

Computing Height-Optimal Tangles Faster

Oksana Firman

Philipp Kindermann
Alexander Wolff
Johannes Zink

Julius-Maximilians-Universität Würzburg, Germany

Alexander Ravsky

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine,

Lviv. Ukraine

Given a set of *n y*-monotone wires

Given a set of *n y*-monotone wires

 $1 \le i < j \le n$ swap ij

disjoint swaps

adjacent permutations

Given a set of *n y*-monotone wires

 $1 \le i < j \le n$

swap ij

disjoint swaps

adjacent permutations

multiple swaps

Given a set of *n y*-monotone wires

 $1 \le i < j \le n$ swap ij disjoint swaps adjacent permutations multiple swaps tangle T of height h(T)

Given a set of *n y*-monotone wires

1 ≤ i < j ≤ n

swap ij

disjoint swaps

adjacent
permutations

multiple swaps tangle T of

height h(T)

Given a set of *n y*-monotone wires

 $1 \le i < j \le n$ swap ij disjoint swaps adjacent permutations multiple swaps tangle T of height h(T)

...and given a list of swaps *L*

Given a set of *n y*-monotone wires

 $1 \le i < j \le n$ swap ij disjoint swaps adjacent permutations multiple swaps tangle T of height h(T)

...and given a list of swaps Las a multiset (ℓ_{ij}) $1_{\frac{\chi}{\lambda}}$ $3_{\frac{\chi}{\lambda}}$ $1_{\frac{\chi}{\lambda}}$

2**x**

Given a set of *n y*-monotone wires

 $1 \le i < j \le n$

swap ij

disjoint swaps

adjacent permutations

multiple swaps

tangle T of height h(T)

...and given a list of swaps *L*

as a multiset (ℓ_{ij})

 $1_{\mathbf{X}}$

3 **X**

1_X

1 x

2_{**X**}

Tangle T(L) realizes list L.

Given a set of *n y*-monotone wires

 $1 \le i < j \le n$

swap ij

disjoint swaps

adjacent permutations

multiple swaps

tangle T of height h(T)

...and given a list of swaps *L*

as a multiset (ℓ_{ij})

3 **X**

1_X

1 X

2_{**X**}

Tangle T(L) realizes list L.

Given a set of *n y*-monotone wires

 $1 \le i < j \le n$

swap ij

disjoint swaps

adjacent permutations

multiple swaps

tangle T of height h(T)

...and given a list of swaps *L*

as a multiset (ℓ_{ij})

3 **x**

1_X

1 x

2**x**

Tangle T(L) realizes list L.

not feasible

Given a set of *n y*-monotone wires

 $1 \le i < j \le n$

swap ij

disjoint swaps

adjacent permutations

multiple swaps

tangle T of height h(T)

...and given a list of swaps *L*

as a multiset (ℓ_{ij})

 1_{X}

3 **X**

1_X

 1_{X}

2**x**

Tangle T(L) realizes list L.

A tangle T(L) is *height-optimal* if it has the minimum height among all tangles realizing the list L.

 Olszewski et al. Visualizing the template of a chaotic attractor.
 GD 2018

• Olszewski et al. Visualizing the template of a chaotic attractor. GD 2018

• Olszewski et al. Visualizing the template of a chaotic attractor. GD 2018

Algorithm for finding optimal tangles

Olszewski et al. Visualizing the template of a chaotic attractor.
 GD 2018

Algorithm for finding optimal tangles

Complexity ?

• Olszewski et al. Visualizing the template of a chaotic attractor. GD 2018

Algorithm for finding optimal tangles

Complexity ?

list

• Wang. Novel routing schemes for IC layout part I: Two-layer channel routing. DAC 1991

initial and Given: final permutations

• Olszewski et al. Visualizing the template of a chaotic attractor. GD 2018

list

Algorithm for finding optimal tangles

Complexity ?

 Wang. Novel routing schemes for IC layout part I: Two-layer channel routing. DAC 1991

initial and Given: final permutations

Bereg et al. Drawing Permutations with Few Corners.

GD 2013

Objective: minimize the number of bends

Overview

• Complexity:

NP-hardness by reduction from 3-Partition.

• New algorithm: using dynamic programming; asymptotically faster than [Olszewski et al., GD'18].

$$O\left(\frac{\varphi^{2|L|}}{5|L|/n}n\right) \longrightarrow O\left(\left(\frac{2|L|}{n^2}+1\right)^{\frac{n^2}{2}}\varphi^n n\right)$$

Experiments: comparison with [Olszewski et al., GD'18]

Theorem.

TANGLE-HEIGHT MINIMIZATION is NP-hard.

Theorem.

TANGLE-HEIGHT MINIMIZATION is NP-hard.

Proof.

Reduction from 3-Partition

Theorem.

TANGLE-HEIGHT MINIMIZATION is NP-hard.

Proof.

Reduction from 3-PARTITION

Given: Multiset A of 3m positive integers.

 a_1 a_2 a_3 a_{3m-2} a_{3m-1} a_{3m}

Theorem.

TANGLE-HEIGHT MINIMIZATION is NP-hard.

Proof.

Reduction from 3-PARTITION

Given: Multiset A of 3m positive integers.

Question: Can A be partitioned into m groups of

three elements s.t. each group sums up to

the same value *B*?

Theorem.

TANGLE-HEIGHT MINIMIZATION is NP-hard.

Proof.

Reduction from 3-PARTITION

 $\frac{B}{4} < a_i < \frac{B}{2}$ B is poly in m

Given: Multiset A of 3m positive integers.

Question: Can A be partitioned into m groups of

three elements s.t. each group sums up to

the same value B?

Theorem.

TANGLE-HEIGHT MINIMIZATION is NP-hard.

Proof.

Reduction from 3-Partition

 $\frac{B}{4} < a_i < \frac{B}{2}$ B is poly in m

Given: Multiset A of 3m positive integers.

Question: Can A be partitioned into m groups of

three elements s.t. each group sums up to

the same value *B*?

Given: Instance A of 3-PARTITION.

Theorem.

TANGLE-HEIGHT MINIMIZATION is NP-hard.

Proof.

Reduction from 3-Partition

 $\frac{B}{4} < a_i < \frac{B}{2}$ B is poly in m

Given: Multiset A of 3m positive integers.

Question: Can A be partitioned into m groups of

three elements s.t. each group sums up to

the same value *B*?

Given: Instance A of 3-PARTITION.

Task: Construct L s.t. there is T realizing L with height at

Theorem.

TANGLE-HEIGHT MINIMIZATION is NP-hard.

Proof.

Reduction from 3-PARTITION

Given: Instance A of 3-PARTITION.

Task: Construct L s.t. there is T realizing L with height at

Theorem.

TANGLE-HEIGHT MINIMIZATION is NP-hard.

Proof.

Reduction from 3-PARTITION

Given: Instance A of 3-PARTITION.

Task: Construct L s.t. there is T realizing L with height at

Theorem.

TANGLE-HEIGHT MINIMIZATION is NP-hard.

Proof.

Reduction from 3-PARTITION

Given: Instance A of 3-PARTITION.

Task: Construct L s.t. there is T realizing L with height at

Theorem.

TANGLE-HEIGHT MINIMIZATION is NP-hard.

Proof.

Reduction from 3-PARTITION

Given: Instance A of 3-PARTITION.

Task: construct L s.t. there is T realizing L with height at

$$M = 2m^3$$

$$M=2m^3$$

$$M=2m^3$$

 $M=2m^3$

What is **not** possible?

put it on the same level with other α - α' swaps

$$M=2m^3$$

Making Sure That the "Pockets" Can't Be Squeezed $\delta_1 \beta_1 \gamma_1 \delta_2 \beta_2 \delta_1 \beta_1$

 $H=2m^3(\sum A)+7m^2$ is the maximum allowed height for the reduction

Theorem.

TANGLE-HEIGHT MINIMIZATION is NP-hard.

Overview

• Complexity:

NP-hardness by reduction from 3-PARTITION.

• New algorithm: using dynamic programming; asymptotically faster than [Olszewski et al., GD'18].

$$O\left(\frac{\varphi^{2|L|}}{5^{|L|/n}}n\right) \longrightarrow O\left(\left(\frac{2|L|}{n^2}+1\right)^{\frac{n^2}{2}}\varphi^n n\right)$$

• Experiments: comparison with [Olszewski et al., GD'18]

TANGLE-HEIGHT MINIMIZATION can be solved in ...

Simple lists

General lists

TANGLE-HEIGHT MINIMIZATION can be solved in ...

n – number of wires

Simple lists

[Olszewski et al., GD'18]

 $2^{O(n^2)}$

General lists

TANGLE-HEIGHT MINIMIZATION can be solved in ...

n – number of wires

Simple lists

[Olszewski et al., GD'18]

 $2^{O(n^2)}$

 $2^{O(n\log n)}$

our runtime

General lists

TANGLE-HEIGHT MINIMIZATION can be solved in . . .

 $2O(n \log n)$

n – number of wires |L| – length of the list L (= $\sum \ell_{ij}$) φ – golden ratio (\approx 1.618)

Simple lists

[Olszewski et al., GD'18]

$$2^{O(n^2)}$$

our runtime

General lists

[Olszewski et al., GD'18]

$$O\left(\frac{\varphi^{2|L|}}{5^{|L|/n}}n\right)$$

TANGLE-HEIGHT MINIMIZATION can be solved in . . .

n – number of wires |L| – length of the list L (= $\sum \ell_{ij}$) φ – golden ratio (\approx 1.618)

Simple lists

[Olszewski et al., GD'18]

$$2^{O(n^2)}$$

our runtime

General lists

[Olszewski et al., GD'18]

$$O\left(\frac{\varphi^{2|L|}}{5^{|L|/n}}n\right)$$

our runtime

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{\frac{n^2}{2}}\varphi^n n\right)$$

 $2^{O(n \log n)}$

TANGLE-HEIGHT MINIMIZATION can be solved in . . .

n – number of wires |L| – length of the list L (= $\sum \ell_{ij}$) φ – golden ratio (\approx 1.618)

Simple lists

[Olszewski et al., GD'18]

$$2^{O(n^2)}$$

our runtime

General lists

[Olszewski et al., GD'18]

$$O\left(\frac{\varphi^{2|L|}}{5^{|L|/n}}n\right)$$

 $O\left(\left(\frac{2|L|}{n^2}+1\right)^{\frac{n^2}{2}}\varphi^n n\right)$

 $2O(n \log n)$

polynomial in |L| for fixed n

Dynamic Programming Algorithm

Let $L = (\ell_{ij})$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^2} + 1\right)^{n^2/2} \varphi^n n\right)$

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}\varphi^n n\right)$$

Dynamic Programming Algorithm

Let $L = (\ell_{ij})$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^2} + 1\right)^{n^2/2} \varphi^n n\right)$ $\lambda = \#$ of distinct sublists of L.

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}\varphi^n n\right)$$

L' is a *sublist* of L if $\ell'_{ii} \leq \ell_{ij}$

Dynamic Programming Algorithm

Let $L = (\ell_{ij})$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^2} + 1\right)^{n^2/2} \varphi^n n\right)$

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}\varphi^n n\right)$$

 $\lambda = \#$ of distinct sublists of L.

Consider them in order of increasing length. $\ell'_{ii} \leq \ell_{ij}$

L' is a *sublist* of L if

Let $L = (\ell_{ij})$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^2} + 1\right)^{n^2/2} \varphi^n n\right)$

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}\varphi^n n\right)$$

$$\lambda = \#$$
 of distinct sublists of L .

Consider them in order of increasing length. $\ell'_{ii} \leq \ell_{ij}$

L' is a *sublist* of L if

Let L' be the next list to consider.

Let $L = (\ell_{ij})$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^2} + 1\right)^{n^2/2} \varphi^n n\right)$

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}\varphi^n n\right)$$

 $\lambda = \#$ of distinct sublists of L.

Consider them in order of increasing length. $\ell'_{ii} \leq \ell_{ij}$

L' is a *sublist* of L if

Let L' be the next list to consider.

Check its **consistency**.

Let $L = (\ell_{ij})$ be the given list of swaps. $O((\frac{2|L|}{n^2} + 1)^{n^2/2} \varphi^n n)$

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}\varphi^n n\right)$$

 $\lambda = \#$ of distinct sublists of L.

Consider them in order of increasing length. $\bar{\ell}'_{ii} \leq \ell_{ij}$

L' is a *sublist* of L if

Let L' be the next list to consider.

Check its **consistency**.

Let $L = (\ell_{ij})$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^2} + 1\right)^{n^2/2} \varphi^n n\right)$

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}\varphi^n n\right)$$

 $\lambda = \#$ of distinct sublists of L.

Consider them in order of increasing length. $\bar{\ell}'_{ii} \leq \ell_{ii}$

L' is a *sublist* of L if

Let L' be the next list to consider.

Check its **consistency**.

for each wire i:

Let $L = (\ell_{ij})$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^2} + 1\right)^{n^2/2} \varphi^n n\right)$

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}\varphi^n n\right)$$

 $\lambda = \#$ of distinct sublists of L.

Consider them in order of increasing length. $\ell'_{ii} \leq \ell_{ii}$

Let L' be the next list to consider.

Check its **consistency**.


```
for each wire i:
```

$$i \mapsto i +$$

Let $L = (\ell_{ij})$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^2} + 1\right)^{n^2/2} \varphi^n n\right)$

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}\varphi^n n\right)$$

 $\lambda = \#$ of distinct sublists of L.

Consider them in order of increasing length. $\ell'_{ii} \leq \ell_{ii}$

Let L' be the next list to consider.

Check its **consistency**.

```
L' is a sublist of L if
```



```
for each wire i:
```

$$i \mapsto i +$$

Let $L = (\ell_{ij})$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^2} + 1\right)^{n^2/2} \varphi^n n\right)$

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}\varphi^n n\right)$$

$$\lambda = \#$$
 of distinct sublists of L .

Consider them in order of increasing length. $\ell'_{ii} < \ell_{ii}$

L' is a *sublist* of L if

Let L' be the next list to consider.

Check its **consistency**.

for each wire i:

$$i \mapsto i + |\{j : j > i \text{ and } \ell'_{ij} \text{ is odd}\}|$$

Let $L = (\ell_{ij})$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^2} + 1\right)^{n^2/2} \varphi^n n\right)$

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}\varphi^n n\right)$$

 $\lambda = \#$ of distinct sublists of L.

Consider them in order of increasing length. $\bar{\ell}'_{ii} \leq \ell_{ii}$

L' is a *sublist* of L if

Let L' be the next list to consider.

Check its **consistency**.

for each wire i:

```
// find a position where it is after applying L'
```

$$i \mapsto i + |\{j : j > i \text{ and } \ell'_{ij} \text{ is odd}\}| - |\{j : j < i \text{ and } \ell'_{ij} \text{ is odd}\}|$$

Let $L = (\ell_{ij})$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^2} + 1\right)^{n^2/2} \varphi^n n\right)$

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}\varphi^n n\right)$$

 $\lambda = \#$ of distinct sublists of L.

Consider them in order of increasing length. $\ell'_{ii} \leq \ell_{ii}$

L' is a *sublist* of L if

Let L' be the next list to consider.

Check its **consistency**.

for each wire i:

// find a position where it is after applying L'

 $i \mapsto i + |\{j: j > i \text{ and } \ell'_{ii} \text{ is odd}\}| - |\{j: j < i \text{ and } \ell'_{ii} \text{ is odd}\}|$ check whether the map is indeed a permutation

Let $L = (\ell_{ij})$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^2} + 1\right)^{n^2/2} \varphi^n n\right)$

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}\varphi^n n\right)$$

 $\lambda = \#$ of distinct sublists of L.

Consider them in order of increasing length. $\ell'_{ij} \leq \ell_{ij}$

L' is a *sublist* of L if

Let L' be the next list to consider.

Check its **consistency**.

Compute the **final permutation** $id_n L'$.

Let $L = (\ell_{ij})$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^2} + 1\right)^{n^2/2} \varphi^n n\right)$

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}\varphi^n n\right)$$

 $\lambda = \#$ of distinct sublists of L.

Consider them in order of increasing length.

L' is a *sublist* of L if

Let L' be the next list to consider.

Check its **consistency**.

Compute the **final permutation** $id_n L'$.

Choose the **shortest tangle** T(L'').

 π_h and id_n L' are adjacent

Let $L = (\ell_{ij})$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^2} + 1\right)^{n^2/2} \varphi^n n\right)$

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}\varphi^n n\right)$$

 $\lambda = \#$ of distinct sublists of L.

Consider them in order of increasing length.

L' is a *sublist* of L if

Let L' be the next list to consider.

Check its **consistency**.

Compute the **final permutation** $id_n L'$.

Choose the **shortest tangle** T(L'').

$$\frac{\pi_h}{L''}$$
 and $\frac{\mathrm{id}_n L'}{\mathrm{add. swaps}} = L'$

Let $L = (\ell_{ij})$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^2} + 1\right)^{n^2/2} \varphi^n n\right)$

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}\varphi^n n\right)$$

 $\lambda = \#$ of distinct sublists of L.

Consider them in order of increasing length.

L' is a *sublist* of L if

Let L' be the next list to consider.

Check its **consistency**.

Compute the **final permutation** $id_n L'$.

Choose the **shortest tangle** T(L'').

Add the final permutation to its end.

Let $L = (\ell_{ij})$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^2} + 1\right)^{n^2/2} \varphi^n n\right)$

$$O\Big(\big(\frac{2|L|}{n^2}+1\big)^{n^2/2}\varphi^nn\Big)$$

 $\lambda = \#$ of distinct sublists of L.

Consider them in order of increasing length.

L' is a *sublist* of L if

Let L' be the next list to consider.

Check its **consistency**.

Compute the **final permutation** $id_n L'$.

Choose the **shortest tangle** T(L'').

Add the final permutation to its end.

Running time

Let $L = (\ell_{ij})$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^2} + 1\right)^{n^2/2} \varphi^n n\right)$

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}\varphi^n n\right)$$

 $\lambda = \#$ of distinct sublists of L.

Consider them in order of increasing length.

L' is a *sublist* of L if

Let L' be the next list to consider.

Check its **consistency**.

Compute the **final permutation** $id_n L'$.

Choose the **shortest tangle** T(L'').

Add the final permutation to its end.

Running time

Let $L = (\ell_{ij})$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^2} + 1\right)^{n^2/2} \varphi^n n\right)$

$$O\Big(\big(\frac{2|L|}{n^2}+1\big)^{n^2/2}\varphi^nn\Big)$$

 $\lambda = \#$ of distinct sublists of L.

Consider them in order of increasing length.

L' is a *sublist* of L if

Let L' be the next list to consider.

Check its **consistency**.

Compute the **final permutation** $id_n L'$.

Choose the **shortest tangle** T(L'').

Add the final permutation to its end.

Running time

$$O(\lambda \cdot (F_{n+1}-1) \cdot n)$$

 F_n is the *n*-th Fibonacci number

Let $L = (\ell_{ij})$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^2} + 1\right)^{n^2/2} \varphi^n n\right)$

$$O\Big(\big(\frac{2|L|}{n^2}+1\big)^{n^2/2}\varphi^nn\Big)$$

 $\lambda = \#$ of distinct sublists of L.

Consider them in order of increasing length.

L' is a *sublist* of L if

Let L' be the next list to consider.

Check its **consistency**.

Compute the **final permutation** $id_n L'$.

Choose the **shortest tangle** T(L'').

Add the final permutation to its end.

Running time

$$O(\lambda \cdot (F_{n+1} - 1) \cdot n)$$

$$\lambda = \prod_{i < j} (\ell_{ij} + 1) \le \left(\frac{2|L|}{n^2} + 1\right)^{n^2/2}$$
 $F_n \in O(\varphi^n)$

Let $L = (\ell_{ij})$ be the given list of swaps. $O\left(\left(\frac{2|L|}{n^2} + 1\right)^{n^2/2} \varphi^n n\right)$

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}\varphi^n n\right)$$

 $\lambda = \#$ of distinct sublists of L.

Consider them in order of increasing length.

L' is a sublist of L'

Let L' be the next list to consider.

Check its **consistency**.

Compute the **final permutation** $id_n L'$.

Choose the **shortest tangle** T(L'').

Add the final permutation to its end.

Running time

$$O(\lambda \cdot (F_{n+1}-1) \cdot n) \leq -$$

Running time
$$O(\lambda \cdot (F_{n+1} - 1) \cdot n) \le - \sum_{i < j} \lambda = \prod_{i < j} (\ell_{ij} + 1) \le \left(\frac{2|L|}{n^2} + 1\right)^{n^2/2}$$

$$F_n \in O(\varphi^n)$$

Overview

• Complexity:

NP-hardness by reduction from 3-PARTITION.

• New algorithm: using dynamic programming; asymptotically faster than [Olszewski et al., GD'18].

$$O\left(\frac{\varphi^{2|L|}}{5|L|/n}n\right) \longrightarrow O\left(\left(\frac{2|L|}{n^2}+1\right)^{\frac{n^2}{2}}\varphi^n n\right)$$

Experiments: comparison with [Olszewski et al., GD'18]

length |L| of the list L

[Olszewski et al., GD'18]

$$O\left(\frac{\varphi^{2|L|}}{5^{|L|/n}}n\right)$$

Our algorithm

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{\frac{n^2}{2}}\varphi^n n\right)$$

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

Can we decide a feasibility of a list faster than finding its optimal realization?

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

Can we decide a feasibility of a list faster than finding its optimal realization?

Problem 3

i k j A list (ℓ_{ij}) is non-separable if $\forall i < k < j$: $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$.

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

Can we decide a feasibility of a list faster than finding its optimal realization?

Problem 3

Problem 3

$$i$$
 k
 j
A list (ℓ_{ij}) is non-separable if $\forall i < k < j$: $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$.

necessary

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

Can we decide a feasibility of a list faster than finding its optimal realization?

Problem 3

A list
$$(\ell_{ij})$$
 is non-separable if $\forall i < k < j$: $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$.

For lists where all entries are even, is this sufficient?

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

Can we decide a feasibility of a list faster than finding its optimal realization?

Problem 3

For lists where all entries are even, is this sufficient?