Morphing Graph Drawings in the Presence of Point Obstacles

SOFSEM 2024

Oksana Firman
Marie Diana Sieper

Graph Drawings

Let G be a graph with...
G:

Graph Drawings

Let G be a graph with...
\square vertex set V and

Graph Drawings

Let G be a graph with...
\square vertex set V and

- edge set E, containing pairs of vertices.

$$
\begin{aligned}
& G: \quad V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
& E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\right. \\
&\left.\left\{v_{2}, v_{3}\right\},\left\{v_{1}, v_{4}\right\}\right\}
\end{aligned}
$$

Graph Drawings

Let G be a graph with...
\square vertex set V and

- edge set E, containing pairs of vertices.

A drawing Γ of G assigns ...

$$
\begin{aligned}
& G: \quad V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
& E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\right. \\
&\left.\left\{v_{2}, v_{3}\right\},\left\{v_{1}, v_{4}\right\}\right\}
\end{aligned}
$$

Г:

Graph Drawings

Let G be a graph with...
\square vertex set V and

- edge set E, containing pairs of vertices.

A drawing Γ of G assigns ...
\square each vertex $v \in V$ to a point in \mathbb{R}^{2} and

$$
\begin{aligned}
G: \quad & V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
& E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\right. \\
& \left.\left\{v_{2}, v_{3}\right\},\left\{v_{1}, v_{4}\right\}\right\}
\end{aligned}
$$

Graph Drawings

Let G be a graph with...
\square vertex set V and

- edge set E, containing pairs of vertices.

A drawing Γ of G assigns ...
\square each vertex $v \in V$ to a point in \mathbb{R}^{2} and
\square each edge $\{u, v\} \in E$ to a curve in \mathbb{R}^{2} ending at the points assigned to u and v.

$$
\begin{aligned}
G: \quad & V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
& E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\right. \\
& \left.\left\{v_{2}, v_{3}\right\},\left\{v_{1}, v_{4}\right\}\right\}
\end{aligned}
$$

Graph Drawings

Let G be a graph with...
\square vertex set V and

- edge set E, containing pairs of vertices.

A drawing Γ of G assigns ...
\square each vertex $v \in V$ to a point in \mathbb{R}^{2} and
\square each edge $\{u, v\} \in E$ to a curve in \mathbb{R}^{2} ending at the points assigned to u and v.

$$
\begin{aligned}
G: \quad & V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
E= & \left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\right. \\
& \left.\left\{v_{2}, v_{3}\right\},\left\{v_{1}, v_{4}\right\}\right\}
\end{aligned}
$$

Graph Drawings

Let G be a graph with...
\square vertex set V and
\square edge set E, containing pairs of vertices.
A planar drawing Γ of G assigns ...
\square each vertex $v \in V$ to a point in \mathbb{R}^{2} and
\square each edge $\{u, v\} \in E$ to a curve in \mathbb{R}^{2} ending at the points assigned to u and v, s.t. no pairs of distinct curves intersect.

$$
\begin{aligned}
& G: \quad V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
& E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\right. \\
&\left.\left\{v_{2}, v_{3}\right\},\left\{v_{1}, v_{4}\right\}\right\}
\end{aligned}
$$

Graph Drawings

Let G be a graph with...
\square vertex set V and

- edge set E, containing pairs of vertices.

A planar straight-line drawing Γ of G assigns...
\square each vertex $v \in V$ to a point in \mathbb{R}^{2} and
\square each edge $\{u, v\} \in E$ to a segment in \mathbb{R}^{2} ending at the points assigned to u and v, s.t. no pairs of distinct curves intersect.

$$
\begin{aligned}
& G: \quad V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
& E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\right. \\
&\left.\left\{v_{2}, v_{3}\right\},\left\{v_{1}, v_{4}\right\}\right\}
\end{aligned}
$$

Graph Drawings

Let G be a graph with...
\square vertex set V and

- edge set E, containing pairs of vertices.

A planar straight-line drawing Γ of G assigns...
\square each vertex $v \in V$ to a point in \mathbb{R}^{2} and
\square each edge $\{u, v\} \in E$ to a segment in \mathbb{R}^{2} ending at the points assigned to u and v, s.t. no pairs of distinct curves intersect.

$$
\begin{aligned}
& G: \quad V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
& E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\right. \\
&\left.\left\{v_{2}, v_{3}\right\},\left\{v_{1}, v_{4}\right\}\right\}
\end{aligned}
$$

Graph Drawings

Let G be a graph with...
\square vertex set V and

- edge set E, containing pairs of vertices.

A planar straight-line drawing Γ of G assigns...
\square each vertex $v \in V$ to a point in \mathbb{R}^{2} and
\square each edge $\{u, v\} \in E$ to a segment in \mathbb{R}^{2} ending at the points assigned to u and v, s.t. no pairs of distinct curves intersect.

$$
\begin{aligned}
& G: \quad V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
& E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\right. \\
&\left.\left\{v_{2}, v_{3}\right\},\left\{v_{1}, v_{4}\right\}\right\}
\end{aligned}
$$

Graph Drawings

Let G be a graph with...
\square vertex set V and

$$
\begin{aligned}
& G: \quad V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
& E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\right. \\
&\left.\left\{v_{2}, v_{3}\right\},\left\{v_{1}, v_{4}\right\}\right\}
\end{aligned}
$$

- edge set E, containing pairs of vertices.

A planar straight-line drawing Γ of G assigns...
\square each vertex $v \in V$ to a point in \mathbb{R}^{2} and

- each edge $\{u, v\} \in E$ to a segment in \mathbb{R}^{2} ending at the points assigned to u and v, s.t. no pairs of distinct curves intersect.

Two planar drawings Γ and Γ^{\prime} have the same planar embedding if \ldots

Graph Drawings

Let G be a graph with...
\square vertex set V and

$$
\begin{aligned}
& G: \quad V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
& E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\right. \\
&\left.\left\{v_{2}, v_{3}\right\},\left\{v_{1}, v_{4}\right\}\right\}
\end{aligned}
$$

- edge set E, containing pairs of vertices.

A planar straight-line drawing Γ of G assigns...
\square each vertex $v \in V$ to a point in \mathbb{R}^{2} and

- each edge $\{u, v\} \in E$ to a segment in \mathbb{R}^{2} ending at the points assigned to u and v, s.t. no pairs of distinct curves intersect.

Two planar drawings Γ and Γ^{\prime} have the same planar embedding if..

- they have the same rotation system and

Graph Drawings

Let G be a graph with...
\square vertex set V and

- edge set E, containing pairs of vertices.

A planar straight-line drawing Γ of G assigns...
\square each vertex $v \in V$ to a point in \mathbb{R}^{2} and
\square each edge $\{u, v\} \in E$ to a segment in \mathbb{R}^{2} ending at the points assigned to u and v, s.t. no pairs of distinct curves intersect.

$$
\begin{aligned}
& G: \quad V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
& E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\right. \\
&\left.\left\{v_{2}, v_{3}\right\},\left\{v_{1}, v_{4}\right\}\right\}
\end{aligned}
$$

Two planar drawings Γ and Γ^{\prime} have the same planar embedding if..

- they have the same rotation system and
- the same sequence of vertices when walking clockwise along the outer face.

Graph Drawings

Let G be a graph with...
\square vertex set V and

- edge set E, containing pairs of vertices.

A planar straight-line drawing Γ of G assigns...
\square each vertex $v \in V$ to a point in \mathbb{R}^{2} and
\square each edge $\{u, v\} \in E$ to a segment in \mathbb{R}^{2} ending at the points assigned to u and v, s.t. no pairs of distinct curves intersect.

$$
\begin{aligned}
& G: \quad V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \\
& E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\right. \\
&\left.\left\{v_{2}, v_{3}\right\},\left\{v_{1}, v_{4}\right\}\right\}
\end{aligned}
$$

Two planar drawings Γ and Γ^{\prime} have the same planar embedding if...
\square they have the same rotation system and

- the same sequence of vertices when walking clockwise along the outer face.

Morphing Graph Drawings

Given: two planar straight-line drawings Γ and Γ^{\prime} of the same graph G.

Morphing Graph Drawings

Given: two planar straight-line drawings Γ and Γ^{\prime} of the same graph G. Task: find a continuous deformation that transforms Γ into Γ^{\prime}

Morphing Graph Drawings

Given: two planar straight-line drawings Γ and Γ^{\prime} of the same graph G.
Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times.

Morphing Graph Drawings

Given: two planar straight-line drawings Γ and Γ^{\prime} of the same graph G.
Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times.

Morphing Graph Drawings

Given: two planar straight-line drawings Γ and Γ^{\prime} of the same graph G.
Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times.

Morphing Graph Drawings

Given: two planar straight-line drawings Γ and Γ^{\prime} of the same graph G.
Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times.

Observation: It is necessary that Γ and Γ^{\prime} have the same planar embedding.

Morphing Graph Drawings

Given: two planar straight-line drawings Γ and Γ^{\prime} of the same graph G.
Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times.

Observation: It is necessary that Γ and Γ^{\prime} have the same planar embedding.

Morphing Graph Drawings

Given: two planar straight-line drawings Γ and Γ^{\prime} of the same graph G.
Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times.

Observation: It is necessary that Γ and Γ^{\prime} have the same planar embedding.

Morphing Graph Drawings

Given: two planar straight-line drawings Γ and Γ^{\prime} of the same graph G.
Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times.

Observation: It is necessary that Γ and Γ^{\prime} have the same planar embedding.

Morphing Graph Drawings

Given: two planar straight-line drawings Γ and Γ^{\prime} of the same graph G.
Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times.

Observation: It is necessary that Γ and Γ^{\prime} have the same planar embedding.

Morphing Graph Drawings

Given: two planar straight-line drawings Γ and Γ^{\prime} of the same graph G.
Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times.

Observation: It is necessary that Γ and Γ^{\prime} have the same planar embedding.

Morphing Graph Drawings

Given: two planar straight-line drawings Γ and Γ^{\prime} of the same graph G.
Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times.

Observation: It is necessary that Γ and Γ^{\prime} have the same planar embedding.

Morphing Graph Drawings

Given: two planar straight-line drawings Γ and Γ^{\prime} of the same graph G.
Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times.

Observation: It is necessary that Γ and Γ^{\prime} have the same planar embedding.

Morphing Graph Drawings

Given: two planar straight-line drawings Γ and Γ^{\prime} of the same graph G.
Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times.

Observation: It is necessary that Γ and Γ^{\prime} have the same planar embedding.

Morphing Graph Drawings

Given: two planar straight-line drawings Γ and Γ^{\prime} of the same graph G.
Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times.

Observation: It is necessary that Γ and Γ^{\prime} have the same planar embedding.

Morphing Graph Drawings

Given: two planar straight-line drawings Γ and Γ^{\prime} of the same graph G.
Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times.

Observation: It is necessary that Γ and Γ^{\prime} have the same planar embedding.

Morphing Graph Drawings

Given: two planar straight-line drawings Γ and Γ^{\prime} of the same graph G.
Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times.

Observation: It is necessary that Γ and Γ^{\prime} have the same planar embedding.

Morphing Graph Drawings

Given: two planar straight-line drawings Γ and Γ^{\prime} of the same graph G.
Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times.

Observation: It is necessary that Γ and Γ^{\prime} have the same planar embedding.

Theorem: It is sufficient that Γ and Γ^{\prime} have the same planar embedding.

Morphing Graph Drawings

Given: two planar straight-line drawings Γ and Γ^{\prime} of the same graph G.
Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times.

Observation: It is necessary that Γ and Γ^{\prime} have the same planar embedding.

Theorem: It is sufficient that Γ and Γ^{\prime} have the same planar embedding.

Note: Checking if two planar drawings have the same planar embedding is in P .

Computing Morphs between Graph Drawings

Computing Morphs between Graph Drawings

- In a linear morph between two planar drawings, each vertex moves along a straight-line segment at a constant speed.

Computing Morphs between Graph Drawings

- In a linear morph between two planar drawings, each vertex moves along a straight-line segment at a constant speed.
- A piecewise linear morph is a sequence of linear morphs.

Computing Morphs between Graph Drawings

- In a linear morph between two planar drawings, each vertex moves along a straight-line segment at a constant speed.
- A piecewise linear morph is a sequence of linear morphs.

Theorem: A piecewise linear morph from Γ to Γ^{\prime} that is planar at all times has $\mathcal{O}(n)$ steps (which is tight) and can be computed in $\mathcal{O}\left(n^{2} \log n\right)$ time.

Computing Morphs between Graph Drawings

- In a linear morph between two planar drawings, each vertex moves along a straight-line segment at a constant speed.
- A piecewise linear morph is a sequence of linear morphs.

Theorem: A piecewise linear morph from Γ to Γ^{\prime} that is planar at all times has $\mathcal{O}(n)$ steps (which is tight) and can be computed in $\mathcal{O}\left(n^{2} \log n\right)$ time. [Alamdari et al. 2017, Klemz 2021]

■ In 2D-3D-2D morphing, intermediate drawings are allowed to lie in \mathbb{R}^{3}.

Computing Morphs between Graph Drawings

- In a linear morph between two planar drawings, each vertex moves along a straight-line segment at a constant speed.
- A piecewise linear morph is a sequence of linear morphs.

Theorem: A piecewise linear morph from Γ to Γ^{\prime} that is planar at all times has $\mathcal{O}(n)$ steps (which is tight) and can be computed in $\mathcal{O}\left(n^{2} \log n\right)$ time. [Alamdari et al. 2017, Klemz 2021]

- In 2D-3D-2D morphing, intermediate drawings are allowed to lie in \mathbb{R}^{3}.

Theorem: A 2D-3D-2D morph is always possible (using $\mathcal{O}\left(n^{2}\right)$ steps) even if Γ and Γ^{\prime} have distinct planar embeddings. [Buchin et al. 2023]

Computing Morphs between Graph Drawings

\square In a linear morph between two planar drawings, each vertex moves along a straight-line segment at a constant speed.

- A piecewise linear morph is a sequence of linear morphs.

Theorem: A piecewise linear morph from Γ to Γ^{\prime} that is planar at all times has $\mathcal{O}(n)$ steps (which is tight) and can be computed in $\mathcal{O}\left(n^{2} \log n\right)$ time.

- In 2D-3D-2D morphing, intermediate drawings are allowed to lie in \mathbb{R}^{3}.

Theorem: A 2D-3D-2D morph is always possible (using $\mathcal{O}\left(n^{2}\right)$ steps) even if Γ and Γ^{\prime} have distinct planar embeddings. [Buchin et al. 2023]

Theorem: For trees, 2D-3D-2D morphs require asymptotically fewer morphing steps than 2D morphs in the worst case.

Computing Morphs between Graph Drawings

Theorem: For trees, 2D-3D-2D morphs require asymptotically fewer morphing steps than 2D morphs in the worst case.

Computing Morphs between Graph Drawings

Theorem: For trees, 2D-3D-2D morphs require asymptotically fewer morphing steps than 2D morphs in the worst case.

Computing Morphs between Graph Drawings

Theorem: For trees, 2D-3D-2D morphs require asymptotically fewer morphing steps than 2D morphs in the worst case.

Computing Morphs between Graph Drawings

Theorem: For trees, 2D-3D-2D morphs require asymptotically fewer morphing steps than 2D morphs in the worst case.

Computing Morphs between Graph Drawings

Theorem: For trees, 2D-3D-2D morphs require asymptotically fewer morphing steps than 2D morphs in the worst case.

Computing Morphs between Graph Drawings

Theorem: For trees, 2D-3D-2D morphs require asymptotically fewer morphing steps than 2D morphs in the worst case.

Computing Morphs between Graph Drawings

Theorem: For trees, 2D-3D-2D morphs require asymptotically fewer morphing steps than 2D morphs in the worst case.

Computing Morphs between Graph Drawings

Theorem: For trees, 2D-3D-2D morphs require asymptotically fewer morphing steps than 2D morphs in the worst case.

New: Morphing Graph Drawings with Point Obstacles
Given:

New: Morphing Graph Drawings with Point Obstacles

Given: ■ Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and
\square a finite set of points (obstacles) in \mathbb{R}^{2}.

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and $■$ a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and $■$ a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Motivation: 2D-3D-2D Morphings

Motivation: 2D-3D-2D Morphings

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and $■$ a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and - a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and - a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and - a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary that every obstacle is in the same face in Γ and Γ^{\prime}.

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and - a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary that every obstacle is in the same face in Γ and Γ^{\prime}.

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and - a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary that every obstacle is in the same face in Γ and Γ^{\prime}.

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and - a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary that every obstacle is in the same face in Γ and Γ^{\prime}.

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and - a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary that every obstacle is in the same face in Γ and Γ^{\prime}.

New: Morphing Graph Drawings with Point Obstacles

Given: ■ Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and - a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary that every obstacle is in the same face in Γ and Γ^{\prime}. Observation: It is necessary that there is a continuous deformation from Γ to Γ^{\prime}.

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and - a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary that every obstacle is in the same face in Γ and Γ^{\prime}. Observation: It is necessary that there is a continuous deformation from Γ to Γ^{\prime}.

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and - a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

not sufficient!

Observation: It is necessary that every obstacle is in the same face in Γ and Γ^{\prime}. Observation: It is necessary that there is a continuous deformation from Γ to Γ^{\prime}.

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and - a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary that every obstacle is in the same face in Γ and Γ^{\prime}. Observation: It is necessary that there is a continuous deformation from Γ to Γ^{\prime}.

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and - a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary Observation: It is necessary

he same face in Γ and Γ^{\prime}. deformation from Γ to Γ^{\prime}.

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and - a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary Observation: It is necessary

he same face in Γ and Γ^{\prime}. deformation from Γ to Γ^{\prime}.

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and - a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary Observation: It is necessary

he same face in Γ and Γ^{\prime}. deformation from Γ to Γ^{\prime}.

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and - a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary Observation: It is necessary

he same face in Γ and Γ^{\prime}. deformation from Γ to Γ^{\prime}.

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and - a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary Observation: It is necessary

he same face in Γ and Γ^{\prime}. deformation from Γ to Γ^{\prime}.

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and - a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary Observation: It is necessary

he same face in Γ and Γ^{\prime}. deformation from Γ to Γ^{\prime}.

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and - a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary Observation: It is necessary

he same face in Γ and Γ^{\prime}. deformation from Γ to Γ^{\prime}.

New: Morphing Graph Drawings with Point Obstacles

Given: \quad Two planar straight-line drawings Γ and Γ^{\prime} of the same graph G, and - a finite set of points (obstacles) in \mathbb{R}^{2}.

Task: find a continuous deformation that transforms Γ into Γ^{\prime} while preserving some planar straight-line drawing of G at all times and never intersecting any of the obstacles.

Observation: It is necessary that every obstacle is in the same face in Γ and Γ^{\prime}. Observation: It is necessary that there is a continuous deformation from Γ to Γ^{\prime}.

Complexity of Morphing with Point Obstacles

Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^{2} between Γ and Γ^{\prime}.

Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^{2} between Γ and Γ^{\prime}.

What a "typical" NP-hardness reduction in graph drawing looks like:

Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^{2} between Γ and Γ^{\prime}.

What a "typical" NP-hardness reduction in graph drawing looks like:
■ Let I be an instance of an NP-hard problem.

Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^{2} between Γ and Γ^{\prime}.

What a "typical" NP-hardness reduction in graph drawing looks like:

- Let I be an instance of an NP-hard problem.
- Construct a graph G based on I.

Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^{2} between Γ and Γ^{\prime}.

What a "typical" NP-hardness reduction in graph drawing looks like:

- Let I be an instance of an NP-hard problem.
- Construct a graph G based on I.

■ G is drawable with some desired properties if and only if I is a yes-instance.

Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^{2} between Γ and Γ^{\prime}.

What a "typical" NP-hardness reduction in graph drawing looks like:
■ Let I be an instance of an NP-hard problem.

- Construct a graph G based on I.

■ G is drawable with some desired properties if and only if I is a yes-instance.
The difficulty in this case:

Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^{2} between Γ and Γ^{\prime}.

What a "typical" NP-hardness reduction in graph drawing looks like:

- Let I be an instance of an NP-hard problem.
- Construct a graph G based on I.

■ G is drawable with some desired properties if and only if I is a yes-instance.
The difficulty in this case:
\square We need to construct two drawings Γ and Γ^{\prime} based on I.

Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^{2} between Γ and Γ^{\prime}.

What a "typical" NP-hardness reduction in graph drawing looks like:

- Let I be an instance of an NP-hard problem.
- Construct a graph G based on I.

■ G is drawable with some desired properties if and only if I is a yes-instance.
The difficulty in this case:
\square We need to construct two drawings Γ and Γ^{\prime} based on I.
$\square \Gamma$ and Γ^{\prime} need to exist regardless of whether I is a yes-instance or not.

Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^{2} between Γ and Γ^{\prime}.

What a "typical" NP-hardness reduction in graph drawing looks like:

- Let I be an instance of an NP-hard problem.
- Construct a graph G based on I.

■ G is drawable with some desired properties if and only if I is a yes-instance.
The difficulty in this case:
\square We need to construct two drawings Γ and Γ^{\prime} based on I.
$\square \Gamma$ and Γ^{\prime} need to exist regardless of whether I is a yes-instance or not.
\square There is always an obstacle-avoiding continuous deformation from Γ to Γ^{\prime}.

Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^{2} between Γ and Γ^{\prime}.

What a "typical" NP-hardness reduction in graph drawing looks like:

- Let I be an instance of an NP-hard problem.
- Construct a graph G based on I.

■ G is drawable with some desired properties if and only if I is a yes-instance.
The difficulty in this case:
\square We need to construct two drawings Γ and Γ^{\prime} based on I.
$\square \Gamma$ and Γ^{\prime} need to exist regardless of whether I is a yes-instance or not.

- There is always an obstacle-avoiding continuous deformation from Γ to Γ^{\prime}.
- There is an obstacle-avoiding planar straight-line morph iff I is a yes-instance.

Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^{2} between Γ and Γ^{\prime}.

Proof idea.

Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^{2} between Γ and Γ^{\prime}.

Proof idea.

■ Reduction from 3-SAT.

Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^{2} between Γ and Γ^{\prime}.

Proof idea.

- Reduction from 3-SAT.
$■$ We construct Γ and Γ^{\prime} based on a given Boolean formula in CNF.

Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^{2} between Γ and Γ^{\prime}.

Proof idea.

- Reduction from 3-SAT.
\square We construct Γ and Γ^{\prime} based on a given Boolean formula in CNF.
$■ \Gamma$ and Γ^{\prime} are identical except for the positions of four vertices.

Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^{2} between Γ and Γ^{\prime}.

Proof idea.

- Reduction from 3-SAT.
\square We construct Γ and Γ^{\prime} based on a given Boolean formula in CNF.
- Γ and Γ^{\prime} are identical except for the positions of four vertices.
- The obstacles are arranged to form a grid-like tunnel structure.

Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^{2} between Γ and Γ^{\prime}.

Proof idea.

■ Two rows for each variable (one per literal).

x_{1}
$\overline{x_{1}}$
x_{2}
$\overline{x_{2}}$
x_{3}
$\overline{x_{3}}$

Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^{2} between Γ and Γ^{\prime}.

Proof idea.

■ Two rows for each variable (one per literal).
■ Three columns for each clause (one per literal).

Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^{2} between Γ and Γ^{\prime}.

Proof idea.

■ Two rows for each variable (one per literal).

- Three columns for each clause (one per literal).

■ Split gadget if same literal in row \& column;

Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^{2} between Γ and Γ^{\prime}.

Proof idea.

■ Two rows for each variable (one per literal).
■ Three columns for each clause (one per literal).
■ Split gadget if same literal in row \& column; crossing gadget otherwise.

Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^{2} between Γ and Γ^{\prime}.

Proof idea.

- Two rows for each variable (one per literal).
- Three columns for each clause (one per literal).

■ Split gadget if same literal in row \& column; crossing gadget otherwise.

- Free vertices can be passed from variable gadgets along rows and columns to literal gadgets.

Complexity of Morphing with Point Obstacles

Main Theorem: It is NP-hard to decide whether there exists an obstacle-avoiding planar straight-line morph in \mathbb{R}^{2} between Γ and Γ^{\prime}.

Proof idea.

- Two rows for each variable (one per literal).
- Three columns for each clause (one per literal).

■ Split gadget if same literal in row \& column; crossing gadget otherwise.

- Free vertices can be passed from variable gadgets along rows and columns to literal gadgets.
- Synchronization gadget assures consistent assignment of variables.

split gadget

without extra vertex

with extra vertex

Conclusion and Open Problems

- We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.

Conclusion and Open Problems

■ We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.

- While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.

Conclusion and Open Problems

- We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.
- While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.

Conclusion and Open Problems

. We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.

- While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.

Conclusion and Open Problems

- We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.
- While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.
- Are there meaningful graph classes where morphing with obstacles is polynomialtime solvable? What about cycles or triangulations?

Conclusion and Open Problems

. We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.

- While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.
- Are there meaningful graph classes where morphing with obstacles is polynomialtime solvable? What about cycles or triangulations?
Does the problem lie in NP? Is it $\exists \mathbb{R}$-hard?

Conclusion and Open Problems

- We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.
- While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.
- Are there meaningful graph classes where morphing with obstacles is polynomialtime solvable? What about cycles or triangulations?
- Does the problem lie in NP? Is it $\exists \mathbb{R}$-hard?
- Does it become easier if there are only constantly many obstacles?

Conclusion and Open Problems

\square We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.

- While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.
- Are there meaningful graph classes where morphing with obstacles is polynomialtime solvable? What about cycles or triangulations?
- Does the problem lie in NP? Is it $\exists \mathbb{R}$-hard?
- Does it become easier if there are only constantly many obstacles?

What if fewer than four vertices change positions?

Conclusion and Open Problems

\square We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.

- While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.
- Are there meaningful graph classes where morphing with obstacles is polynomialtime solvable? What about cycles or triangulations?
- Does the problem lie in NP? Is it $\exists \mathbb{R}$-hard?
- Does it become easier if there are only constantly many obstacles?
- What if fewer than four vertices change positions?
- What if we restrict the number of piecewise linear morphs?

Conclusion and Open Problems

\square We have introduced the problem of morphing between planar straight-line graph drawings in the presence of point obstacles.

- While a solution is efficiently computable without obstacles, having obstacles and requiring straight-line edges makes the problem NP-hard.
- Are there meaningful graph classes where morphing with obstacles is polynomialtime solvable? What about cycles or triangulations?
\square Does the problem lie in NP? Is it $\exists \mathbb{R}$-hard?
- Does it become easier if there are only constantly many obstacles?

What if fewer than four vertices change positions?
\square What if we restrict the number of piecewise linear morphs?

- Given two drawings of the same graph, how many obstacles are necessary and sufficient to block them? Can this be computed efficiently?

