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Nöllenburg, and
Symvonis [GD’22]

Binucci, Brandes, Di Battista,
Didimo, Gaertler, Palladino,
Patrignani, Symvonis, and
Zweig [IPL’12]

Da Lozzo and Rutter [TCS’19]

Given:

Condition:

Aim:

• a graph • a graph • a graph
• vertex order • edge order



Related Work
Storyplan Graph Stories Streamed Graphs

Borrazzo, Da Lozzo, Di Battista,
Frati, and Patrignani [JGAA’20]

Di Battista, Didimo, Grilli,
Grosso, Ortali, Patrignani, and
Tappini [GD’22]

Binucci, Di Giacomo,
Lenhart, Liotta,
Montecchiani,
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On the complexity of the storyplan problem, GD’22



Related Work on Storyplans

• It is NP-complete to decide whether a given graph admits a planar storyplan.

• Two parametrized algorithms:
– w.r.t. the vertex cover number
– w.r.t. the feedback edge set number

• Partial 3-trees always admit a planar storyplan.

Binucci, Di Giacomo, Lenhart, Liotta, Montecchiani, Nöllenburg, and Symvonis
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Related Work on Storyplans

• It is NP-complete to decide whether a given graph admits a planar storyplan.

• Two parametrized algorithms:
– w.r.t. the vertex cover number
– w.r.t. the feedback edge set number

• Partial 3-trees always admit a planar storyplan.

• Even if the total vertex order is given, the problem is still NP-complete.

Binucci, Di Giacomo, Lenhart, Liotta, Montecchiani, Nöllenburg, and Symvonis
On the complexity of the storyplan problem, GD’22
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Thus, it is enough to consider 2-trees.
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Proof – General Case for the Outer Face
Note that in general the outer face of G′i is a cactus forest.

G′iConsider each biconnected component separately.

Repeatedly apply the argument of the base
case to different components.

Check if the found vertex v can be
picked in all other components
that contain v.

Check for each neighbor w of v from
diferent component whether making
w visible violates one of the invariants.

Since the outer face is a
cactus, this procedure
terminates with a
globally “good” vertex.

With the help of Hi we can find a vertex that observes the rules in the base case, that is,
the outer face of G′i is a simple cycle. We skip this part.
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Open Problems

•What about other variants of storyplans?
For example, 1-planar storyplans.

• Does every graph that admits a planar/outerplanar/forest storyplan,
admit also a straight-line planar/outerplanar/forest storyplan?

• Are there FPT algorithms for outerplanar or forest storyplans,
e.g., w.r.t. treewidth/pathwidth?

Recently we showed that
– deciding whether a given graph admits an outerplanar storyplan, and
– deciding whether a given graph admits a forest storyplan
are both NP-hard problems.

Thank you!

[Jan Sulejmani, Bachelor Thesis, 2024]
The problem is NP-hard.
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