Snapping Graph Drawings to the Grid Optimally

Andre Löffler, Thomas C. van Dijk, Alexander Wolff

Chair for Computer Science I: Algorithms, Complexity and Knowledge-Based Systems University of Würzburg

19. September 2016

Snap-rounding:

Introduction

Snap-rounding:

Used to overcome precision-related problems of computational geometry.

Introduction

Snap-rounding:

- Used to overcome precision-related problems of computational geometry.
- Conform to list of desired properties:
 - Fixed-precision representation (e.g. integer coordinates)
 - Geometric similarity (no large vertex movements)
 - Topological similarity (equivalence up to the collapsing of features)

Introduction

Snap-rounding:

- Used to overcome precision-related problems of computational geometry.
- Conform to list of desired properties:
 - Fixed-precision representation (e.g. integer coordinates)
 - Geometric similarity (no large vertex movements)
 - Topological similarity (equivalence up to the collapsing of features)

Our question:

What about topological equivalence?

Snap-rounding:

Snap-rounding:

Snap-rounding:

Topologically valid:

Snap-rounding already is topologically equivalent.

Snap-rounding:

Snap-rounding:

Snap-rounding:

Snap-rounding:

Topologically valid:

• Snap-rounding alters incidences and forces edges to collapse.

Snap-rounding:

- Snap-rounding alters incidences and forces edges to collapse.
- Rounding to the nearest grid point changes the embedding of the upper-left vertex.

Snap-rounding: Topologically valid:

Snap-rounding:

Snap-rounding: Topologically valid:

• Snap-rounding heavily modifies this graph.

- Snap-rounding heavily modifies this graph.
- "Rounding" dense structures with no features collapsing is closely related to creating minimum-area drawings.

• We relax on geometric similarity and allow for larger vertex movements.

- We relax on geometric similarity and allow for larger vertex movements.
- We do not allow for features to collapse.

- We relax on geometric similarity and allow for larger vertex movements.
- We do not allow for features to collapse.

Problem (TOPOLOGIALLY SAFE SNAPPING)

Graph G = (V, E) with given embedding, bounding box $B = [0, X_{max}] \times [0, Y_{max}]$.

Round G to integer coordinates within B, preserving the given embedding and minimizing total vertex movement.

- We relax on geometric similarity and allow for larger vertex movements.
- We do not allow for features to collapse.

Problem (TOPOLOGIALLY SAFE SNAPPING)

Graph G = (V, E) with given embedding, bounding box $B = [0, X_{max}] \times [0, Y_{max}]$.

Round G to integer coordinates within B, preserving the given embedding and minimizing total vertex movement.

Movement is measured in Manhattan-distance.

• *NP*-hardness proof for TOPOLOGIALLY SAFE SNAPPING.

• \mathcal{NP} -hardness proof for TOPOLOGIALLY SAFE SNAPPING.

Integer Linear Program (ideas only)

• \mathcal{NP} -hardness proof for TOPOLOGIALLY SAFE SNAPPING.

Integer Linear Program (ideas only)

Experimental Evaluation

The $\mathcal{N\!P}\text{-hardness}$ proof

• We reduce from PLANAR MONOTONE 3SAT.

- We reduce from **PLANAR** MONOTONE 3SAT.
- For reduction, consider a decision variant:

Problem (Cost-bound TOPOLOGIALLY SAFE SNAPPING)

Graph G = (V, E) with given embedding, bounding box $B = [0, X_{max}] \times [0, Y_{max}]$, cost-bound $c_{min} \in \mathbb{R}^+$.

Can G be rounded to integer coordinates within B, preserving the given embedding with total movement of c_{\min} ?

$PM3SAT\text{-}\mathsf{formula}$

$PM3SAT\text{-}\mathsf{formula}$

Tunnels & Pushes

• For a PM3SAT-formula *F*, our construction resembles its graph.

Tunnels & Pushes

- For a PM3SAT-formula *F*, our construction resembles its graph.
- White vertices always cost at least 1 to be rounded.
- If F is satisfiable, no black vertex needs to be moved.
- For a PM3SAT-formula *F*, our construction resembles its graph.
- White vertices always cost at least 1 to be rounded.
- If F is satisfiable, no black vertex needs to be moved.
- Edges form tunnels

- For a PM3SAT-formula *F*, our construction resembles its graph.
- White vertices always cost at least 1 to be rounded.
- If F is satisfiable, no black vertex needs to be moved.
- Edges form tunnels

- For a PM3SAT-formula *F*, our construction resembles its graph.
- White vertices always cost at least 1 to be rounded.
- If F is satisfiable, no black vertex needs to be moved.
- Edges form tunnels that transmit pushes.

- For a PM3SAT-formula *F*, our construction resembles its graph.
- White vertices always cost at least 1 to be rounded.
- If F is satisfiable, no black vertex needs to be moved.
- Edges form tunnels that transmit pushes.

- For a PM3SAT-formula *F*, our construction resembles its graph.
- White vertices always cost at least 1 to be rounded.
- If F is satisfiable, no black vertex needs to be moved.
- Edges form tunnels that transmit pushes.
- Topological safety ensures consistency of transmission.

 At the center, there is a decider vertex with (up to) three possibible target grid points.

- At the center, there is a decider vertex with (up to) three possibible target grid points.
- Following one arrow, rounding generates pushes.

- At the center, there is a decider vertex with (up to) three possibible target grid points.
- Following one arrow, rounding generates pushes.
- Blocking the bottom tunnel gives clause-gadgets for two variables.

- At the center, there is a decider vertex with (up to) three possibible target grid points.
- Following one arrow, rounding generates pushes.
- Blocking the bottom tunnel gives clause-gadgets for two variables.
- All-unnegated gadgets are constructed mirroring at a horizontal line.

 Has tunnel connections for negated and unnegated occurances.

- Has tunnel connections for negated and unnegated occurances.
- Grows horizontally with number of occurances.

- Has tunnel connections for negated and unnegated occurances.
- Grows horizontally with number of occurances.
- At the left wall, there is an assignment vertex.

- Has tunnel connections for negated and unnegated occurances.
- Grows horizontally with number of occurances.
- At the left wall, there is an assignment vertex.
- Following one arrow blocks tunnels on this side and creates pushes.

- Has tunnel connections for negated and unnegated occurances.
- Grows horizontally with number of occurances.
- At the left wall, there is an assignment vertex.
- Following one arrow blocks tunnels on this side and creates pushes.
- Moving the assignment vertex up equals a TRUE-assignment, FALSE otherwise.

Cost-bound TOPOLOGIALLY SAFE SNAPPING *is NP-complete*.

Cost-bound TOPOLOGIALLY SAFE SNAPPING is \mathcal{NP} -complete.

Sketch of proof:

Combine gadgets according to formula-graphs structure.

Cost-bound TOPOLOGIALLY SAFE SNAPPING is \mathcal{NP} -complete.

- Combine gadgets according to formula-graphs structure.
- Cost-bound c_{min} equals number of white vertices.

Cost-bound TOPOLOGIALLY SAFE SNAPPING is \mathcal{NP} -complete.

- Combine gadgets according to formula-graphs structure.
- Cost-bound c_{min} equals number of white vertices.
- If total movement cost equals c_{min}, truth-assignment is obtained from assignment vertices.

Cost-bound Topologially Safe Snapping is \mathcal{NP} -complete.

- Combine gadgets according to formula-graphs structure.
- Cost-bound c_{min} equals number of white vertices.
- If total movement cost equals c_{min}, truth-assignment is obtained from assignment vertices.
- If the formula is unsatisfiable, at least one black vertex has to be moved $\Rightarrow c_{\min}$ is exceeded.

Corollary

TOPOLOGIALLY SAFE SNAPPING is also \mathcal{NP} -hard when using **Euclidean** distance.

Corollary

TOPOLOGIALLY SAFE SNAPPING is also \mathcal{NP} -hard when using **Euclidean** distance. In this case it is also \mathcal{NP} -hard to minimize the **maximum** movement instead of the sum.

Corollary

TOPOLOGIALLY SAFE SNAPPING is also \mathcal{NP} -hard when using **Euclidean** distance. In this case it is also \mathcal{NP} -hard to minimize the **maximum** movement instead of the sum.

Corollary

Euclidean TOPOLOGIALLY SAFE SNAPPING with the objective to minimize **maximum** movement is APX-hard.

Integer Linear Program

Things to handle:

Things to handle:

Unique vertex coordinates

Things to handle:

Unique vertex coordinates (very simple)

Things to handle:

- Unique vertex coordinates (very simple)
- Planarity

Things to handle:

- Unique vertex coordinates (very simple)
- Planarity
- Embeddings

Things to handle:

- Unique vertex coordinates (very simple)
- Planarity
- Embeddings

Basics:

Things to handle:

- Unique vertex coordinates (very simple)
- Planarity
- Embeddings

Basics:

x_v, y_v are output coordinates.

Things to handle:

- Unique vertex coordinates (very simple)
- Planarity
- Embeddings

Basics:

- x_v, y_v are output coordinates.
- Objective function:

$$\text{MINIMIZE} \sum_{v \in V} (|x_v - X_v| + |y_v - Y_v|)$$

Things to handle:

- Unique vertex coordinates (very simple)
- Planarity
- Embeddings

Basics:

- x_v, y_v are output coordinates.
- Objective function:

$$\text{MINIMIZE} \sum_{v \in V} (|x_v - X_v| + |y_v - Y_v|)$$

Constraint: distinct vertex coordinates.

Similar to Metro-Map Drawing by Nöllenburg & Wolff. [GD '05]

- Similar to Metro-Map Drawing by Nöllenburg & Wolff. [GD '05]
- Idea: every edge has some D_{min}-neighborhood that only incident edges are allowed to intersect.

- Similar to Metro-Map Drawing by Nöllenburg & Wolff. [GD '05]
- Idea: every edge has some D_{min}-neighborhood that only incident edges are allowed to intersect.

• We consider any possible direction (not only octilinear ones).

- Similar to Metro-Map Drawing by Nöllenburg & Wolff. [GD '05]
- Idea: every edge has some D_{min}-neighborhood that only incident edges are allowed to intersect.

Octilinear, $D_{\min} = 0.5$

- We consider any possible direction (not only octilinear ones).
- According to bounding box size:

$$D_{\min} = rac{1}{\max\{X_{\max},Y_{\max}\}+1}$$

• Inside $[-k,k] \times [-k,k]$ area, there are $\Theta(k^2)$ directions to consider.

- Inside $[-k, k] \times [-k, k]$ area, there are $\Theta(k^2)$ directions to consider.
- Consider them to be ordered counter-clockwise.

• Circular order of neighbors arround any vertex must not change.

- Circular order of neighbors arround any vertex must not change.
- Idea: for every vertex-neighbor pair, detect direction of that edge.

- Circular order of neighbors arround any vertex must not change.
- Idea: for every vertex-neighbor pair, detect direction of that edge.
- Compare direction slopes to edge slope.

- Circular order of neighbors arround any vertex must not change.
- Idea: for every vertex-neighbor pair, detect direction of that edge.
- Compare direction slopes to edge slope.

- Circular order of neighbors arround any vertex must not change.
- Idea: for every vertex-neighbor pair, detect direction of that edge.
- Compare direction slopes to edge slope.

Map edges to directions

- Circular order of neighbors arround any vertex must not change.
- Idea: for every vertex-neighbor pair, detect direction of that edge.
- Compare direction slopes to edge slope.

 Map edges to directions and compare the ordering of those directions to the given embedding.

This ILP solves TOPOLOGIALLY SAFE SNAPPING.

In practice, our model easily becomes too large to solve (in reasonable time).

- In practice, our model easily becomes too large to solve (in reasonable time).
- We use delayed constraint generation to iteratively improve our model.

- In practice, our model easily becomes too large to solve (in reasonable time).
- We use delayed constraint generation to iteratively improve our model.
- We generate most constraints on demand:

- In practice, our model easily becomes too large to solve (in reasonable time).
- We use delayed constraint generation to iteratively improve our model.
- We generate most constraints on demand: first iteration is simple rounding (with unique coordinates).

Experimental Evaluation

Using the JAVA bindings for IBM CPLEX.

- Using the JAVA bindings for IBM CPLEX.
- Test system: Linux server with 16 cores (2666 MHz, 4 MB cache), 16 GB main memory.

- Using the JAVA bindings for IBM CPLEX.
- Test system: Linux server with 16 cores (2666 MHz, 4 MB cache), 16 GB main memory.
- Numbers of rows & columns before CPLEX presolving.

- Using the JAVA bindings for IBM CPLEX.
- Test system: Linux server with 16 cores (2666 MHz, 4 MB cache), 16 GB main memory.
- Numbers of rows & columns before CPLEX presolving.
- Runtime in wall-clock time.

- Using the JAVA bindings for IBM CPLEX.
- Test system: Linux server with 16 cores (2666 MHz, 4 MB cache), 16 GB main memory.
- Numbers of rows & columns before CPLEX presolving.
- Runtime in wall-clock time.
- For delayed constraint generation, time is accumulated total.

	Full	Delayed
rows		
cols		
time		

	Full	Delayed
rows		
cols		
time		

• Even small examples take several seconds to solve.

	Full	Delayed
rows	42 699	
cols	11 300	
time	10.6 s	

- Even small examples take several seconds to solve.
- This is a very simple example!

	Full	Delayed
rows	42 699	
cols	11 300	
time	10.6 s	

- Even small examples take several seconds to solve.
- This is a very simple example!
- Delayed constraint generation gives speed-up.

	Full	Delayed
rows	42 699	88
cols	11 300	110
time	10.6 s	0.5 s

	Full	Delayed
rows		
cols		
time		

	Full	Delayed
rows		
cols		
time		

• We have canceled this computation after 10 minutes using the full model.

	Full	Delayed
rows	323 441	
cols	82 816	
time	†	

- We have canceled this computation after 10 minutes using the full model.
- Delayed constraint generation did cut a lot of "trivial" constraints, but...

	Full	Delayed
rows	323 441	15 161
cols	82 816	4 044
time	†	

- We have canceled this computation after 10 minutes using the full model.
- Delayed constraint generation did cut a lot of "trivial" constraints, but...
- ...waiting more than 3 minutes is too long for a graph on 20 vertices!

	Full	Delayed
rows	323 441	15 161
cols	82 816	4 044
time	†	211.6 s

_

	Full	Delayed
rows		
cols		
time		

	Full	Delayed
rows		
cols		
time		

• Graph and bounding box are small, thus the model is small.

	Full	Delayed
rows	2 603	
cols	916	
time	4.8 s	

- Graph and bounding box are small, thus the model is small.
- Using delayed constraint generation did worsen runtime.

	Full	Delayed
rows	2 603	2 271
cols	916	816
time	4.8 s	20.2 s
The Ugly

- Graph and bounding box are small, thus the model is small.
- Using delayed constraint generation did worsen runtime.
- Rounding this graph is very similar to finding a minimum-area drawing

	Full	Delayed
rows	2 603	2 271
cols	916	816
time	4.8 s	20.2 s

The Ugly

- Graph and bounding box are small, thus the model is small.
- Using delayed constraint generation did worsen runtime.
- Rounding this graph is very similar to finding a minimum-area drawing, which is also NP-hard.

	Full	Delayed
rows	2 603	2 271
cols	916	816
time	4.8 s	20.2 s

What we did:

• We introduce the problem TOPOLOGIALLY SAFE SNAPPING

- We introduce the problem TOPOLOGIALLY SAFE SNAPPING
- and provide a proof that it is \mathcal{NP} -hard.

- We introduce the problem **TOPOLOGIALLY SAFE SNAPPING**
- and provide a proof that it is NP-hard.
- We give an integer linear program to solve it,

- We introduce the problem TOPOLOGIALLY SAFE SNAPPING
- and provide a proof that it is NP-hard.
- We give an integer linear program to solve it,
- that can be modified to find minimum-area drawings of graphs as well.

What we did:

- We introduce the problem **TOPOLOGIALLY SAFE SNAPPING**
- and provide a proof that it is NP-hard.
- We give an integer linear program to solve it,
- that can be modified to find minimum-area drawings of graphs as well.

Open problems:

What we did:

- We introduce the problem TOPOLOGIALLY SAFE SNAPPING
- and provide a proof that it is NP-hard.
- We give an integer linear program to solve it,
- that can be modified to find minimum-area drawings of graphs as well.

Open problems:

• Find better formulations for the constraints \Rightarrow speed-up ILP.

What we did:

- We introduce the problem **TOPOLOGIALLY SAFE SNAPPING**
- and provide a proof that it is NP-hard.
- We give an integer linear program to solve it,
- that can be modified to find minimum-area drawings of graphs as well.

Open problems:

- Find better formulations for the constraints \Rightarrow speed-up ILP.
- Find some heuristic algorithm.

What we did:

- We introduce the problem **TOPOLOGIALLY SAFE SNAPPING**
- and provide a proof that it is NP-hard.
- We give an integer linear program to solve it,
- that can be modified to find minimum-area drawings of graphs as well.

Open problems:

- Find better formulations for the constraints \Rightarrow speed-up ILP.
- Find some heuristic algorithm.
- Questions about approximability remain open.