

Theorem
This ILP solves Topologially Safe Snapping.

• In practice, our model easily becomes too large to solve (in
reasonable time).

• We use delayed constraint generation to iteratively improve our
model.

• We generate most constraints on demand:

first iteration is simple
rounding (with unique coordinates).
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Experimental Evaluation



The Setup

• Using the JAVA bindings for IBM CPLEX.

• Test system: Linux server with 16 cores (2666 MHz, 4 MB cache),
16 GB main memory.

• Numbers of rows & columns before CPLEX presolving.
• Runtime in wall-clock time.
• For delayed constraint generation, time is accumulated total.
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The Good

• Even small examples take several
seconds to solve.

• This is a very simple example!
• Delayed constraint generation gives

speed-up.

Full Delayed
rows

42 699 88

cols

11 300 110

time

10.6 s 0.5 s
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The Bad

• We have canceled this computation
after 10 minutes using the full
model.

• Delayed constraint generation did
cut a lot of “trivial” constraints,
but...

• ...waiting more than 3 minutes is
too long for a graph on 20 vertices!

Full Delayed
rows

323 441 15 161

cols

82 816 4 044

time

† 211.6 s
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The Ugly

• Graph and bounding box are small,
thus the model is small.

• Using delayed constraint generation
did worsen runtime.

• Rounding this graph is very similar
to finding a minimum-area drawing

,
which is also NP-hard.

Full Delayed
rows

2 603 2 271

cols

916 816

time

4.8 s 20.2 s
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Conclusion

What we did:

• We introduce the problem Topologially Safe Snapping
• and provide a proof that it is NP-hard.
• We give an integer linear program to solve it,
• that can be modified to find minimum-area drawings of graphs as

well.

Open problems:
• Find better formulations for the constraints ⇒ speed-up ILP.
• Find some heuristic algorithm.
• Questions about approximability remain open.
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