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Overview

• Complexity:
NP-hardness by
reduction from
3-Partition.

• New algorithm: using dynamic programming;
asymptotically faster than [Olszewski et al., GD’18].
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Consider them in order of increasing length.

Let L′ be the next list to consider.

Check its consistency.
i

for each wire i :
// find a position where it is after applying L′

i 7→ i + |{j : j > i and `′i j is odd}| − |{j : j < i and `′i j is odd}|
check whether the map is indeed a permutation
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Consider them in order of increasing length.

Let L′ be the next list to consider.

Check its consistency. π1
π2
...

πhAdd the final permutation to its end.
idn L′

Running time

O(λ · (Fn+1 − 1) · n) ≤

Choose the shortest tangle T (L′′).

Fn is the n-th Fibonacci number

L′ is a sublist of L if
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Compute the final permutation idn L′.
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Overview

• Complexity:
NP-hardness by
reduction from
3-Partition.

• New algorithm: using dynamic programming;
asymptotically faster than [Olszewski et al., GD’18].
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• Experiments: comparison with [Olszewski et al., GD’18]
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Open Problems

Problem 1

Is it NP-hard to test the feasibility of a given (non-simple) list?

Problem 2

Can we decide a feasibility of a list faster than finding its
optimal realization?

Problem 3

For lists where all entries are even, is this sufficient?

A list (`i j) is non-separable
if ∀i<k<j :

(
`ik = `kj = 0 implies `i j = 0

)
.

i k j

necessary

Thank you!


	Introduction
	Related Work
	Overview
	Complexity
	\large Transforming the Instance A into a List L
	\large Making Sure That the ``Pockets'' Can't Be Squeezed
	Proof of Correctness
	Overview
	Improving Exact Algorithms
	Dynamic Programming Algorithm
	Overview
	Open Problems

