

Morphing Graph Drawings in the Presence of Point Obstacles

SOFSEM 2024

Oksana Firman

Tim Hegemann

Boris Klemz Felix Klesen

Marie Diana Sieper Alexander Wolff

Johannes Zink

Let G be a graph with ...

G:			

Let G be a graph with ...

vertex set V and

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

Let G be a graph with ...

- vertex set V and
- \blacksquare edge set E, containing pairs of vertices.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

Let G be a graph with . . .

- vertex set V and
- \blacksquare edge set E, containing pairs of vertices.

A drawing Γ of G assigns . . .

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

$$E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$$

\(\tau_{\text{\tinit}\\ \text{\tinic}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texict{\texict{\tinit\tinit{\text{\tinit\tinit\tinit{\text{\texicl{\texict{\tinit\tint{\tinit}\tintt{\tex{\tinit\tinit{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\ti

Let G be a graph with . . .

- vertex set V and
- \blacksquare edge set E, containing pairs of vertices.

A drawing Γ of G assigns . . .

lacksquare each vertex $v \in V$ to a point in \mathbb{R}^2 and

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

Let G be a graph with . . .

- vertex set V and
- \blacksquare edge set E, containing pairs of vertices.

A drawing Γ of G assigns . . .

- lacksquare each vertex $v \in V$ to a point in \mathbb{R}^2 and
- each edge $\{u, v\} \in E$ to a curve in \mathbb{R}^2 ending at the points assigned to u and v.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

Let G be a graph with . . .

- vertex set V and
- \blacksquare edge set E, containing pairs of vertices.

A drawing Γ of G assigns . . .

- lacksquare each vertex $v \in V$ to a point in \mathbb{R}^2 and
- each edge $\{u, v\} \in E$ to a curve in \mathbb{R}^2 ending at the points assigned to u and v.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

Let G be a graph with . . .

- vertex set V and
- \blacksquare edge set E, containing pairs of vertices.

A planar drawing Γ of G assigns . . .

- lacksquare each vertex $v \in V$ to a point in \mathbb{R}^2 and
- each edge $\{u, v\} \in E$ to a curve in \mathbb{R}^2 ending at the points assigned to u and v, s.t. no pairs of distinct curves intersect.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

Let G be a graph with . . .

- vertex set V and
- \blacksquare edge set E, containing pairs of vertices.

A planar straight-line drawing Γ of G assigns . . .

- lacksquare each vertex $v \in V$ to a point in \mathbb{R}^2 and
- each edge $\{u, v\} \in E$ to a segment in \mathbb{R}^2 ending at the points assigned to u and v, s.t. no pairs of distinct curves intersect.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

Let G be a graph with . . .

- vertex set V and
- \blacksquare edge set E, containing pairs of vertices.

A planar straight-line drawing Γ of G assigns . . .

- lacksquare each vertex $v \in V$ to a point in \mathbb{R}^2 and
- each edge $\{u, v\} \in E$ to a segment in \mathbb{R}^2 ending at the points assigned to u and v, s.t. no pairs of distinct curves intersect.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

Let G be a graph with . . .

- vertex set V and
- \blacksquare edge set E, containing pairs of vertices.

A planar straight-line drawing Γ of G assigns . . .

- lacksquare each vertex $v \in V$ to a point in \mathbb{R}^2 and
- each edge $\{u, v\} \in E$ to a segment in \mathbb{R}^2 ending at the points assigned to u and v, s.t. no pairs of distinct curves intersect.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

Let G be a graph with ...

- vertex set V and
- \blacksquare edge set E, containing pairs of vertices.

A planar straight-line drawing Γ of G assigns . . .

- lacksquare each vertex $v \in V$ to a point in \mathbb{R}^2 and
- each edge $\{u, v\} \in E$ to a segment in \mathbb{R}^2 ending at the points assigned to u and v, s.t. no pairs of distinct curves intersect.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

Two planar drawings Γ and Γ' have the same planar embedding if ...

Let G be a graph with . . .

- vertex set V and
- \blacksquare edge set E, containing pairs of vertices.

A planar straight-line drawing Γ of G assigns . . .

- lacksquare each vertex $v \in V$ to a point in \mathbb{R}^2 and
- each edge $\{u, v\} \in E$ to a segment in \mathbb{R}^2 ending at the points assigned to u and v, s.t. no pairs of distinct curves intersect.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

Two planar drawings Γ and Γ' have the same planar embedding if . . .

they have the same rotation system and

Let G be a graph with . . .

- vertex set V and
- \blacksquare edge set E, containing pairs of vertices.

A planar straight-line drawing Γ of G assigns . . .

- lacksquare each vertex $v \in V$ to a point in \mathbb{R}^2 and
- each edge $\{u, v\} \in E$ to a segment in \mathbb{R}^2 ending at the points assigned to u and v, s.t. no pairs of distinct curves intersect.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

Two planar drawings Γ and Γ' have the same planar embedding if ...

- they have the same rotation system and
- the same sequence of vertices when walking clockwise along the outer face.

Let G be a graph with . . .

- vertex set V and
- \blacksquare edge set E, containing pairs of vertices.

A planar straight-line drawing Γ of G assigns . . .

- lacksquare each vertex $v \in V$ to a point in \mathbb{R}^2 and
- each edge $\{u, v\} \in E$ to a segment in \mathbb{R}^2 ending at the points assigned to u and v, s.t. no pairs of distinct curves intersect.

G:
$$V = \{v_1, v_2, v_3, v_4\}$$

 $E = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_1, v_4\}\}$

Two planar drawings Γ and Γ' have the same planar embedding if ...

- they have the same rotation system and
- the same sequence of vertices when walking clockwise along the outer face.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ'

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Observation: It is necessary that Γ and Γ' have the same planar embedding.

Theorem: It is sufficient that Γ and Γ' have the same planar embedding.

[Cairns 1944, Thomassen 1984]

Given: two planar straight-line drawings Γ and Γ' of the same graph G.

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times.

Observation: It is necessary that Γ and Γ' have the same planar embedding.

Theorem: It is sufficient that Γ and Γ' have the same planar embedding.

[Cairns 1944, Thomassen 1984]

Note: Checking if two planar drawings have the same planar embedding is in P.

Computing Morphs between Graph Drawings

In a **linear morph** between two planar drawings, each vertex moves along a straight-line segment at a constant speed.

- In a **linear morph** between two planar drawings, each vertex moves along a straight-line segment at a constant speed.
- A piecewise linear morph is a sequence of linear morphs.

- In a **linear morph** between two planar drawings, each vertex moves along a straight-line segment at a constant speed.
- A piecewise linear morph is a sequence of linear morphs.

Theorem: A piecewise linear morph from Γ to Γ' that is planar at all times has $\mathcal{O}(n)$ steps (which is tight) and can be computed in $\mathcal{O}(n^2 \log n)$ time.

[Alamdari et al. 2017, Klemz 2021]

- In a **linear morph** between two planar drawings, each vertex moves along a straight-line segment at a constant speed.
- A piecewise linear morph is a sequence of linear morphs.

Theorem: A piecewise linear morph from Γ to Γ' that is planar at all times has $\mathcal{O}(n)$ steps (which is tight) and can be computed in $\mathcal{O}(n^2 \log n)$ time. [Alamdari et al. 2017, Klemz 2021]

■ In 2D–3D–2D morphing, intermediate drawings are allowed to lie in \mathbb{R}^3 .

- In a **linear morph** between two planar drawings, each vertex moves along a straight-line segment at a constant speed.
- A piecewise linear morph is a sequence of linear morphs.

Theorem: A piecewise linear morph from Γ to Γ' that is planar at all times has $\mathcal{O}(n)$ steps (which is tight) and can be computed in $\mathcal{O}(n^2 \log n)$ time. [Alamdari et al. 2017, Klemz 2021]

■ In 2D–3D–2D morphing, intermediate drawings are allowed to lie in \mathbb{R}^3 .

Theorem: A 2D–3D–2D morph is always possible (using $\mathcal{O}(n^2)$ steps) even if Γ and Γ' have distinct planar embeddings. [Buchin et al. 2023]

- In a linear morph between two planar drawings, each vertex moves along a straight-line segment at a constant speed.
- A piecewise linear morph is a sequence of linear morphs.

Theorem: A piecewise linear morph from Γ to Γ' that is planar at all times has $\mathcal{O}(n)$ steps (which is tight) and can be computed in $\mathcal{O}(n^2 \log n)$ time. [Alamdari et al. 2017, Klemz 2021]

■ In 2D–3D–2D morphing, intermediate drawings are allowed to lie in \mathbb{R}^3 .

Theorem: A 2D–3D–2D morph is always possible (using $\mathcal{O}(n^2)$ steps) even if Γ and Γ' have distinct planar embeddings. [Buchin et al. 2023]

Given:

Given: \blacksquare Two planar straight-line drawings Γ and Γ' of the same graph G, and

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Motivation: 2D–3D–2D Morphings

Motivation: 2D–3D–2D Morphings

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary that every obstacle is in the same face in Γ and Γ' .

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary that every obstacle is in the same face in Γ and Γ' .

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary that every obstacle is in the same face in Γ and Γ' .

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

not sufficient!

Observation: It is necessary that every obstacle is in the same face in Γ and Γ' .

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary t

Observation: It is necessary t

he same face in Γ and Γ' . deformation from Γ to Γ' .

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary t

Observation: It is necessary t

he same face in Γ and Γ' . deformation from Γ to Γ' .

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary t

Observation: It is necessary t

he same face in Γ and Γ' . deformation from Γ to Γ' .

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary t

Observation: It is necessary t

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary t

Observation: It is necessary t

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary t

Observation: It is necessary t

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary t

Observation: It is necessary t

Given: Two planar straight-line drawings Γ and Γ' of the same graph G, and

 \blacksquare a finite set of points (**obstacles**) in \mathbb{R}^2 .

Task: find a continuous deformation that transforms Γ into Γ' while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

not sufficient!

Observation: It is necessary that every obstacle is in the same face in Γ and Γ' .

Observation: It is necessary that there is a continuous deformation from Γ to Γ' .

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

What a "typical" NP-hardness reduction in graph drawing looks like:

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

What a "typical" NP-hardness reduction in graph drawing looks like:

■ Let I be an instance of an NP-hard problem.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

What a "typical" NP-hardness reduction in graph drawing looks like:

- Let I be an instance of an NP-hard problem.
- Construct a graph G based on I.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

What a "typical" NP-hardness reduction in graph drawing looks like:

- Let I be an instance of an NP-hard problem.
- \blacksquare Construct a graph G based on I.
- \blacksquare G is drawable with some desired properties if and only if I is a yes-instance.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

What a "typical" NP-hardness reduction in graph drawing looks like:

- Let I be an instance of an NP-hard problem.
- \blacksquare Construct a graph G based on I.
- G is drawable with some desired properties if and only if I is a yes-instance.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

What a "typical" NP-hardness reduction in graph drawing looks like:

- Let I be an instance of an NP-hard problem.
- Construct a graph G based on I.
- lacksquare G is drawable with some desired properties if and only if I is a yes-instance.

The difficulty in this case:

■ We need to construct two drawings Γ and Γ' based on I.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

What a "typical" NP-hardness reduction in graph drawing looks like:

- Let I be an instance of an NP-hard problem.
- Construct a graph G based on I.
- G is drawable with some desired properties if and only if I is a yes-instance.

- We need to construct two drawings Γ and Γ' based on I.
- \blacksquare Γ and Γ' need to exist regardless of whether I is a yes-instance or not.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

What a "typical" NP-hardness reduction in graph drawing looks like:

- Let / be an instance of an NP-hard problem.
- \blacksquare Construct a graph G based on I.
- lacksquare G is drawable with some desired properties if and only if I is a yes-instance.

- We need to construct two drawings Γ and Γ' based on I.
- \blacksquare Γ and Γ' need to exist regardless of whether I is a yes-instance or not.
- \blacksquare There is always an obstacle-avoiding continuous deformation from Γ to Γ' .

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

What a "typical" NP-hardness reduction in graph drawing looks like:

- Let / be an instance of an NP-hard problem.
- \blacksquare Construct a graph G based on I.
- lacksquare G is drawable with some desired properties if and only if I is a yes-instance.

- We need to construct two drawings Γ and Γ' based on I.
- \blacksquare Γ and Γ' need to exist regardless of whether I is a yes-instance or not.
- \blacksquare There is always an obstacle-avoiding continuous deformation from Γ to Γ' .
- There is an obstacle-avoiding planar straight-line morph iff *I* is a yes-instance.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

Proof idea.

■ Reduction from 3-SAT.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

- Reduction from 3-SAT.
- \blacksquare We construct Γ and Γ' based on a given Boolean formula in CNF.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

- Reduction from 3-SAT.
- \blacksquare We construct Γ and Γ' based on a given Boolean formula in CNF.
- \blacksquare Γ and Γ' are identical except for the positions of four vertices.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

- Reduction from 3-SAT.
- \blacksquare We construct Γ and Γ' based on a given Boolean formula in CNF.
- \blacksquare Γ and Γ' are identical except for the positions of four vertices.
- The obstacles are arranged to form a grid-like tunnel structure.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

Proof idea.

■ Two rows for each variable (one per literal).

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

Proof idea.

- Two rows for each variable (one per literal).
- Three columns for each clause (one per literal).

<i>X</i> 1 ∨	' X2 \	√ <i>X</i> 3	<u>X1</u> ∨	' X2 \	√ X 3	$x_1 \vee \overline{x_2} \vee \overline{x_3}$			
-	_		_	_			_		

 X_1

 $\overline{X_1}$

*X*2

 $\overline{x_2}$

*X*3

 $\overline{X3}$

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

- Two rows for each variable (one per literal).
- Three columns for each clause (one per literal).
- Split gadget if same literal in row & column;

	$x_1 \lor x_2 \lor x_3$		$\overline{x_1} \lor x_2 \lor \overline{x_3}$			$x_1 \vee \overline{x_2} \vee \overline{x_3}$			
<i>x</i> ₁	S						S		
$\overline{x_1}$				S					
<i>X</i> 2		S						S	
<u>X2</u>					S				
<i>X</i> 3			S						
X 3						S			S

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

- Two rows for each variable (one per literal).
- Three columns for each clause (one per literal).
- Split gadget if same literal in row & column; crossing gadget otherwise.

	$x_1 \lor x_2 \lor x_3$			$\overline{x_1} \lor x_2 \lor \overline{x_3}$			$x_1 \vee \overline{x_2} \vee \overline{x_3}$		
<i>x</i> ₁	S	С	C	C	C	С	S	C	\cap
$\overline{x_1}$	С	С	С	S	C	С	C	C	C
<i>X</i> 2	C	S	C	C	C	C	C	S	C
<u>X2</u>	C	C	C	C	S	C	C	C	C
<i>X</i> 3	C	C	S	C	C	C	C	C	C
X 3	C	C	C	C	C	S	C	C	S

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

- Two rows for each variable (one per literal).
- Three columns for each clause (one per literal).
- Split gadget if same literal in row & column; crossing gadget otherwise.
- Free vertices can be passed from variable gadgets along rows and columns to literal gadgets.

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^2 between Γ and Γ' .

- Two rows for each variable (one per literal).
- Three columns for each clause (one per literal).
- Split gadget if same literal in row & column; crossing gadget otherwise.
- Free vertices can be passed from variable gadgets along rows and columns to literal gadgets.
- Synchronization gadget assures consistent assignment of variables.

Conclusion and Open Problems

■ We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.

- We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.
- While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.

contribution

- We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.
- While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.

contributi

Conclusion and Open Problems

- We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.
- While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.

open problems

- We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.
- While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.
- Are there meaningful graph classes where morphing with obstacles is polynomialtime solvable? What about cycles or triangulations?

- We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.
- While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.
- Are there meaningful graph classes where morphing with obstacles is polynomial-time solvable? What about cycles or triangulations?
- Does the problem lie in NP? Is it $\exists \mathbb{R}$ -hard?

- We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.
- While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.
- Are there meaningful graph classes where morphing with obstacles is polynomial-time solvable? What about cycles or triangulations?
- Does the problem lie in NP? Is it ∃IR-hard?
- Does it become easier if there are only constantly many obstacles?

- We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.
- While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.
- Are there meaningful graph classes where morphing with obstacles is polynomial-time solvable? What about cycles or triangulations?
- Does the problem lie in NP? Is it ∃IR-hard?
- Does it become easier if there are only constantly many obstacles?
- What if fewer than four vertices change positions?

- We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.
- While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.
- Are there meaningful graph classes where morphing with obstacles is polynomialtime solvable? What about cycles or triangulations?
- Does the problem lie in NP? Is it ∃IR-hard?
- Does it become easier if there are only constantly many obstacles?
- What if fewer than four vertices change positions?
- What if we restrict the number of piecewise linear morphs?

contribu

Conclusion and Open Problems

■ We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.

- While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.
- Are there meaningful graph classes where morphing with obstacles is polynomialtime solvable? What about cycles or triangulations?
- Does the problem lie in NP? Is it ∃IR-hard?
- Does it become easier if there are only constantly many obstacles?
- What if fewer than four vertices change positions?
- What if we restrict the number of piecewise linear morphs?
- Given two drawings of the same graph, how many obstacles are necessary and sufficient to block them? Can this be computed efficiently?