

Chair for **INFORMATICS I** Efficient Algorithms and Knowledge-Based Systems

Drawing Graphs on Few Circles and Few Spheres

Myroslav Kryven

Alexander Ravsky

Alexander Wolff

Julius-Maximilians-Universität Würzburg, Germany

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, Lviv, Ukraine

Given a planar graph,...

[Chaplick et al., 2016]

Given a planar graph,... ...find a straight-line drawing with as few lines as possible that together cover the drawing.

[Chaplick et al., 2016]

Given a planar graph,... ...find a straight-line drawing with as few lines as possible that together cover the drawing.

[Chaplick et al., 2016]

Given a planar graph,... ...find a straight-line drawing with as few lines as possible that together cover the drawing.

...find a circular-arc drawing with as few circles as possible that together cover the drawing.

[Chaplick et al., 2016]

Given a planar graph,... ...find a straight-line drawing with as few lines as possible that together cover the drawing. ...find a circular-arc drawing with as few circles as possible that together cover the drawing.

[Chaplick et al., 2016]

Given a planar graph,... ...find a straight-line drawing with as few lines as possible that together cover the drawing. ...find a circular-arc drawing with as few circles as possible that together cover the drawing.

Advantages:

• Smaller visual complexity

[Chaplick et al., 2016]

Given a planar graph,... ...find a straight-line drawing with as few lines as possible that together cover the drawing. ...find a circular-arc drawing with as few circles as possible that together cover the drawing.

Advantages:

- Smaller visual complexity
- Better reflects symmetry

Outline

Motivation

Formal Definitions

A Combinatorial Lover Bound

Platonic solids

- affine cover number
- segment number
- spherical cover number
- arc number

Lower Bounds for σ_d^1 w.r.t. Other Parameters

Open Problem

[* Chaplick et al., 2016]

Let G be a graph, and let $1 \le m < d$.

Def. The affine cover number $\rho_d^m(G)$ is the minimum number of *m*-dimensional hyperplanes in \mathbb{R}^d such that *G* has a crossing-free straight-line drawing that is contained in these planes.

[* Chaplick et al., 2016]

Let G be a graph, and let $1 \le m < d$.

Def. The *affine cover number* $\rho_d^m(G)$ is the minimum number of *m*-dimensional hyperplanes in \mathbb{R}^d such that *G* has a crossing-free straight-line drawing that is contained in these planes.

 $ho_2^1(\mathit{cube}) =$

[* Chaplick et al., 2016]

Let G be a graph, and let $1 \le m < d$.

Def. The *affine cover number* $\rho_d^m(G)$ is the minimum number of *m*-dimensional hyperplanes in \mathbb{R}^d such that *G* has a crossing-free straight-line drawing that is contained in these planes.

[* Chaplick et al., 2016]

Let G be a graph, and let $1 \le m < d$.

Def. The *affine cover number* $\rho_d^m(G)$ is the minimum number of *m*-dimensional hyperplanes in \mathbb{R}^d such that *G* has a crossing-free straight-line drawing that is contained in these planes.

[* Chaplick et al., 2016]

Let G be a graph, and let $1 \le m < d$.

Def. The *affine cover number* $\rho_d^m(G)$ is the minimum number of *m*-dimensional hyperplanes in \mathbb{R}^d such that *G* has a crossing-free straight-line drawing that is contained in these planes.

$$ho_2^1(cube) = 7$$
 $\sigma_2^1(cube) =$

[* Chaplick et al., 2016]

Let G be a graph, and let $1 \le m < d$.

Def. The *affine cover number* $\rho_d^m(G)$ is the minimum number of *m*-dimensional hyperplanes in \mathbb{R}^d such that *G* has a crossing-free straight-line drawing that is contained in these planes.

[* Chaplick et al., 2016]

Let G be a graph, and let $1 \le m < d$.

Def. The *affine cover number* $\rho_d^m(G)$ is the minimum number of *m*-dimensional hyperplanes in \mathbb{R}^d such that *G* has a crossing-free straight-line drawing that is contained in these planes.

[* Chaplick et al., 2016]

Let G be a graph, and let $1 \le m < d$.

Def. The *affine cover number* $\rho_d^m(G)$ is the minimum number of *m*-dimensional hyperplanes in \mathbb{R}^d such that *G* has a crossing-free straight-line drawing that is contained in these planes.

 $\rho_3^2(K_5) = 3$

[* Chaplick et al., 2016]

Let G be a graph, and let $1 \le m < d$.

Def. The *affine cover number* $\rho_d^m(G)$ is the minimum number of *m*-dimensional hyperplanes in \mathbb{R}^d such that *G* has a crossing-free straight-line drawing that is contained in these planes.

 $\sigma_3^2(K_5) = 2.$

Segment Number and Arc Number

Def. The *segment number* of G, seg(G), is the minimum number of line segments formed by the edges of G in a straight-line drawing. [Dujmović, Eppstein,

Suderman, Wood CGTA'07]

line,
 segments

Segment Number and Arc Number

Def. The *segment number* of G, seg(G), is the minimum number of line segments formed by the edges of G in a straight-line drawing. [Dujmović, Eppstein,

Suderman, Wood CGTA'07]

Def. The arc number of G, $\operatorname{arc}(G)$, is the minimum number of arcs formed by the edges of G in a circular-arc drawing. [Schulz JGAA'15]

Outline

Motivation

Formal Definitions

A Combinatorial Lover Bound

Platonic solids

- affine cover number
- segment number
- spherical cover number
- arc number

Lower Bounds for σ_d^1 w.r.t. Other Parameters

Open Problem

Combinatorial Lower Bounds on ρ_2^1 and σ_2^1 [Chaplick et al., 2016] Let G be a graph.

Obs. 1 Any vertex v of G lies on $\geq \lceil \deg(v)/2 \rceil$ lines.

Combinatorial Lower Bounds on ρ_2^1 and σ_2^1 [Chaplick et al., 2016] Let *G* be a graph.

Obs. 1 Any vertex v of G lies on $\geq \lceil \deg(v)/2 \rceil$ lines.

$$\implies \left(\begin{array}{c} \rho_2^1(G) \\ 2 \end{array} \right) \ge \sum_{v \in V(G)} \left(\begin{array}{c} \left\lceil \frac{\deg v}{2} \right\rceil \\ 2 \end{array} \right)$$

Combinatorial Lower Bounds on ρ_2^1 and σ_2^1 Let G be a graph.

Obs. 2 Any vertex v of G lies on $> \lceil \deg(v)/2 \rceil$ circles. $\implies 2\binom{\sigma_2^1(G)}{2} \ge \sum_{v \in \mathcal{O}} \binom{\left\lceil \frac{\deg v}{2} \right\rceil}{2}$ $\implies \sigma_2^1(G) \ge \frac{1}{2} \left(1 + \sqrt{1 + 4 \sum_{v \in V(G)} \left(\begin{bmatrix} \frac{\deg v}{2} \\ 2 \end{bmatrix} \right)} \right)$

Outline

Motivation

Formal Definitions

A Combinatorial Lover Bound

Platonic solids

- affine cover number
- segment number
- spherical cover number
- arc number

Lower Bounds for σ_d^1 w.r.t. Other Parameters

Open Problem

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4				
octahedron	6	12	8				
cube	8	12	6				
dodecahedron	20	30	12				
icosahedron	12	30	20				

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4				
octahedron	6	12	8				
cube	8	12	6				
dodecahedron	20	30	12				
icosahedron	12	30	20				

G = (V, E)	V	E	F	$ ho_2^1(G$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4				
octahedron	6	12	8				
cube	8	12	6				
dodecahedron	20	30	12				
icosahedron	12	30	20				

Recall Obs. 1:

$$\rho_2^1(G) \ge \frac{1}{2} \left(1 + \sqrt{1 + 8 \sum_{v \in V(G)} \left(\begin{bmatrix} \frac{\deg v}{2} \\ 2 \end{bmatrix} \right)} \right)$$

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	\geq 4			
octahedron	6	12	8				
cube	8	12	6				
dodecahedron	20	30	12				
icosahedron	12	30	20				

Recall Obs. 1:

$$\rho_{2}^{1}(\textit{tetrahedron}) \geq \frac{1}{2} \left(1 + \sqrt{1 + 8 \cdot 4 \begin{pmatrix} \left\lceil \frac{3}{2} \right\rceil \\ 2 \end{pmatrix}} \right) \geq 3.37$$

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	\geq 4			
octahedron	6	12	8	\geq 4			
cube	8	12	6	\geq 5			
dodecahedron	20	30	12	\geq 7			
icosahedron	12	30	20	\ge 9			

Recall Obs. 1:

$$\implies \rho_2^1(G) \ge \frac{1}{2} \left(1 + \sqrt{1 + 8 \sum_{v \in V(G)} \left(\begin{bmatrix} \frac{\deg v}{2} \\ 2 \end{bmatrix} \right)} \right)$$

G = (V, E)	V	E	F	$\rho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6			
octahedron	6	12	8	9			
cube	8	12	6	7			
dodecahedron	20	30	12	910			
icosahedron	12	30	20	$13 \dots 15$			

Arguments: We use the number of nested cycles and the internal degree of the outer face.

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6			
octahedron	6	12	8	9			
cube	8	12	6	7			
dodecahedron	20	30	12	910			
icosahedron	12	30	20	1315			

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	\geq 6		
octahedron	6	12	8	9	\geq 9		
cube	8	12	6	7	\geq 7		
dodecahedron	20	30	12	910	\geq 9		
icosahedron	12	30	20	$13 \dots 15$	\geq 13		

Trivial bound:

 $ho_1^2(G) \leq \mathrm{seg}(G)$

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6		
octahedron	6	12	8	9	9		
cube	8	12	6	7	7		
dodecahedron	20	30	12	910	\geq 9		
icosahedron	12	30	20	$13 \dots 15$	\geq 13		

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6		
octahedron	6	12	8	9	9		
cube	8	12	6	7	7		
dodecahedron	20	30	12	910	\geq 9		
icosahedron	12	30	20	$13 \dots 15$	\geq 13		

ILP (For fixed embedding.) Find *locally consistent* angle assignment with maximum number of π-angles.

Platonic Solids: Segment Numbers

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6		
octahedron	6	12	8	9	9		
cube	8	12	6	7	7		
dodecahedron	20	30	12	910	\geq 13		
icosahedron	12	30	20	$13 \dots 15$	≥ 15		

ILP (For fixed embedding.) Find *locally consistent* angle assignment with maximum number of π-angles.

⇒ Lower bounds for
 the minimum number
 of segments in the
 corresponding drawing.

Platonic Solids: Segment Numbers

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6		
octahedron	6	12	8	9	9		
cube	8	12	6	7	7		
dodecahedron	20	30	12	910	13		
icosahedron	12	30	20	$13 \dots 15$	15		

13 segments

ILP (For fixed embedding.) Find *locally consistent* angle assignment with maximum number of π-angles.

⇒ Lower bounds for
 the minimum number
 of segments in the
 corresponding drawing.

¹⁵ segments

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	\geq 3	
octahedron	6	12	8	9	9	\geq 3	
cube	8	12	6	7	7	\geq 4	
dodecahedron	20	30	12	910	13	\geq 5	
icosahedron	12	30	20	$13 \dots 15$	15	\geq 7	

Recall Obs. 2:

$$\implies \sigma_2^1(G) \ge \frac{1}{2} \left(1 + \sqrt{1 + 4 \sum_{v \in V(G)} \left(\begin{bmatrix} \frac{\deg v}{2} \\ 2 \end{bmatrix} \right)} \right)$$

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	
octahedron	6	12	8	9	9	\geq 3	
cube	8	12	6	7	7	\geq 4	
dodecahedron	20	30	12	910	13	\geq 5	
icosahedron	12	30	20	$13 \dots 15$	15	\geq 7	

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	
octahedron	6	12	8	9	9	3	
cube	8	12	6	7	7	\geq 4	
dodecahedron	20	30	12	910	13	\geq 5	
icosahedron	12	30	20	$13 \dots 15$	15	\geq 7	

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	
octahedron	6	12	8	9	9	3	
cube	8	12	6	7	7	4	
dodecahedron	20	30	12	910	13	\geq 5	
icosahedron	12	30	20	$13 \dots 15$	15	\geq 7	

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	
octahedron	6	12	8	9	9	3	
cube	8	12	6	7	7	4	
dodecahedron	20	30	12	910	13	5	
icosahedron	12	30	20	$13 \dots 15$	15	\geq 7	

[André Schulz, JGAA'15]

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	
octahedron	6	12	8	9	9	3	
cube	8	12	6	7	7	4	
dodecahedron	20	30	12	910	13	5	
icosahedron	12	30	20	$13 \dots 15$	15	7	

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	
octahedron	6	12	8	9	9	3	
cube	8	12	6	7	7	4	
dodecahedron	20	30	12	910	13	5	
icosahedron	12	30	20	$13 \dots 15$	15	7	

7 circles / 10 arcs

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	
octahedron	6	12	8	9	9	3	
cube	8	12	6	7	7	4	
dodecahedron	20	30	12	910	13	5	
icosahedron	12	30	20	1315	15	7	

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	<u>> 3</u>
octahedron	6	12	8	9	9	3	\geq 3
cube	8	12	6	7	7	4	\geq 4
dodecahedron	20	30	12	910	13	5	\geq 5
icosahedron	12	30	20	$13 \dots 15$	15	7	\geq 7

Trivial bound: $\sigma_1^2(G) \leq \operatorname{arc}(G)$

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	<u>> 3</u>
octahedron	6	12	8	9	9	3	\geq 3
cube	8	12	6	7	7	4	\geq 4
dodecahedron	20	30	12	910	13	5	≥ 10
icosahedron	12	30	20	$13 \dots 15$	15	7	\geq 7

Trivial bound: $\sigma_1^2(G) \leq \operatorname{arc}(G)$

Obs: For any graph G, $\operatorname{arc}(G) \ge \#(\operatorname{odd-deg. vtc. of } G)/2$ [Dujmović, Eppstein, Suderman, Wood CGTA'07]

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	3
octahedron	6	12	8	9	9	3	3
cube	8	12	6	7	7	4	4
dodecahedron	20	30	12	910	13	5	10
icosahedron	12	30	20	1315	15	7	\geq 7

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	3
octahedron	6	12	8	9	9	3	3
cube	8	12	6	7	7	4	4
dodecahedron	20	30	12	910	13	5	10
icosahedron	12	30	20	$13 \dots 15$	15	7	7

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	3
octahedron	6	12	8	9	9	3	3
cube	8	12	6	7	7	4	4
dodecahedron	20	30	12	910	13	5	10
icosahedron	12	30	20	$13 \dots 15$	15	7	7

How to draw?

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	3
octahedron	6	12	8	9	9	3	3
cube	8	12	6	7	7	4	4
dodecahedron	20	30	12	910	13	5	10
icosahedron	12	30	20	$13 \dots 15$	15	7	7

How to draw?

Solve a system of quadratic equations.

G = (V, E)	V	E	F	$ ho_2^1(G)$	seg(G)	$\sigma_2^1(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	3
octahedron	6	12	8	9	9	3	3
cube	8	12	6	7	7	4	4
dodecahedron	20	30	12	910	13	5	10
icosahedron	12	30	20	$13 \dots 15$	15	7	7

How to draw?

Solve a system of quadratic equations.

Solution exists!

Outline

Motivation

Formal Definitions

A Combinatorial Lover Bound

Platonic solids

- affine cover number
- segment number
- spherical cover number
- arc number

Lower Bounds for σ_d^1 w.r.t. Other Parameters

Open Problem

Edge-chromatic # $\sigma_d^1(G) \ge \chi_e(G)/3$,

Edge-chromatic # $\sigma_d^1(G) \ge \chi_e(G)/3$,

Edge-chromatic #

$$\sigma^1_d(G) \ge \chi_e(G)/3$$
,

bisection width

 $\sigma^1_d(G) \geq \mathsf{bw}(G)/2$,

Edge-chromatic # $\sigma^1_d(G) \ge \chi_e(G)/3$,

bisection width

linear arboricity

 $\sigma^1_d(G) \ge \mathsf{bw}(G)/2,$

 $\sigma^1_d(G) \geq \frac{2}{3} \operatorname{la}(G),$

balanced separator

 $\sigma^1_d(G) \ge \sup_W(G)/2,$

for almost all G cubic $\sigma_d^1(G) > n/10$, treewidth $\sigma_d^1(G) \ge tw(G)/6$.

Outline

Motivation

Formal Definitions

A Combinatorial Lover Bound

Platonic solids

- affine cover number
- segment number
- spherical cover number
- arc number

Lower Bounds for σ_d^1 w.r.t. Other Parameters

Open Problem

Is there a family of planar graphs whose circle cover number grows asymptotically more slowly than their line cover number?

Open Problems Vs.

Is there a family of planar graphs whose circle cover number grows asymptotically more slowly than their line cover number?

Problem 2:

Determine the line cover number for the dodecahedron and icosahedron.

