Drawing Graphs
 on Few Circles and Few Spheres

Myroslav Kryven Alexander Ravsky Alexander Wolff

> Julius-Maximilians-Universität Würzburg, Germany

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, Lviv, Ukraine

Motivation

Given
a planar graph,...

Motivation

[Chaplick et al., 2016]

Given
a planar
graph,...
...find a straight-line drawing with as few lines as possible that together cover the drawing.

10 lines

Motivation

[Chaplick et al., 2016]

Given
a planar
graph,...
...find a straight-line drawing with as few lines as possible that together cover the drawing.

10 lines

7 lines

Motivation

[Chaplick et al., 2016]

Given
a planar graph,...
...find a straight-line drawing with as few lines as possible that together cover the drawing.
find a circular-arc drawing with as few circles as possible that together cover the drawing.

10 lines

7 lines

4 circles

Motivation

[Chaplick et al., 2016]

Given

a planar graph,...
...find a straight-line drawing with as few lines as possible that together cover the drawing.
find a circular-arc drawing with as few circles as possible that together cover the drawing.

10 lines

7 lines

4 circles

4 circles

Motivation

[Chaplick et al., 2016]
Given
a planar
graph,...
...find a straight-line drawing with as few lines as possible that together cover the drawing.

find a circular-arc drawing with as few circles as possible that together cover the drawing.

Advantages:

- Smaller visual complexity

10 lines

7 lines

4 circles

4 circles

Motivation

[Chaplick et al., 2016]

Given

a planar graph,...
...find a straight-line drawing with as few lines as possible that together cover the drawing.
...find a circular-arc drawing with as few circles as possible that together cover the drawing.

Advantages:

- Smaller visual complexity
- Better reflects symmetry

10 lines

7 lines

4 circles

4 circles

Outline

Motivation

Formal Definitions

A Combinatorial Lover Bound
Platonic solids

- affine cover number
- segment number
- spherical cover number
- arc number

Lower Bounds for σ_{d}^{1} w.r.t. Other Parameters
Open Problem

Affine Covers ${ }^{\star}$ \& Spherical Covers

[* Chaplick et al., 2016]
Let G be a graph, and let $1 \leq m<d$.
Def. The affine cover number $\rho_{d}^{m}(G)$ is the minimum number of m-dimensional hyperplanes in \mathbb{R}^{d} such that G has a crossing-free straight-line drawing that is contained in these planes.

Affine Covers ${ }^{\star}$ \& Spherical Covers

[* Chaplick et al., 2016]

Let G be a graph, and let $1 \leq m<d$.

Def. The affine cover number $\rho_{d}^{m}(G)$ is the minimum number of m-dimensional hyperplanes in \mathbb{R}^{d} such that G has a crossing-free straight-line drawing that is contained in these planes.

$$
\rho_{2}^{1}(\text { cube })=
$$

Affine Covers ${ }^{\star}$ \& Spherical Covers

[* Chaplick et al., 2016]
Let G be a graph, and let $1 \leq m<d$.
Def. The affine cover number $\rho_{d}^{m}(G)$ is the minimum number of m-dimensional hyperplanes in \mathbb{R}^{d} such that G has a crossing-free straight-line drawing that is contained in these planes.

$$
\rho_{2}^{1}(\text { cube })=7
$$

Affine Covers ${ }^{\star}$ \& Spherical Covers

[* Chaplick et al., 2016]

Let G be a graph, and let $1 \leq m<d$.

Def. The affine cover number $\rho_{d}^{m}(G)$ is
the minimum number of m-dimensional hyperplanes in \mathbb{R}^{d} such that G has a crossing-free straight-line drawing that is contained in these planes.

$$
\rho_{2}^{1}(\text { cube })=7
$$

Def. The spherical cover number $\sigma_{d}^{m}(G)$ is
the minimum number of m-dimensional spheres in \mathbb{R}^{d} such that G has a crossing-free circular-arc drawing that is contained in these spheres.

Affine Covers ${ }^{\star}$ \& Spherical Covers

[* Chaplick et al., 2016]
Let G be a graph, and let $1 \leq m<d$.
Def. The affine cover number $\rho_{d}^{m}(G)$ is
the minimum number of m-dimensional hyperplanes in \mathbb{R}^{d} such that G has a crossing-free straight-line drawing that is contained in these planes.

$$
\rho_{2}^{1}(\text { cube })=7
$$

$$
\sigma_{2}^{1}(\text { cube })=
$$

Def. The spherical cover number $\sigma_{d}^{m}(G)$ is
the minimum number of m-dimensional spheres in \mathbb{R}^{d} such that G has a crossing-free circular-arc drawing that is contained in these spheres.

Affine Covers* \& Spherical Covers

[* Chaplick et al., 2016]
Let G be a graph, and let $1 \leq m<d$.
Def. The affine cover number $\rho_{d}^{m}(G)$ is the minimum number of m-dimensional hyperplanes in \mathbb{R}^{d} such that G has a crossing-free straight-line drawing that is contained in these planes.

$$
\sigma_{2}^{1}(c u b e)=4
$$

Def. The spherical cover number $\sigma_{d}^{m}(G)$ is the minimum number of m-dimensional spheres in \mathbb{R}^{d} such that G has a crossing-free circular-arc drawing that is contained in these spheres.

Affine Covers ${ }^{\star}$ \& Spherical Covers

[* Chaplick et al., 2016]
Let G be a graph, and let $1 \leq m<d$.
Def. The affine cover number $\rho_{d}^{m}(G)$ is the minimum number of m-dimensional hyperplanes in \mathbb{R}^{d} such that G has a crossing-free straight-line drawing that is contained in these planes.

Def. The spherical cover number $\sigma_{d}^{m}(G)$ is
the minimum number of m-dimensional spheres in \mathbb{R}^{d} such that G has a crossing-free circular-arc drawing that is contained in these spheres.

Affine Covers* \& Spherical Covers

[* Chaplick et al., 2016]

Let G be a graph, and let $1 \leq m<d$.

Def. The affine cover number $\rho_{d}^{m}(G)$ is the minimum number of m-dimensional hyperplanes in \mathbb{R}^{d} such that G has a crossing-free straight-line drawing that is contained in these planes.

Def. The spherical cover number $\sigma_{d}^{m}(G)$ is the minimum number of m-dimensional spheres in \mathbb{R}^{d} such that G has a crossing-free circular-arc drawing that is contained in these spheres.

Affine Covers* \& Spherical Covers

[* Chaplick et al., 2016]
Let G be a graph, and let $1 \leq m<d$.
Def. The affine cover number $\rho_{d}^{m}(G)$ is the minimum number of m-dimensional hyperplanes in \mathbb{R}^{d} such that G has a crossing-free straight-line drawing that is contained in these planes.

$$
\sigma_{3}^{2}\left(K_{5}\right)=2
$$

Def. The spherical cover number $\sigma_{d}^{m}(G)$ is the minimum number of m-dimensional spheres in \mathbb{R}^{d} such that G has a crossing-free circular-arc drawing that is contained in these spheres.

Segment Number and Arc Number

Def. The segment number of $G, \operatorname{seg}(G)$, is the minimum number of line segments formed by the edges of G in a straight-line drawing.

1 line,
2 segments

Segment Number and Arc Number

Def. The segment number of $G, \operatorname{seg}(G)$, is the minimum number of line segments formed by the edges of G in a straight-line drawing.

1 line,
2 segments

Def. The arc number of $G, \operatorname{arc}(G)$, is the minimum number of arcs formed by the edges of G in a circular-arc drawing.
[Schulz JGAA'15]

Outline

Motivation
Formal Definitions

A Combinatorial Lover Bound

Platonic solids

- affine cover number
- segment number
- spherical cover number
- arc number

Lower Bounds for σ_{d}^{1} w.r.t. Other Parameters
Open Problem

Combinatorial Lower Bounds on ρ_{2}^{1} and σ_{2}^{1}

Let G be a graph.
Obs. 1 Any vertex v of G lies on
$\geq\lceil\operatorname{deg}(v) / 2\rceil$ lines.

Combinatorial Lower Bounds on ρ_{2}^{1} and σ_{2}^{1}

Let G be a graph.
Obs. 1 Any vertex v of G lies on $\geq\lceil\operatorname{deg}(v) / 2\rceil$ lines.

$$
\Longrightarrow \quad\binom{\rho_{2}^{1}(G)}{2} \geq \sum_{v \in V(G)}\binom{\left.\frac{\operatorname{deg} v}{2}\right\rceil}{ 2}
$$

Combinatorial Lower Bounds on ρ_{2}^{1} and σ_{2}^{1}

Let G be a graph.
Obs. 1 Any vertex v of G lies on

$$
\geq\lceil\operatorname{deg}(v) / 2\rceil \text { lines. }
$$

$$
\left.\begin{array}{c}
\Longrightarrow\binom{\rho_{2}^{1}(G)}{2} \geq \sum_{v \in V(G)}\binom{\left\lceil\frac{\operatorname{deg} v}{2}\right\rceil}{ 2} \\
\Longrightarrow \rho_{2}^{1}(G) \geq \frac{1}{2}\left(1+\sqrt{1+8 \sum_{v \in V(G)}\left(\left\lceil\frac{\operatorname{deg} v}{2}\right\rceil\right.} \frac{2}{2}\right)
\end{array}\right)
$$

Combinatorial Lower Bounds on ρ_{2}^{1} and σ_{2}^{1}

Let G be a graph.
Obs. 2 Any vertex v of G lies on

$$
\geq\lceil\operatorname{deg}(v) / 2\rceil \text { circles. }
$$

$$
\Longrightarrow \sigma_{2}^{1}(G) \geq \frac{1}{2}\left(1+\sqrt{1+4 \sum_{v \in V(G)}\binom{\left[\begin{array}{c}
\frac{\operatorname{deg} v}{2} \\
2
\end{array}\right.}{\hline}}\right)
$$

Outline

Motivation
Formal Definitions
A Combinatorial Lover Bound
Platonic solids

- affine cover number
- segment number
- spherical cover number
- arc number

Lower Bounds for σ_{d}^{1} w.r.t. Other Parameters
Open Problem

Platonic Solids: Affine Cover Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4				
octahedron	6	12	8				
cube	8	12	6				
dodecahedron	20	30	12				
icosahedron	12	30	20				

Platonic Solids: Affine Cover Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4				
octahedron	6	12	8				
cube	8	12	6				
dodecahedron	20	30	12				
icosahedron	12	30	20				

Platonic Solids: Affine Cover Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4				
octahedron	6	12	8				
cube	8	12	6				
dodecahedron	20	30	12				
icosahedron	12	30	20				

Recall Obs. 1:

$$
\rho_{2}^{1}(G) \geq \frac{1}{2}\left(1+\sqrt{1+8 \sum_{v \in V(G)}\binom{\left.\frac{\operatorname{deg} v}{2}\right\rceil}{ 2}}\right)
$$

Platonic Solids: Affine Cover Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	≥ 4			
octahedron	6	12	8				
cube	8	12	6				
dodecahedron	20	30	12				
icosahedron	12	30	20				

Recall Obs. 1:

$$
\rho_{2}^{1}(\text { tetrahedron }) \geq \frac{1}{2}\left(1+\sqrt{1+8 \cdot 4\binom{\left\lceil\frac{3}{2}\right\rceil}{ 2}}\right) \geq 3.37
$$

Platonic Solids: Affine Cover Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$
$\operatorname{arc}(G)$						
tetrahedron	4	6	4	≥ 4		
octahedron	6	12	8	≥ 4		
cube	8	12	6	≥ 5		
dodecahedron	20	30	12	≥ 7		
icosahedron	12	30	20	≥ 9		

Recall Obs. 1:

$$
\Longrightarrow \rho_{2}^{1}(G) \geq \frac{1}{2}\left(1+\sqrt{1+8 \sum_{v \in V(G)}\binom{\left.\frac{\operatorname{deg} v}{2}\right\rceil}{ 2}}\right)
$$

Platonic Solids: Affine Cover Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6			
octahedron	6	12	8	9			
cube	8	12	6	7			
dodecahedron	20	30	12	$9 \ldots 10$			
icosahedron	12	30	20	$13 \ldots 15$			

Arguments: We use the number of nested cycles and the internal degree of the outer face.

Platonic Solids: Segment Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6			
octahedron	6	12	8	9			
cube	8	12	6	7			
dodecahedron	20	30	12	$9 \ldots 10$			
icosahedron	12	30	20	$13 \ldots 15$			

Platonic Solids: Segment Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	≥ 6		
octahedron	6	12	8	9	≥ 9		
cube	8	12	6	7	≥ 7		
dodecahedron	20	30	12	$9 \ldots 10$	≥ 9		
icosahedron	12	30	20	$13 \ldots 15$	≥ 13		

Trivial bound:
$\rho_{1}^{2}(G) \leq \operatorname{seg}(G)$

Platonic Solids: Segment Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6		
octahedron	6	12	8	9	9		
cube	8	12	6	7	7		
dodecahedron	20	30	12	$9 \ldots 10$	≥ 9		
icosahedron	12	30	20	$13 \ldots 15$	≥ 13		

Platonic Solids: Segment Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6		
octahedron	6	12	8	9	9		
cube	8	12	6	7	7		
dodecahedron	20	30	12	$9 \ldots 10$	≥ 9		
icosahedron	12	30	20	$13 \ldots 15$	≥ 13		

ILP (For fixed embedding.)
 angle assignment with maximum number of π-angles.

Platonic Solids: Segment Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6		
octahedron	6	12	8	9	9		
cube	8	12	6	7	7		
dodecahedron	20	30	12	$9 \ldots 10$	≥ 13		
icosahedron	12	30	20	$13 \ldots 15$	≥ 15		

ILP (For fixed embedding.) Find locally consistent
 angle assignment with maximum number of π-angles.
\Rightarrow Lower bounds for the minimum number of segments in the corresponding drawing.

Platonic Solids: Segment Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6		
octahedron	6	12	8	9	9		
cube	8	12	6	7	7		
dodecahedron	20	30	12	$9 \ldots 10$	13		
icosahedron	12	30	20	$13 \ldots 15$	15		

13 segments

15 segments

ILP (For fixed embedding.)
Find locally consistent angle assignment with maximum number of π-angles.
\Rightarrow Lower bounds for the minimum number of segments in the corresponding drawing.

Platonic Solids: Spherical Cover Numbers

Platonic Solids: Spherical Cover Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	≥ 3	
octahedron	6	12	8	9	9	≥ 3	
cube	8	12	6	7	7	≥ 4	
dodecahedron	20	30	12	$9 \ldots 10$	13	≥ 5	
icosahedron	12	30	20	$13 \ldots 15$	15	≥ 7	

Recall Obs. 2:

$$
\Longrightarrow \sigma_{2}^{1}(G) \geq \frac{1}{2}\left(1+\sqrt{1+4 \sum_{v \in V(G)}\binom{\left.\frac{\operatorname{deg} v}{2}\right\rceil}{ 2}}\right)
$$

Platonic Solids: Spherical Cover Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	
octahedron	6	12	8	9	9	≥ 3	
cube	8	12	6	7	7	≥ 4	
dodecahedron	20	30	12	$9 \ldots 10$	13	≥ 5	
icosahedron	12	30	20	$13 \ldots 15$	15	≥ 7	

Platonic Solids: Spherical Cover Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	
octahedron	6	12	8	9	9	3	
cube	8	12	6	7	7	≥ 4	
dodecahedron	20	30	12	$9 \ldots 10$	13	≥ 5	
icosahedron	12	30	20	$13 \ldots 15$	15	≥ 7	

Platonic Solids: Spherical Cover Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	
octahedron	6	12	8	9	9	3	
cube	8	12	6	7	7	4	
dodecahedron	20	30	12	$9 \ldots 10$	13	≥ 5	
icosahedron	12	30	20	$13 \ldots 15$	15	≥ 7	

Platonic Solids: Spherical Cover Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	
octahedron	6	12	8	9	9	3	
cube	8	12	6	7	7	4	13
dodecahedron	20	30	12	$9 \ldots 10$	13	5	7
icosahedron	12	30	20	$13 \ldots 15$	15	≥ 1	

Platonic Solids: Spherical Cover Numbers

Platonic Solids: Spherical Cover Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	
octahedron	6	12	8	9	9	3	
cube	8	12	6	7	7	4	
dodecahedron	20	30	12	$9 \ldots 10$	13	5	
icosahedron	12	30	20	$13 \ldots 15$	15	7	

Platonic Solids: Arc Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	
octahedron	6	12	8	9	9	3	
cube	8	12	6	7	7	4	
dodecahedron	20	30	12	$9 \ldots 10$	13	5	
icosahedron	12	30	20	$13 \ldots 15$	15	7	

Platonic Solids: Arc Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	≥ 3
octahedron	6	12	8	9	9	3	≥ 3
cube	8	12	6	7	7	4	≥ 4
dodecahedron	20	30	12	$9 \ldots 10$	13	5	≥ 5
icosahedron	12	30	20	$13 \ldots 15$	15	7	≥ 7

Trivial bound:
$\sigma_{1}^{2}(G) \leq \operatorname{arc}(G)$

Platonic Solids: Arc Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	≥ 3
octahedron	6	12	8	9	9	3	≥ 3
cube	8	12	6	7	7	4	≥ 4
dodecahedron	20	30	12	$9 \ldots 10$	13	5	≥ 10
icosahedron	12	30	20	$13 \ldots 15$	15	7	≥ 7

Trivial bound:
$\sigma_{1}^{2}(G) \leq \operatorname{arc}(G)$
Obs: For any $\operatorname{graph} G, \operatorname{arc}(G) \geq \#($ odd-deg. vtc. of $G) / 2$ [Dujmović, Eppstein, Suderman, Wood CGTA'07]

Platonic Solids: Arc Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	3
octahedron	6	12	8	9	9	3	3
cube	8	12	6	7	7	4	4
dodecahedron	20	30	12	$9 \ldots 10$	13	5	10
icosahedron	12	30	20	$13 \ldots 15$	15	7	≥ 7

Platonic Solids: Arc Numbers

Platonic Solids: Arc Numbers

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	$\rho_{2}^{1}(G)$	$\operatorname{seg}(G)$	$\sigma_{2}^{1}(G)$	$\operatorname{arc}(G)$
tetrahedron	4	6	4	6	6	3	3
octahedron	6	12	8	9	9	3	3
cube	8	12	6	7	7	4	4
dodecahedron	20	30	12	$9 \ldots 10$	13	5	10
icosahedron	12	30	20	$13 \ldots 15$	15	7	7

Outline

Motivation
Formal Definitions
A Combinatorial Lover Bound
Platonic solids

- affine cover number
- segment number
- spherical cover number
- arc number

Lower Bounds for σ_{d}^{1} w.r.t. Other Parameters
Open Problem

Lower Bounds for σ_{d}^{1} w.r.t. Other Parameters

For any $d \geq 1$ and any graph G, the following bounds hold:

Edge-chromatic \# $\quad \sigma_{d}^{1}(G) \geq \chi_{e}(G) / 3$,

Lower Bounds for σ_{d}^{1} w.r.t. Other Parameters

For any $d \geq 1$ and any graph G, the following bounds hold:

Edge-chromatic \# $\quad \sigma_{d}^{1}(G) \geq \chi_{e}(G) / 3$,

Lower Bounds for σ_{d}^{1} w.r.t. Other Parameters

For any $d \geq 1$ and any graph G, the following bounds hold:

$$
\lceil n / 2\rceil
$$

Edge-chromatic \#

$$
\sigma_{d}^{1}(G) \geq \chi_{e}(G) / 3
$$

bisection width

$$
\sigma_{d}^{1}(G) \geq \operatorname{bw}(G) / 2
$$

Lower Bounds for σ_{d}^{1} w.r.t. Other Parameters

For any $d \geq 1$ and any graph G, the following bounds hold:

Edge-chromatic \#

$$
\sigma_{d}^{1}(G) \geq \chi_{e}(G) / 3
$$

bisection width

$$
\sigma_{d}^{1}(G) \geq \operatorname{bw}(G) / 2
$$

linear arboricity

$$
\sigma_{d}^{1}(G) \geq \frac{2}{3} \operatorname{la}(G),
$$

balanced separator $\quad \sigma_{d}^{1}(G) \geq \operatorname{sep}_{w}(G) / 2$,
for almost all G cubic $\sigma_{d}^{1}(G)>n / 10$,
treewidth

$$
\sigma_{d}^{1}(G) \geq \operatorname{tw}(G) / 6
$$

Outline

Motivation
Formal Definitions
A Combinatorial Lover Bound
Platonic solids

- affine cover number
- segment number
- spherical cover number
- arc number

Lower Bounds for σ_{d}^{1} w.r.t. Other Parameters
Open Problem

Open Problems

Problem 1:

Is there a family of planar graphs whose circle cover number grows asymptotically more slowly than their line cover number?

Open Problems

Problem 1:

VS.

Is there a family of planar graphs whose circle cover number grows asymptotically more slowly than their line cover number?

Problem 2:

Determine the line cover number for the dodecahedron and icosahedron.

