Computing Height-Optimal Tangles Faster

Oksana Firman
Philipp Kindermann
Alexander Wolff
Johannes Zink
Julius-Maximilians-Universität Würzburg, Germany

Alexander Ravsky
Pidstryhach Institute for Applied Problems
of Mechanics and Mathematics,
National Academy of Sciences of Ukraine,
Lviv, Ukraine

PK AW JZ OF Wüi AR Lviv

Introduction

Given a set of n y-monotone wires

Introduction

Given a set of n
y-monotone wires

$$
\begin{aligned}
& 1 \leq i<j \leq n \\
& \operatorname{swap} i j
\end{aligned}
$$

Introduction

Given a set of n y-monotone wires

$$
\begin{aligned}
& 1 \leq i<j \leq n \\
& \text { swap } i j
\end{aligned}
$$

disjoint swaps

Introduction

Given a set of n y-monotone wires
$1 \leq i<j \leq n$
swap ij
disjoint swaps
adjacent permutations

Introduction

Given a set of n y-monotone wires

Introduction

Given a set of n y-monotone wires

$$
1 \leq i<j \leq n
$$

swap ij
disjoint swaps
adjacent
permutations
multiple swaps
tangle T of height $h(T)$

Introduction

Given a set of n y-monotone wires

$$
\begin{aligned}
& \quad 1 \leq i<j \leq n \\
& \text { swap } i j
\end{aligned}
$$

disjoint swaps adjacent permutations multiple swaps tangle T of height $h(T)$

Introduction

Given a set of n y-monotone wires

$$
\begin{aligned}
& \quad 1 \leq i<j \leq n \\
& \text { swap } i j
\end{aligned}
$$

... and given a list of swaps L
disjoint swaps
adjacent permutations
multiple swaps
tangle T of
height $h(T)$

Introduction

Given a set of n y-monotone wires

Introduction

Given a set of n y-monotone wires

$$
1 \leq i<j \leq n
$$

... and given a list of swaps L
disjoint swaps
adjacent permutations multiple swaps tangle T of height $h(T)$

Tangle $T(L)$ realizes list L.

Introduction

Given a set of n
y-monotone wires

$1 \leq i<j \leq n$
swap $i j$
... and given a list of swaps L
disjoint swaps
adjacent
permutations
multiple swaps
tangle T of
height $h(T)$
as a multiset $\left(\ell_{i j}\right)$

Tangle $T(L)$ realizes list L.

Introduction

Introduction

Given a set of n y-monotone wires

$$
1 \leq i<j \leq n
$$

... and given a list of swaps L
disjoint swaps
adjacent
permutations
multiple swaps
tangle T of
height $h(T)$

Tangle $T(L)$ realizes list L.
A tangle $T(L)$ is height-optimal if it has the minimum height among all tangles realizing the list L.

Related Work

- Olszewski et al. Visualizing the template of a chaotic attractor. GD 2018

Related Work

- Olszewski et al. Visualizing the template of a chaotic attractor. GD 2018

Related Work

- Olszewski et al. Visualizing the template of a chaotic attractor. GD 2018
Algorithm for finding optimal tangles

Related Work

- Olszewski et al. Visualizing the template of a chaotic attractor. GD 2018
Algorithm for finding optimal tangles

Complexity

Related Work

- Olszewski et al. Visualizing the template of a chaotic attractor. GD 2018
Algorithm for finding optimal tangles

Complexity

- Wang. Novel routing schemes for IC layout part I: Two-layer channel routing. DAC 1991

Given: $\begin{aligned} & \text { initial and } \\ & \text { final permutations }\end{aligned}$

Related Work

- Olszewski et al. Visualizing the template of a chaotic attractor.
GD 2018
Algorithm for finding optimal tangles

Complexity

- Wang. Novel routing schemes for IC layout part I: Two-layer channel routing. DAC 1991
- Bereg et al. Drawing Permutations with Few Corners. GD 2013

$$
\text { Objective: } \begin{aligned}
& \text { minimize } \\
& \text { the number of bends }
\end{aligned}
$$

Overview

- Complexity:

NP-hardness by reduction from
3-Partition.

- New algorithm: using dynamic programming; asymptotically faster than [Olszewski et al., GD'18].

$$
O\left(\frac{\varphi^{2}|L|}{5|L| / n} n\right) \longrightarrow O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)
$$

- Experiments: comparison with [Olszewski et al., GD'18]

Complexity

Theorem.
Tangle-Height Minimization is NP-hard.

Complexity

Theorem.
Tangle-Height Minimization is NP-hard.

Proof.

Reduction from 3-Partition

Complexity

Theorem.

Tangle-Height Minimization is NP-hard.

Proof.

Reduction from 3-Partition
Given:
Multiset A of $3 m$ positive integers.

Complexity

Theorem.
Tangle-Height Minimization is NP-hard.

Proof.

Reduction from 3-Partition
Given: Multiset A of $3 m$ positive integers.
Question: \quad Can A be partitioned into m groups of three elements s.t. each group sums up to the same value B ?

Complexity

Theorem.
Tangle-Height Minimization is NP-hard.

Proof.

Reduction from 3-Partition

$$
\begin{gathered}
\frac{B}{4}<a_{i}<\frac{B}{2} \\
B \text { is poly in } m
\end{gathered}
$$

Given: Multiset A of $3 m$ positive integers.
Question: \quad Can A be partitioned into m groups of three elements s.t. each group sums up to the same value B ?

Complexity

Theorem.
Tangle-Height Minimization is NP-hard.

Proof.

Reduction from 3-Partition

$$
\begin{aligned}
& \frac{B}{4}<a_{i}<\frac{B}{2} \\
& B \text { is poly in } m
\end{aligned}
$$ Mutiset A of $3 m$ pos poly in m

Given: \quad Multiset A of 3 m positive integers.
Question: \quad Can A be partitioned into m groups of three elements s.t. each group sums up to the same value B ?

Given: Instance A of 3 -Partition.

Complexity

Theorem.

Tangle-Height Minimization is NP-hard.

Proof.

Reduction from 3-Partition

$$
\begin{gathered}
\frac{B}{4}<a_{i}<\frac{B}{2} \\
B \text { is poly in } m
\end{gathered}
$$

Given: Multiset A of $3 m$ positive integers.
Question: \quad Can A be partitioned into m groups of three elements s.t. each group sums up to the same value B ?

Given: Instance A of 3 -Partition.
Task: Construct L s.t. there is T realizing L with height at most $H=2 m^{3}\left(\sum A\right)+7 m^{2}$ iff A is a yes-instance.

Complexity

Theorem.
Tangle-Height Minimization is NP-hard.

Proof.

Reduction from 3-Partition

Given: Instance A of 3-Partition.
Task: Construct L s.t. there is T realizing L with height at most $H=2 m^{3}\left(\sum A\right)+7 m^{2}$ iff A is a yes-instance.

Complexity

Theorem.
Tangle-Height Minimization is NP-hard.

Proof.

Reduction from 3-Partition

$$
\overline{\sum A}
$$

Given: Instance A of 3-Partition.
Task: Construct L s.t. there is T realizing L with height at most $H=2 m^{3}\left(\sum A\right)+7 m^{2}$ iff A is a yes-instance.

Complexity

Theorem.
Tangle-Height Minimization is NP-hard.

Proof.

Reduction from 3-Partition

$$
\sum A+1
$$

Given: Instance A of 3-Partition.
Task: Construct L s.t. there is T realizing L with height at most $H=2 m^{3}\left(\sum A\right)+7 m^{2}$ iff A is a yes-instance.

Complexity

Theorem.
Tangle-Height Minimization is NP-hard.

Proof.

Reduction from 3-Partition

$$
\sum A+1
$$

Given: Instance A of 3-Partition.
Task:
construct L s.t. there is T realizing L with height at most $H=2 m^{3}\left(\sum A+1\right)+7 m^{2}$ iff A is a yes-instance

Transforming the Instance A into a List L

Transforming the Instance A into a List L
$2 m$ swaps

Transforming the Instance A into a List L

Transforming the Instance A into a List L
$M=2 m^{3}$

Transforming the Instance A into a List L
$M=2 m^{3}$

Transforming the Instance A into a List L
$M=2 m^{3}$

Transforming the Instance A into a List L
$M=2 m^{3}$

Transforming the Instance A into a List L

$$
M=2 m^{3}
$$

What is not possible?
split

Transforming the Instance A into a List L
$M=2 m^{3}$

Transforming the Instance A into a List L

$$
M=2 m^{3}
$$

What is not possible?
put it on the same level with other $\alpha-\alpha^{\prime}$ swaps

Transforming the Instance A into a List L

$$
M=2 m^{3}
$$

Making Sure That the "Pockets" Can't Be Squeezed

Making Sure That the "Pockets" Can't Be Squeezed

Making Sure That the "Pockets" Can't Be Squeezed

Making Sure That the "Pockets" Can't Be Squeezed

Making Sure That the "Pockets" Can't Be Squeezed

Making Sure That the "Pockets" Can't Be Squeezed

Making Sure That the "Pockets" Can't Be Squeezed

Making Sure That the "Pockets" Can't Be Squeezed

Making Sure That the "Pockets" Can't Be Squeezed

Making Sure That the "Pockets" Can't Be Squeezed

Making Sure That the "Pockets" Can't Be Squeezed

Making Sure That the "Pockets" Can't Be Squeezed

Proof of Correctness

$$
M=2 m^{3}
$$

A is a yes-instance

$$
H=2 m^{3}\left(\sum A\right)+7 m^{2}
$$

is the maximum allowed height for the reduction

Proof of Correctness

$$
M=2 m^{3}
$$

A is a yes-instance

$$
H=2 m^{3}\left(\sum A\right)+7 m^{2}
$$

is the maximum allowed height for the reduction

Proof of Correctness

$$
M=2 m^{3}
$$

A is a yes-instance

Proof of Correctness

$$
M=2 m^{3}
$$

A is a no-instance

$$
H=2 m^{3}\left(\sum A\right)+7 m^{2}
$$

is the maximum allowed height for the reduction

Proof of Correctness

$$
M=2 m^{3}
$$

A is a no-instance

$H=2 m^{3}\left(\sum A\right)+7 m^{2}$
is the maximum allowed height for the reduction

Proof of Correctness

$$
M=2 m^{3}
$$

A is a no-instance

height $>\mathrm{H}$

$$
H=2 m^{3}\left(\sum A\right)+7 m^{2}
$$

is the maximum allowed height for the reduction

Proof of Correctness

$$
M=2 m^{3}
$$

A is a no-instance

height $>\mathrm{H}$

Theorem.

Tangle-Height Minimization is NP-hard.

Overview

- Complexity:

NP-hardness by
reduction from
3-Partition.

- New algorithm: using dynamic programming; asymptotically faster than [Olszewski et al., GD'18].

$$
O\left(\frac{\varphi^{2}|L|}{5|L| / n} n\right) \longrightarrow O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)
$$

- Experiments: comparison with [Olszewski et al., GD'18]

Improving Exact Algorithms

Tangle-Height Minimization can be solved in ...

Simple lists

General lists

Improving Exact Algorithms

Tangle-Height Minimization can be solved in ...
n - number of wires

Simple lists

[Olszewski et al., GD'18]
$2^{O\left(n^{2}\right)}$

General lists

Improving Exact Algorithms

Tangle-Height Minimization can be solved in ...
n - number of wires

Simple lists
[Olszewski et al., GD'18] our runtime $2^{O\left(n^{2}\right)}$ $2^{O(n \log n)}$

General lists

Improving Exact Algorithms

Tangle-Height Minimization can be solved in ...

```
n - number of wires
|L| - length of the list L (=\sum \ell ij)
\varphi ~ - ~ g o l d e n ~ r a t i o ~ ( ~ \approx ~ 1 . 6 1 8 )
```

Simple lists
[Olszewski et al., GD'18]
$2^{O\left(n^{2}\right)}$

General lists

[Olszewski et al., GD'18]

$$
O\left(\frac{\varphi^{2|L|}}{5^{|L| / n}} n\right)
$$

Improving Exact Algorithms

Tangle-Height Minimization can be solved in ...

```
n - number of wires
|L - length of the list L (=\sum \ell ij)
\varphi ~ - ~ g o l d e n ~ r a t i o ~ ( ~ \approx ~ 1 . 6 1 8 )
```

Simple lists
[Olszewski et al., GD'18]
$2^{O\left(n^{2}\right)}$
our runtime
$2^{O(n \log n)}$

General lists

[Olszewski et al., GD'18]
our runtime

$$
O\left(\frac{\varphi^{2|L|}}{5^{|L| / n}} n\right)
$$

$$
O\left(\left(\frac{24}{11}+1\right)^{\frac{2}{4} \varphi^{2}+e^{0}}\right)
$$

Improving Exact Algorithms

Tangle-Height Minimization can be solved in ...

```
n - number of wires
|L| - length of the list L (=\sum \ell ij)
\varphi ~ - ~ g o l d e n ~ r a t i o ~ ( ~ \approx ~ 1 . 6 1 8 )
```

Simple lists
[Olszewski et al., GD'18]
$2^{O\left(n^{2}\right)}$

```
2O(n\operatorname{log}n)
```


General lists

[Olszewski et al., GD'18]
our runtime

$$
O\left(\frac{\varphi^{2|L|}}{5^{|L| / n}} n\right)
$$

$$
O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)
$$

polynomial in $|L|$

Dynamic Programming Algorithm
Let $L=\left(\ell_{i j}\right)$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{n^{2} / 2} \varphi^{n} n\right)$

Dynamic Programming Algorithm

Let $L=\left(\ell_{i j}\right)$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{n^{2} / 2} \varphi^{n} n\right)$ $\lambda=\#$ of distinct sublists of L.

$$
\begin{aligned}
& L^{\prime} \text { is a sublist of } L \text { if } \\
& \ell_{i j}^{\prime} \leq \ell_{i j}
\end{aligned}
$$

Dynamic Programming Algorithm

Let $L=\left(\ell_{i j}\right)$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{n^{2} / 2} \varphi^{n} n\right)$ $\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length. $\quad \begin{aligned} & L^{\prime} \text { is a su } \\ & \ell_{i j} \leq \ell_{i j}\end{aligned}$

Dynamic Programming Algorithm

Let $L=\left(\ell_{i j}\right)$ be the given list of swaps. $O\left(\left(\frac{2 L L}{n^{2}}+1\right)^{n^{2} / 2} \varphi^{n} n\right)$ $\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length. ${ }^{L_{l i j}} \leq \ell_{i j}$ is asuid
Let L^{\prime} be the next list to consider.

Dynamic Programming Algorithm

Let $L=\left(\ell_{i j}\right)$ be the given list of swaps. $O\left(\left(\frac{2 L L}{n^{2}}+1\right)^{n^{2} / 2} \varphi^{n} n\right)$ $\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length. ${ }^{L_{i j}} \leq \ell_{i j}$
Let L^{\prime} be the next list to consider.
Check its consistency.

Dynamic Programming Algorithm

Let $L=\left(\ell_{i j}\right)$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{n^{2} / 2} \varphi^{n} n\right)$ $\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length. $\begin{aligned} & L^{\prime} \text { is a s } \ell_{i j} \leq \ell_{i j}\end{aligned}$
Let L^{\prime} be the next list to consider.
Check its consistency.

Dynamic Programming Algorithm

Let $L=\left(\ell_{i j}\right)$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{n^{2} / 2} \varphi^{n} n\right)$ $\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length. $\begin{aligned} & L^{\prime} \text { is a s } \ell_{i j} \leq \ell_{i j}\end{aligned}$
Let L^{\prime} be the next list to consider.
Check its consistency.
for each wire i :
// find a position where it is after applying L^{\prime}

Dynamic Programming Algorithm

Let $L=\left(\ell_{i j}\right)$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{n^{2} / 2} \varphi^{n} n\right)$ $\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length. $\begin{aligned} & L^{\prime} \text { is a } s u \\ & \ell_{i j} \leq \ell_{i j}\end{aligned}$
Let L^{\prime} be the next list to consider.
Check its consistency.
for each wire i :
// find a position where it is after applying L^{\prime}
$i \mapsto i+$

Dynamic Programming Algorithm

Let $L=\left(\ell_{i j}\right)$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{n^{2} / 2} \varphi^{n} n\right)$ $\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length. $\begin{aligned} & L^{\prime} \text { is a s } \ell_{i j} \\ & \ell_{i j}\end{aligned}$
Let L^{\prime} be the next list to consider.
Check its consistency.
for each wire i :
// find a position where it is after applying L^{\prime}
$i \mapsto i+$

Dynamic Programming Algorithm

Let $L=\left(\ell_{i j}\right)$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{n^{2} / 2} \varphi^{n} n\right)$ $\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length. $\begin{aligned} & L^{\prime} \text { is a } s u \\ & \ell_{i j} \leq \ell_{i j}\end{aligned}$
Let L^{\prime} be the next list to consider.
Check its consistency.
for each wire i :
// find a position where it is after applying L^{\prime}
$i \mapsto i+\mid\left\{j: j>i\right.$ and $\ell_{i j}^{\prime}$ is odd $\} \mid$

Dynamic Programming Algorithm

Let $L=\left(\ell_{i j}\right)$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{n^{2} / 2} \varphi^{n} n\right)$ $\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length. $\begin{aligned} & L^{\prime} \\ & \ell_{i j}^{\prime}\end{aligned} \leq \ell_{i j}$
Let L^{\prime} be the next list to consider.
Check its consistency.
for each wire i :
// find a position where it is after applying L^{\prime}
$i \mapsto i+\mid\left\{j: j>i\right.$ and $\ell_{i j}^{\prime}$ is odd $\}|-|\left\{j: j<i\right.$ and $\ell_{i j}^{\prime}$ is odd $\} \mid$

Dynamic Programming Algorithm

Let $L=\left(\ell_{i j}\right)$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{n^{2} / 2} \varphi^{n} n\right)$ $\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length. $\begin{aligned} & L^{\prime} \text { is a s } \\ & \ell_{i j}^{\prime} \leq \ell_{i j}\end{aligned}$ Let L^{\prime} be the next list to consider.

Check its consistency.
for each wire i :
// find a position where it is after applying L^{\prime}
$i \mapsto i+\mid\left\{j: j>i\right.$ and $\ell_{i j}^{\prime}$ is odd $\}|-|\left\{j: j<i\right.$ and $\ell_{i j}^{\prime}$ is odd $\} \mid$ check whether the map is indeed a permutation

Dynamic Programming Algorithm

Let $L=\left(\ell_{i j}\right)$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{n^{2} / 2} \varphi^{n} n\right)$ $\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length. $\begin{aligned} & L^{\prime} \text { is a } s u \\ & \ell_{i j} \leq \ell_{i j}\end{aligned}$ Let L^{\prime} be the next list to consider.
Check its consistency.
Compute the final permutation $\mathrm{id}_{n} L^{\prime}$.

Dynamic Programming Algorithm

Let $L=\left(\ell_{i j}\right)$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{n^{2} / 2} \varphi^{n} n\right)$ $\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length. $\begin{aligned} & L^{\prime} \text { is a s } \\ & \ell_{i j}^{\prime} \leq \ell_{i j}\end{aligned}$ Let L^{\prime} be the next list to consider.
Check its consistency.
Compute the final permutation $\mathrm{id}_{n} L^{\prime}$.
Choose the shortest tangle $T\left(L^{\prime \prime}\right)$.

Dynamic Programming Algorithm

Let $L=\left(\ell_{i j}\right)$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{n^{2} / 2} \varphi^{n} n\right)$ $\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length. $\begin{aligned} & L^{\prime} \text { is a s } \\ & \ell_{i j}^{\prime} \leq \ell_{i j}\end{aligned}$ Let L^{\prime} be the next list to consider.
Check its consistency.
Compute the final permutation $\mathrm{id}_{n} L^{\prime}$.
Choose the shortest tangle $T\left(L^{\prime \prime}\right)$.

Dynamic Programming Algorithm

Let $L=\left(\ell_{i j}\right)$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{n^{2} / 2} \varphi^{n} n\right)$ $\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length. $\begin{aligned} & L^{\prime} \text { is a suj } \\ & \ell_{i j}^{\prime} \leq \ell_{i j}\end{aligned}$ Let L^{\prime} be the next list to consider.
Check its consistency.

Compute the final permutation $\mathrm{id}_{n} L^{\prime}$.
Choose the shortest tangle $T\left(L^{\prime \prime}\right)$.
Add the final permutation to its end.

Dynamic Programming Algorithm

Let $L=\left(\ell_{i j}\right)$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{n^{2} / 2} \varphi^{n} n\right)$ $\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length. $\ell_{i j}^{L^{\prime}} \leq \ell_{i j}$ a
Let L^{\prime} be the next list to consider.
Check its consistency.

Compute the final permutation $\mathrm{id}_{n} L^{\prime}$.
Choose the shortest tangle $T\left(L^{\prime \prime}\right)$.
Add the final permutation to its end.

Running time o()

Dynamic Programming Algorithm

Let $L=\left(\ell_{i j}\right)$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{n^{2} / 2} \varphi^{n} n\right)$ $\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length. $\begin{aligned} & L^{\prime} \text { is a s } \\ & \ell_{i j}^{\prime} \leq \ell_{i j}\end{aligned}$ Let L^{\prime} be the next list to consider.
Check its consistency.

Compute the final permutation $\mathrm{id}_{n} L^{\prime}$.
Choose the shortest tangle $T\left(L^{\prime \prime}\right)$.
Add the final permutation to its end.

Running time

 $O(\lambda$.
Dynamic Programming Algorithm

Let $L=\left(\ell_{i j}\right)$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{n^{2} / 2} \varphi^{n} n\right)$ $\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length. $\ell_{i j}^{L^{\prime}} \leq \ell_{i j}$ a s Let L^{\prime} be the next list to consider.

Check its consistency.

Compute the final permutation $\mathrm{id}_{n} L^{\prime}$.
π_{2} \qquad
Choose the shortest tangle $T\left(L^{\prime \prime}\right)$.
Add the final permutation to its end.

Running time
$O\left(\lambda \cdot\left(F_{n+1}-1\right) \cdot n\right)$
F_{n} is the n-th Fibonacci number

Dynamic Programming Algorithm

Let $L=\left(\ell_{i j}\right)$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{n^{2} / 2} \varphi^{n} n\right)$ $\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length. $\begin{aligned} & L^{\prime} \text { is a s sij } \\ & \ell_{i j} \leq \ell_{i j}\end{aligned}$ Let L^{\prime} be the next list to consider.
Check its consistency.

Compute the final permutation $\mathrm{id}_{n} L^{\prime}$.
Choose the shortest tangle $T\left(L^{\prime \prime}\right)$.
Add the final permutation to its end.

Running time
$O\left(\lambda \cdot\left(F_{n+1}-1\right) \cdot n\right)$

$$
\begin{aligned}
& \lambda=\prod_{i<j}\left(\ell_{i j}+1\right) \leq\left(\frac{2|L|}{n^{2}}+1\right)^{n^{2} / 2} \\
& F_{n} \in O\left(\varphi^{n}\right)
\end{aligned}
$$

Dynamic Programming Algorithm

Let $L=\left(\ell_{i j}\right)$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{n^{2} / 2} \varphi^{n} n\right)$ $\lambda=\#$ of distinct sublists of L.
Consider them in order of increasing length. $\ell_{i j}^{\prime} \leq \ell_{i j}$ Let L^{\prime} be the next list to consider.
Check its consistency.

Compute the final permutation $\mathrm{id}_{n} L^{\prime}$.
Choose the shortest tangle $T\left(L^{\prime \prime}\right)$.
Add the final permutation to its end.

$$
\begin{aligned}
& \text { Running time } \\
& O\left(\lambda \cdot\left(F_{n+1}-1\right) \cdot n\right) \leq-\begin{array}{l}
\lambda=\prod_{i<j}\left(\ell_{i j}+1\right) \leq\left(\frac{2 L L}{n^{2}}+1\right)^{n^{2} / 2} \\
F_{n} \in O\left(\varphi^{n}\right)
\end{array}
\end{aligned}
$$

Overview

- Complexity:

NP-hardness by
reduction from
3-Partition.

- New algorithm: using dynamic programming; asymptotically faster than [Olszewski et al., GD'18].

$$
O\left(\frac{\varphi^{2|L|}}{5|L| / n} n\right) \longrightarrow O\left(\left(\frac{2|L|}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)
$$

- Experiments: comparison with [Olszewski et al., GD'18]

[OIszewski et al., GD'18]

$$
O\left(\frac{\varphi^{2|L|}}{5|L| / n} n\right)
$$

Our algorithm
$O\left(\left(\frac{2 L L}{n^{2}}+1\right)^{\frac{n^{2}}{2}} \varphi^{n} n\right)$

Open Problems

Problem 1
Is it NP-hard to test the feasibility of a given (non-simple) list?

Open Problems

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

Can we decide a feasibility of a list faster than finding its optimal realization?

Open Problems

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

Can we decide a feasibility of a list faster than finding its optimal realization?

Problem 3

A list $\left(\ell_{i j}\right)$ is non-separable if $\forall i<k<j:\left(\ell_{i k}=\ell_{k j}=0\right.$ implies $\left.\ell_{i j}=0\right)$.

Open Problems

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

Can we decide a feasibility of a list faster than finding its optimal realization?

Problem 3

A list $\left(\ell_{i j}\right)$ is non-separable if $\forall i<k<j:\left(\ell_{i k}=\ell_{k j}=0\right.$ implies $\left.\ell_{i j}=0\right)$.

Open Problems

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

Can we decide a feasibility of a list faster than finding its optimal realization?

Problem 3

> A list $\left(\ell_{i j}\right)$ is non-separable if $\forall i<k<j:\left(\ell_{i k}=\ell_{k j}=0\right.$ implies $\left.\ell_{i j}=0\right)$. necessary

For lists where all entries are even, is this sufficient?

Open Problems

Problem 1

Thank
You!
Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

Can we decide a feasibility of a list faster than finding its optimal realization?

Problem 3

A list $\left(\ell_{i j}\right)$ is non-separable if $\forall i<k<j:\left(\ell_{i k}=\ell_{k j}=0\right.$ implies $\left.\ell_{i j}=0\right)$. necessary

For lists where all entries are even, is this sufficient?

