# The Complexity of Finding Tangles

Oksana Firman, Boris Klemz, Alexander Wolff, Johannes Zink

Julius-Maximilians-Universität Würzburg, Germany

#### Alexander Ravsky

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine,

Lviv, Ukraine

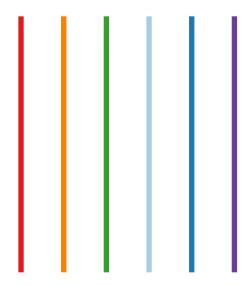


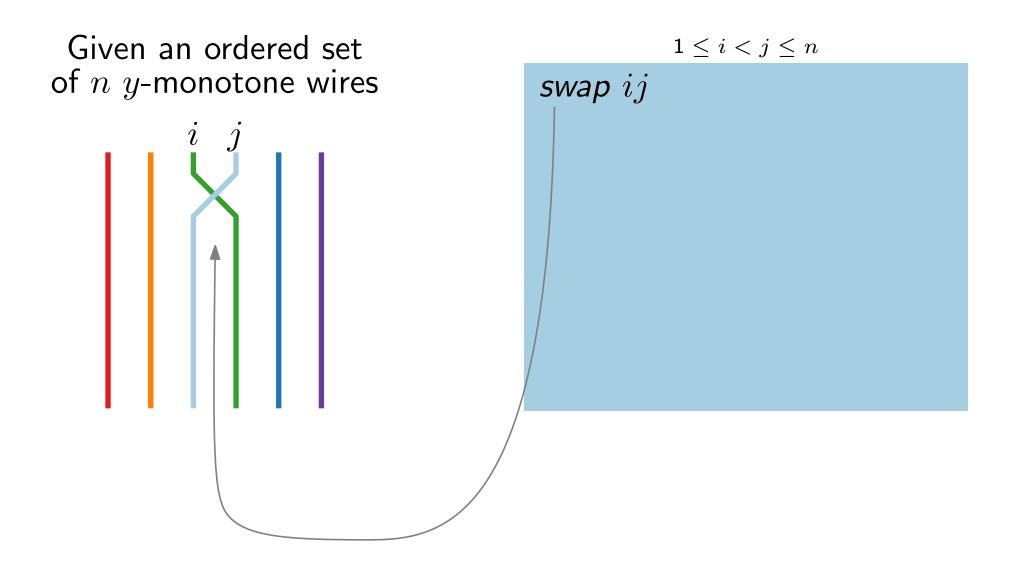
#### Philipp Kindermann

Universität Trier, Germany



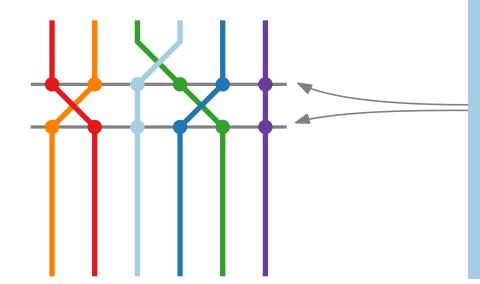
Given an ordered set of n y-monotone wires





Given an ordered set  $1 \le i < j \le n$ of n y-monotone wires swap ij swaps ij and kl are  $\emph{disjoint}$ if  $\{i,j\} \cap \{k,l\} = \emptyset$ 

Given an ordered set of n y-monotone wires



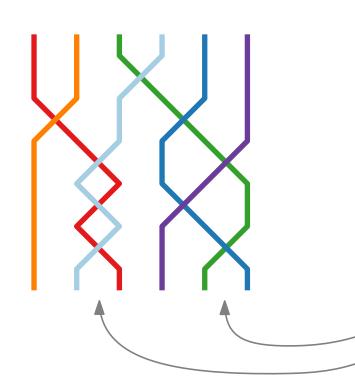
$$1 \le i < j \le n$$

swap ij

swaps ij and kl are disjoint if  $\{i,j\}\cap\{k,l\}=\emptyset$ 

adjacent permutations

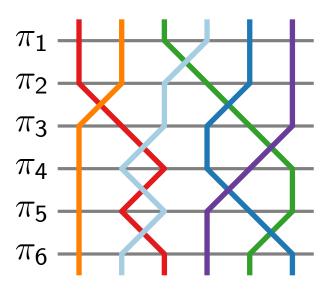
Given an ordered set of n y-monotone wires



$$1 \le i < j \le n$$

swap ijswaps ij and kl are disjoint if  $\{i,j\} \cap \{k,l\} = \emptyset$ adjacent permutations multiple swaps

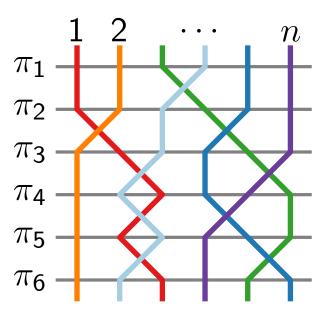
Given an ordered set of n y-monotone wires



$$1 \le i < j \le n$$

swap ijswaps ij and kl are disjoint if  $\{i,j\} \cap \{k,l\} = \emptyset$ adjacent permutations multiple swaps tangle T of height h(T)

Given an ordered set of n y-monotone wires

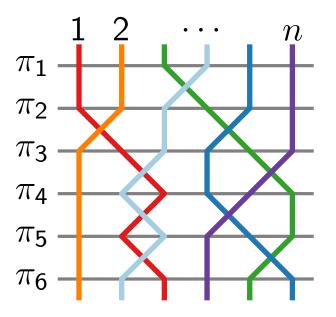


$$1 \le i < j \le n$$

swap ij and kl are disjoint if  $\{i,j\}\cap\{k,l\}=\emptyset$  adjacent permutations multiple swaps

tangle T of height h(T)

Given an ordered set of n y-monotone wires



$$1 \le i < j \le n$$

swap ij

swaps ij and kl are disjoint if  $\{i,j\} \cap \{k,l\} = \emptyset$ 

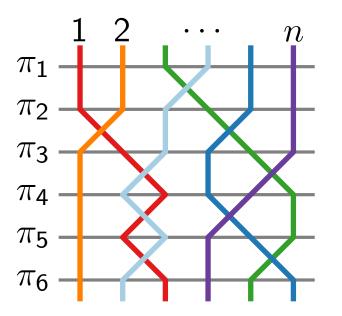
adjacent permutations

multiple swaps

tangle T of height h(T)

 $\ldots$  and given a list of swaps L

Given an ordered set of n y-monotone wires





swap ij

swaps ij and kl are disjoint if  $\{i,j\} \cap \{k,l\} = \emptyset$ 

adjacent permutations

multiple swaps

tangle T of height h(T)

 $\dots$  and given a list of swaps L

as a multiset  $(\ell_{ij})$ 

1 X

3 🗶

1 X

2 X

1 X

1 X

Given an ordered set of n y-monotone wires



$$1 \le i < j \le n$$

swap ij

swaps ij and kl are disjoint if  $\{i,j\} \cap \{k,l\} = \emptyset$ 

adjacent permutations

multiple swaps

tangle T of height h(T)

 $\dots$  and given a list of swaps L

as a multiset  $(\ell_{ij})$ 

1 X

3 🗶

1 X

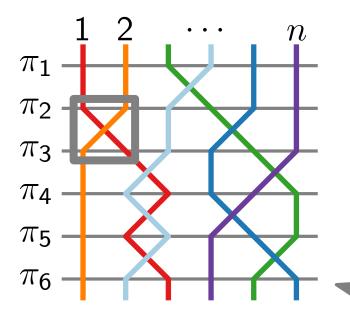
2 X

1 X

1 X

Tangle T realizes list L.

Given an ordered set of n y-monotone wires





swap ij

swaps ij and kl are disjoint if  $\{i,j\} \cap \{k,l\} = \emptyset$ 

adjacent permutations

multiple swaps

tangle T of height h(T)

 $\dots$  and given a list of swaps L

as a multiset  $(\ell_{ij})$ 



3 🗶

1 X

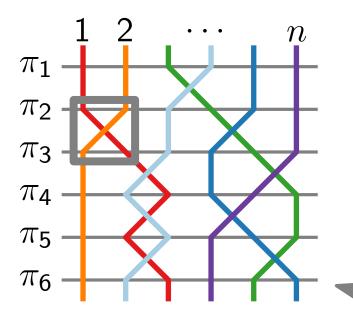
2 X

1 X

1 X

Tangle T realizes list L.

Given an ordered set of n y-monotone wires





swap ij

swaps ij and kl are disjoint if  $\{i,j\} \cap \{k,l\} = \emptyset$ 

adjacent permutations

multiple swaps

tangle T of height h(T)

 $\dots$  and given a list of swaps L

as a multiset  $(\ell_{ij})$ 



3 💥

1 X

2 X

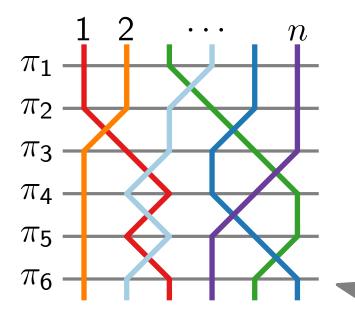
1 X

1 X

not feasible

Tangle T realizes list L.

Given an ordered set of n y-monotone wires



 $1 \le i < j \le n$ 

swap ij

swaps ij and kl are disjoint if  $\{i, j\} \cap \{k, l\} = \emptyset$ 

adjacent permutations

multiple swaps

tangle T of height h(T)

 $\ldots$  and given a list of swaps L

as a multiset  $(\ell_{ij})$ 

1 X

3 **X** 

1 X

2 X

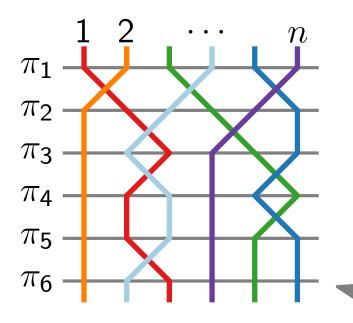
1 X

1 X

Tangle T realizes list L.

A list L of swaps is *feasible* if there exists a tangle that realizes L. There may be multiple tangles realizing the same list of swaps.

Given an ordered set of n y-monotone wires





swap ij

swaps ij and kl are disjoint if  $\{i,j\} \cap \{k,l\} = \emptyset$ 

adjacent permutations

multiple swaps

tangle T of height h(T)

 $\ldots$  and given a list of swaps L

as a multiset  $(\ell_{ij})$ 

1 X

3 **X** 

1 X

2 X

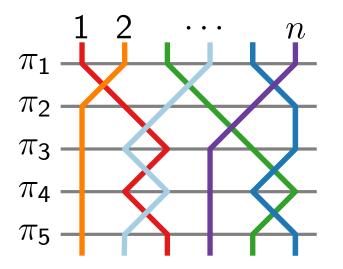
1 X

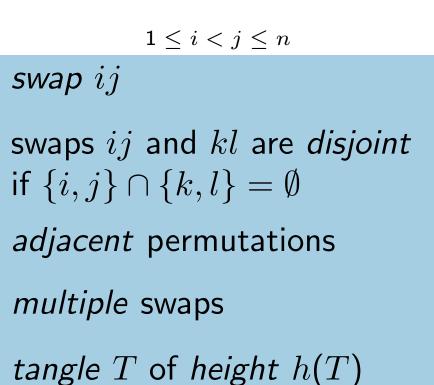
1 X

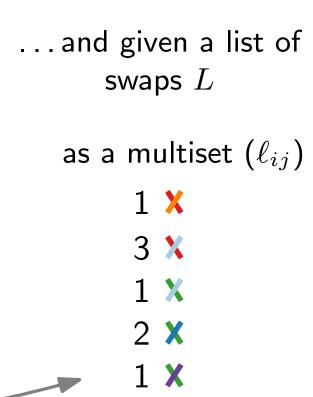
Tangle T realizes list L.

A list L of swaps is *feasible* if there exists a tangle that realizes L. There may be multiple tangles realizing the same list of swaps.

Given an ordered set of n y-monotone wires





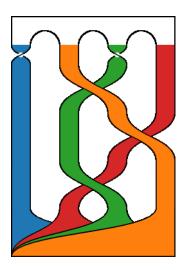


1 X

Tangle T realizes list L.

A list L of swaps is *feasible* if there exists a tangle that realizes L. There may be multiple tangles realizing the same list of swaps.

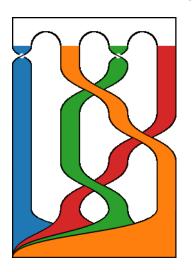
Olszewski, Meder, Kieffer, Bleuse, Rosalie, Danoy, and Bouvry.[GD 2018]



Olszewski, Meder, Kieffer, Bleuse, Rosalie, Danoy, and Bouvry.

[GD 2018]

Algorithm for optimal-height tangles, exponential in  $\left|L\right|$ 



For a list of swaps  $L = (l_{ij})$  with n wires:

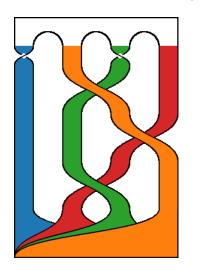
$$|L| = \sum l_{ij}$$

Olszewski, Meder, Kieffer, Bleuse, Rosalie, Danoy, and Bouvry.

[GD 2018]

Algorithm for optimal-height tangles, exponential in  $\left|L\right|$ 

Complexity ?



For a list of swaps  $L = (l_{ij})$  with n wires:

$$|L| = \sum l_{ij}$$

Olszewski, Meder, Kieffer, Bleuse, Rosalie, Danoy, and Bouvry.

[GD 2018]

Algorithm for optimal-height tangles, exponential in  $\left|L\right|$ 

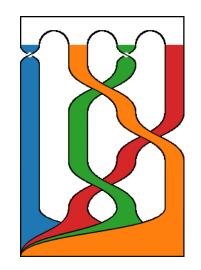
Complexity ?

F., Kindermann, Ravsky, Wolff, and Zink.

[GD 2019]

Algorithm for optimal-height tangles, exponential in  $n^2$ 

Finding optimal-height tangles is NP-hard



For a list of swaps  $L = (l_{ij})$  with n wires:

$$|L| = \sum l_{ij}$$

Olszewski, Meder, Kieffer, Bleuse, Rosalie, Danoy, and Bouvry.

[GD 2018]

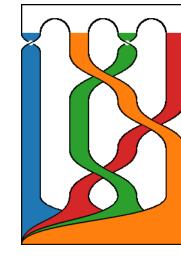
Algorithm for optimal-height tangles, exponential in  $\left|L\right|$ 

Complexity ?



Algorithm for optimal-height tangles, exponential in  $n^2$ 

Finding optimal-height tangles is NP-hard



For a list of swaps  $L = (l_{ij})$  with n wires:

$$|L| = \sum l_{ij}$$

L is *simple* if  $l_{ij}$  is 0 or 1

Sado and Igarashi. [TCS 1987]

Efficient algorithm for simple lists; height  $\leq$  OPT +1

Olszewski, Meder, Kieffer, Bleuse, Rosalie, Danoy, and Bouvry.

[GD 2018]

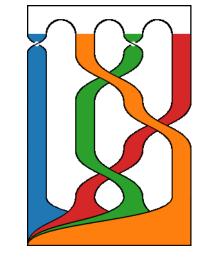
Algorithm for optimal-height tangles, exponential in  $\left|L\right|$ 

Complexity ?



Algorithm for optimal-height tangles, exponential in  $n^2$ 

Finding optimal-height tangles is NP-hard



For a list of swaps  $L = (l_{ij})$  with n wires:

$$|L| = \sum l_{ij}$$

L is *simple* if  $l_{ij}$  is 0 or 1

Sado and Igarashi. [TCS 1987]

Efficient algorithm for simple lists; height  $\leq$  OPT +1

Bereg, Holroyd, Nachmanson, and Pupyrev.

[GD 2013]

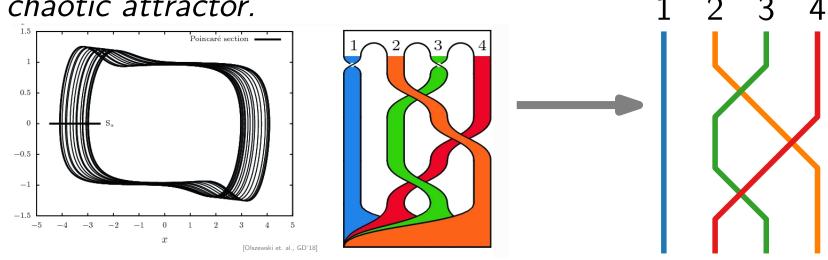
Algorithms for minimizing the number of *bends* 

Olszewski, Meder, Kieffer, Bleuse, Rosalie, Danoy, and Bouvry.
 Visualizing the template of a chaotic attractor.
 [GD 2018]

Olszewski, Meder, Kieffer, Bleuse, Rosalie, Danoy, and Bouvry.

Visualizing the template of a chaotic attractor.

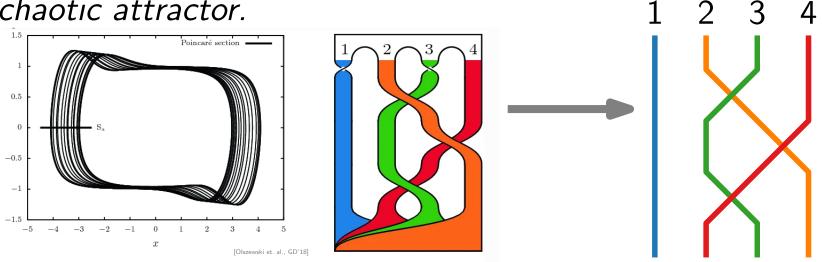
[GD 2018]



Olszewski, Meder, Kieffer, Bleuse, Rosalie, Danoy, and Bouvry.

Visualizing the template of a chaotic attractor.

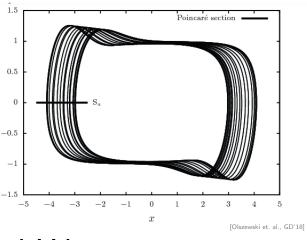
[GD 2018]

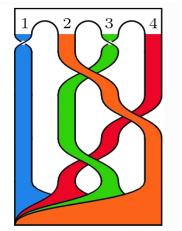


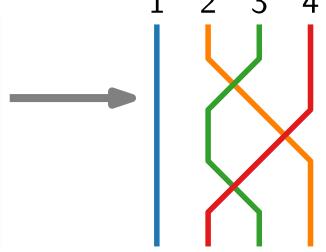
Olszewski, Meder, Kieffer, Bleuse, Rosalie, Danoy, and Bouvry.

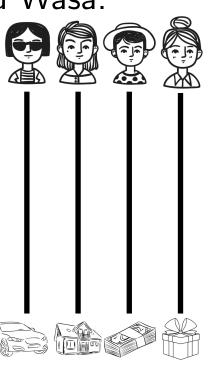
Visualizing the template of a chaotic attractor.

[GD 2018]





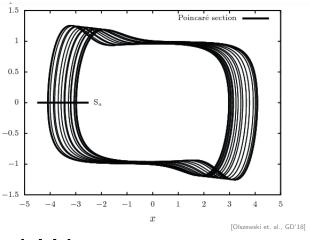


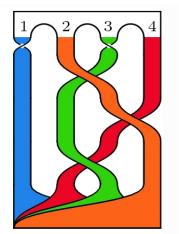


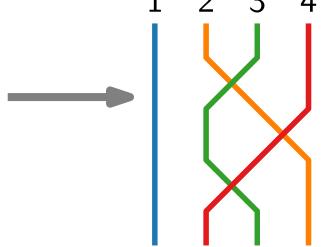
Olszewski, Meder, Kieffer, Bleuse, Rosalie, Danoy, and Bouvry.

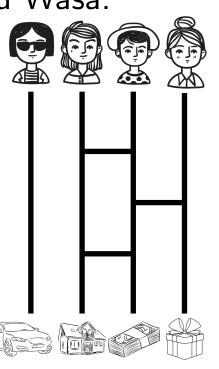
Visualizing the template of a chaotic attractor.

[GD 2018]





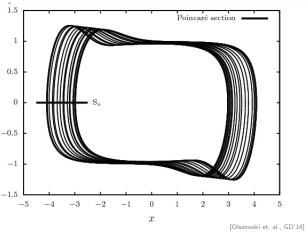


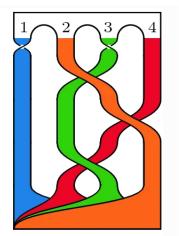


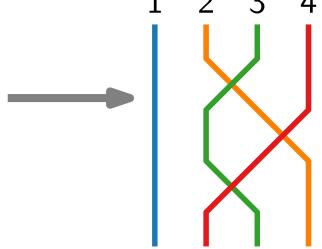
Olszewski, Meder, Kieffer, Bleuse, Rosalie, Danoy, and Bouvry.

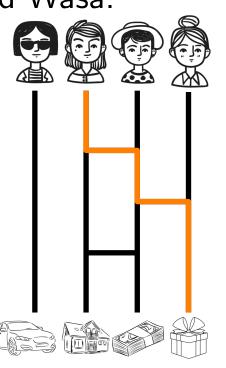
Visualizing the template of a chaotic attractor.

[GD 2018]





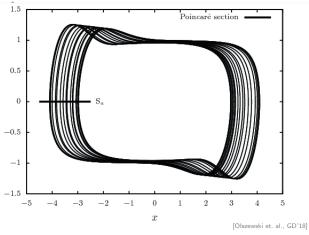


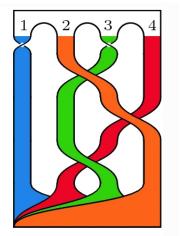


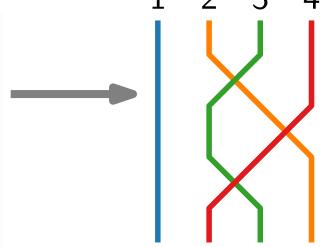
Olszewski, Meder, Kieffer, Bleuse, Rosalie, Danoy, and Bouvry.

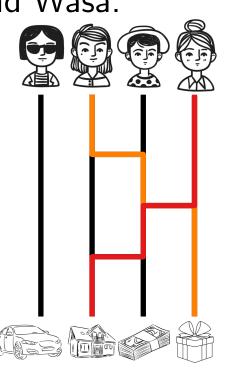
Visualizing the template of a chaotic attractor.

[GD 2018]





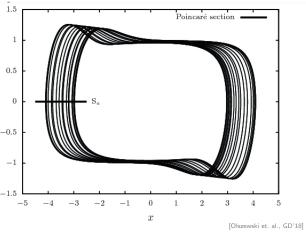


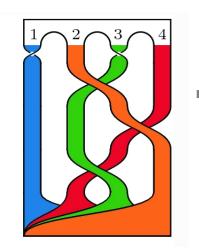


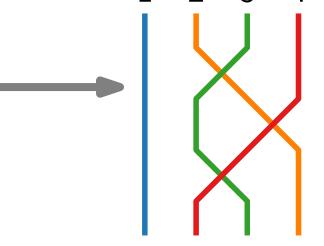
Olszewski, Meder, Kieffer, Bleuse, Rosalie, Danoy, and Bouvry.

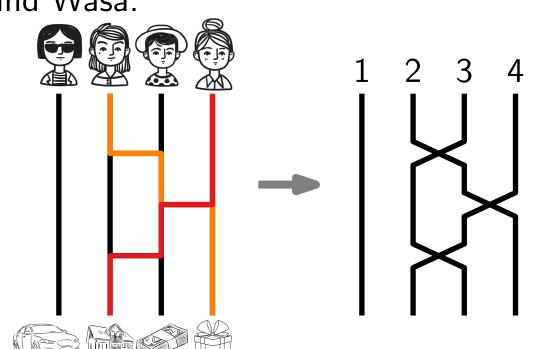
Visualizing the template of a chaotic attractor.

[GD 2018]





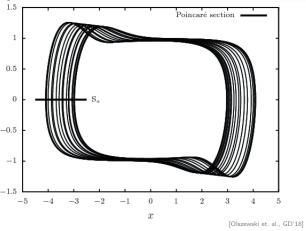


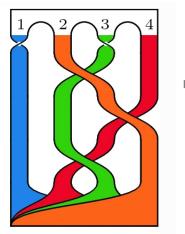


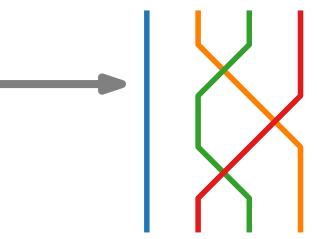
Olszewski, Meder, Kieffer, Bleuse, Rosalie, Danoy, and Bouvry.

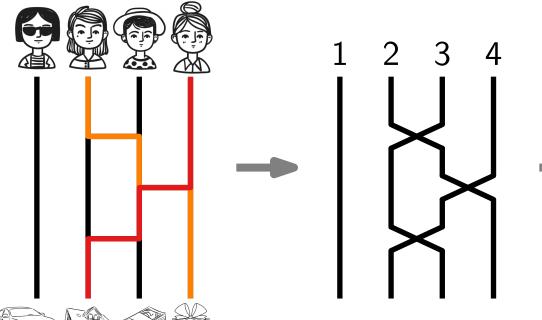
Visualizing the template of a chaotic attractor.

[GD 2018]





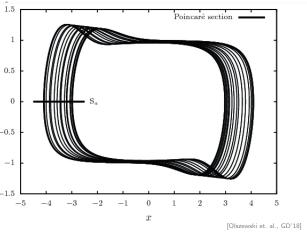


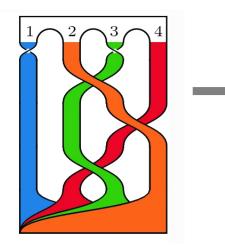


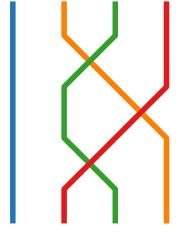
Olszewski, Meder, Kieffer, Bleuse, Rosalie, Danoy, and Bouvry.

Visualizing the template of a chaotic attractor.

[GD 2018]

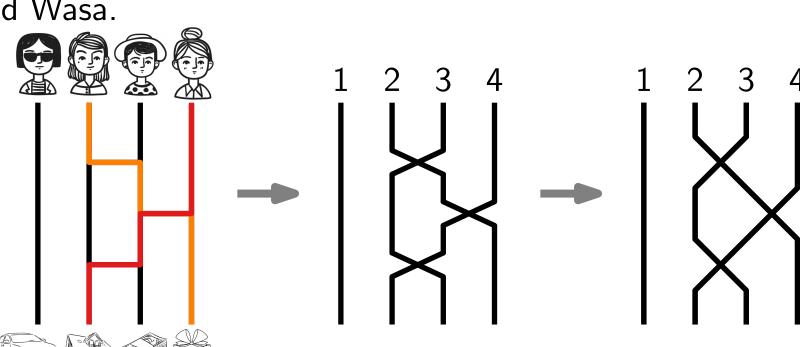






Yamanaka, Horiyama, Uno, and Wasa. Ladder-lottery realization. [CCCG 2018]

It is NP-hard to decide if a given list is feasible.



We consider the **feasibility** problem – whether a given list has a tangle.

We consider the **feasibility** problem – whether a given list has a tangle.

Complexity: improve the NP-hardness result of [Yamanaka et al., CCCG'18]

We consider the **feasibility** problem – whether a given list has a tangle.

Complexity: improve the NP-hardness result of [Yamanaka et al., CCCG'18]

Given a list of swaps, it is NP-complete to decide if it is feasible even if every pair of wires has O(1) (eight) swaps.

We consider the **feasibility** problem – whether a given list has a tangle.

Complexity: improve the NP-hardness result of [Yamanaka et al., CCCG'18]

Given a list of swaps, it is NP-complete to decide if it is feasible even if every pair of wires has O(1) (eight) swaps.

■ Exp.-Time Algorithm: can check feasibility faster than finding optimal-height tangles via [FKWRZ, GD'19]

### Our contribution

We consider the **feasibility** problem – whether a given list has a tangle.

Complexity: improve the NP-hardness result of [Yamanaka et al., CCCG'18]

Given a list of swaps, it is NP-complete to decide if it is feasible even if every pair of wires has O(1) (eight) swaps.

■ Exp.-Time Algorithm: can check feasibility faster than finding optimal-height tangles via [FKWRZ, GD'19]

■ FPT Algorithm parametrized by the number of wires

### Our contribution

We consider the **feasibility** problem – whether a given list has a tangle.

Complexity: improve the NP-hardness result of [Yamanaka et al., CCCG'18]

Given a list of swaps, it is NP-complete to decide if it is feasible even if every pair of wires has O(1) (eight) swaps.

■ Exp.-Time Algorithm: can check feasibility faster than finding optimal-height tangles via [FKWRZ, GD'19]

■ FPT Algorithm parametrized by the number of wires

#### Theorem.

Given a list of swaps, it is NP-complete to decide if it is feasible even if every pair of wires has at most eight swaps.

#### Theorem.

Given a list of swaps, it is NP-complete to decide if it is feasible even if every pair of wires has at most eight swaps.

#### Proof.

#### Theorem.

Given a list of swaps, it is NP-complete to decide if it is feasible even if every pair of wires has at most eight swaps.

#### Proof.

$$F = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge \neg x_1$$

#### Theorem.

Given a list of swaps, it is NP-complete to decide if it is feasible even if every pair of wires has at most eight swaps.

#### Proof.

$$F = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge \neg x_1$$

#### Theorem.

Given a list of swaps, it is NP-complete to decide if it is feasible even if every pair of wires has at most eight swaps.

#### Proof.

$$F = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge \neg x_1$$

#### Theorem.

Given a list of swaps, it is NP-complete to decide if it is feasible even if every pair of wires has at most eight swaps.

#### Proof.

$$F = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge \neg x_1$$

$$(F \lor F \lor F)$$

#### Theorem.

Given a list of swaps, it is NP-complete to decide if it is feasible even if every pair of wires has at most eight swaps.

#### Proof.

$$F = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge \neg x_1$$

$$(F \vee F \vee F)$$

#### Theorem.

Given a list of swaps, it is NP-complete to decide if it is feasible even if every pair of wires has at most eight swaps.

#### Proof.

Reduction from Positive Not-All-Equal 3-SAT Diff.

$$F = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge \neg x_1$$

$$(F \lor F \lor F)$$

$$(T \vee T \vee T)$$

negative literals

#### Theorem.

Given a list of swaps, it is NP-complete to decide if it is feasible even if every pair of wires has at most eight swaps.

#### Proof.

Reduction from Positive Not-All-Equal 3-SAT Diff.

$$F = (x_1 \vee x_2) \wedge (x_1 \vee x_2 \vee x_3) \wedge x_1$$

$$(F \lor F \lor F)$$

$$(T \vee T \vee T)$$

negative literals

#### Theorem.

Given a list of swaps, it is NP-complete to decide if it is feasible even if every pair of wires has at most eight swaps.

#### Proof.

Reduction from Positive Not-All-Equal 3-SAT Diff.

$$F = (x_1 \vee x_2) \wedge (x_1 \vee x_2 \vee x_3) \wedge x_1$$

 $(F \vee F \vee F)$ 

$$(T \vee T \vee T)$$

negative literals

#### Theorem.

Given a list of swaps, it is NP-complete to decide if it is feasible even if every pair of wires has at most eight swaps.

#### Proof.

Reduction from Positive Not-All-Equal 3-SAT Diff.

$$F = (x_1 \vee x_2) \wedge (x_1 \vee x_2 \vee x_3) \wedge x_1$$

$$(F \vee F \vee F)$$

negative literals

all three variables in each clause differ from each other

#### Theorem.

Given a list of swaps, it is NP-complete to decide if it is feasible even if every pair of wires has at most eight swaps.

#### Proof.

Reduction from Positive Not-All-Equal 3-SAT Diff.

$$F = (x_1 \lor x_2 \lor x_4) \land (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_3 \lor x_4)$$

 $(F \lor F \lor F)$ 

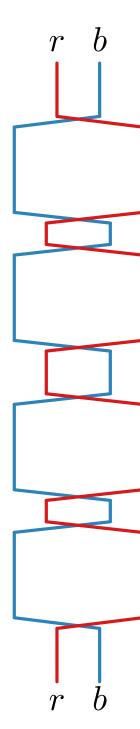
$$(T \vee T \vee T)$$

negative literals

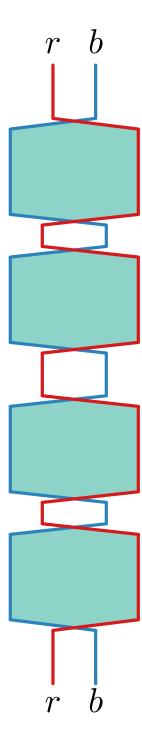
all three variables in each clause differ from each other

Two wires build 4 *loops* that we consider.

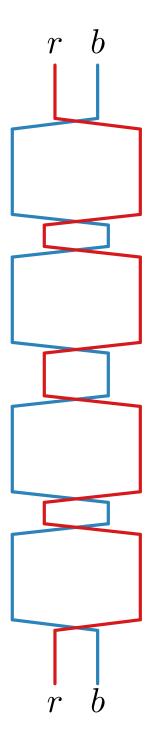
Two wires build 4 *loops* that we consider.



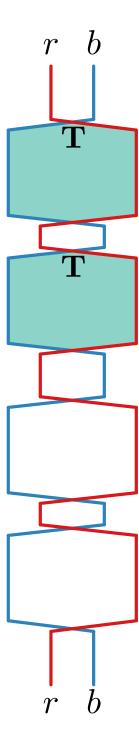
Two wires build 4 *loops* that we consider.



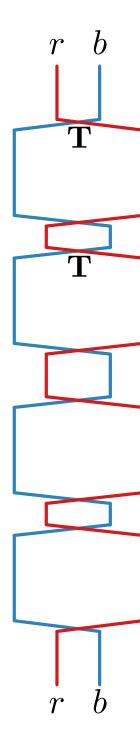
- Two wires build 4 *loops* that we consider.
- Two loops represent *true*,



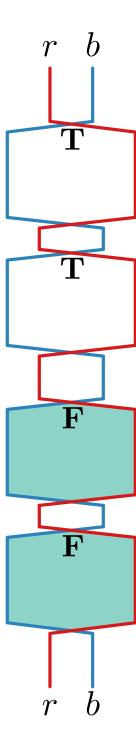
- Two wires build 4 *loops* that we consider.
- Two loops represent *true*,



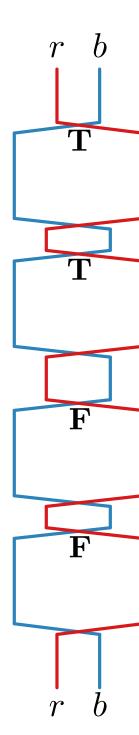
- Two wires build 4 *loops* that we consider.
- Two loops represent *true*, the other two *false*.



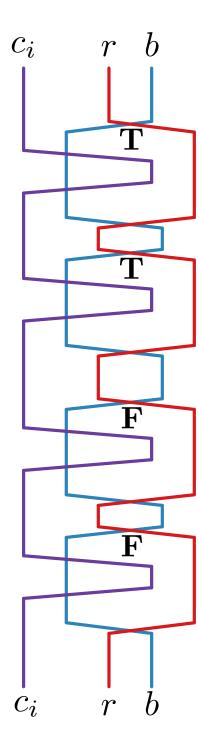
- Two wires build 4 *loops* that we consider.
- Two loops represent *true*, the other two *false*.



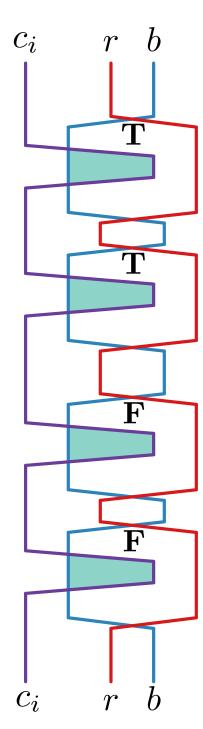
- Two wires build 4 *loops* that we consider.
- Two loops represent *true*, the other two *false*.
- For each clause, there is a wire with an *arm* in each of the 4 loops.



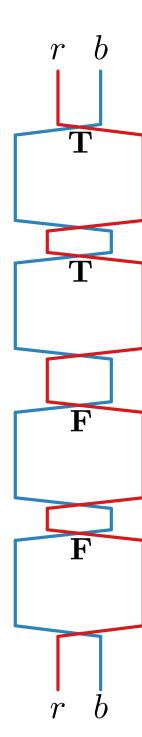
- Two wires build 4 *loops* that we consider.
- Two loops represent *true*, the other two *false*.
- For each clause, there is a wire with an *arm* in each of the 4 loops.



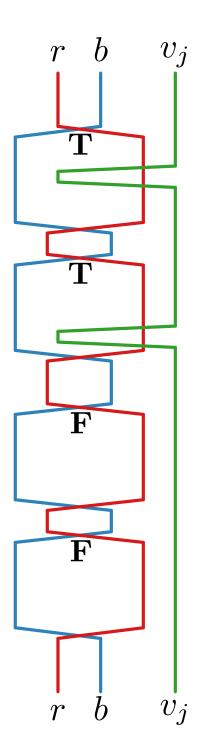
- Two wires build 4 *loops* that we consider.
- Two loops represent *true*, the other two *false*.
- For each clause, there is a wire with an arm in each of the 4 loops.



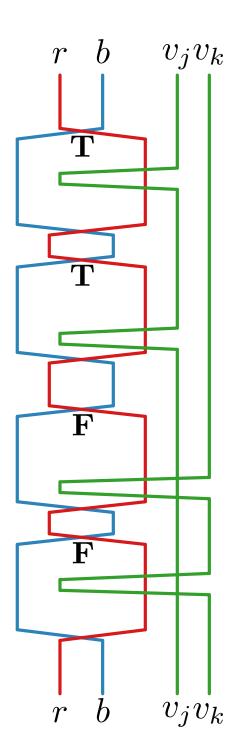
- Two wires build 4 *loops* that we consider.
- Two loops represent true, the other two false.
- For each clause, there is a wire with an *arm* in each of the 4 loops.
- For each variable, there is a wire entering either both *true* or both *false* loops.



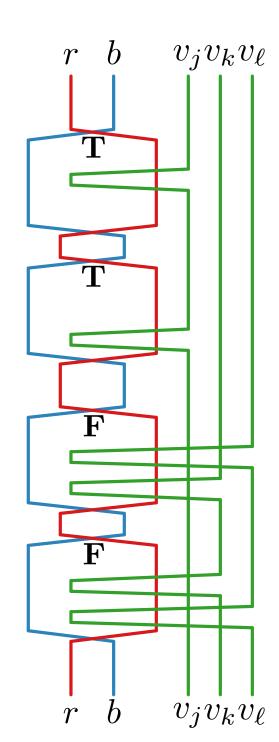
- Two wires build 4 *loops* that we consider.
- Two loops represent *true*, the other two *false*.
- For each clause, there is a wire with an *arm* in each of the 4 loops.
- For each variable, there is a wire entering either both *true* or both *false* loops.



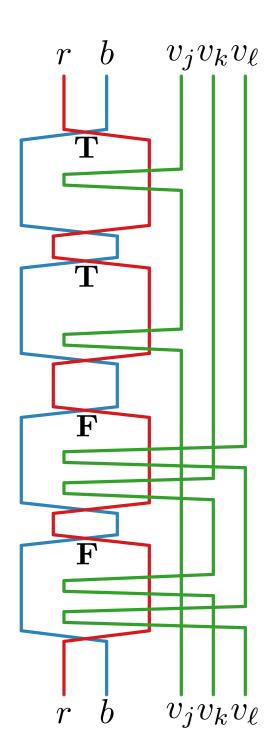
- Two wires build 4 *loops* that we consider.
- Two loops represent true, the other two false.
- For each clause, there is a wire with an *arm* in each of the 4 loops.
- For each variable, there is a wire entering either both *true* or both *false* loops.



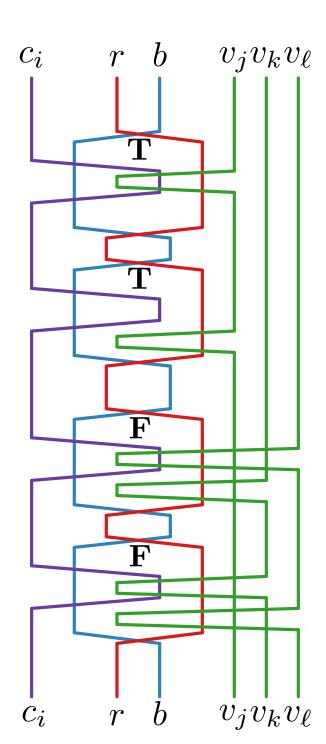
- Two wires build 4 *loops* that we consider.
- Two loops represent *true*, the other two *false*.
- For each clause, there is a wire with an *arm* in each of the 4 loops.
- For each variable, there is a wire entering either both *true* or both *false* loops.



- Two wires build 4 *loops* that we consider.
- Two loops represent true, the other two false.
- For each clause, there is a wire with an *arm* in each of the 4 loops.
- For each variable, there is a wire entering either both *true* or both *false* loops.
- Each clause wire meets precisely its three corresponding variable wires each one in a different loop.

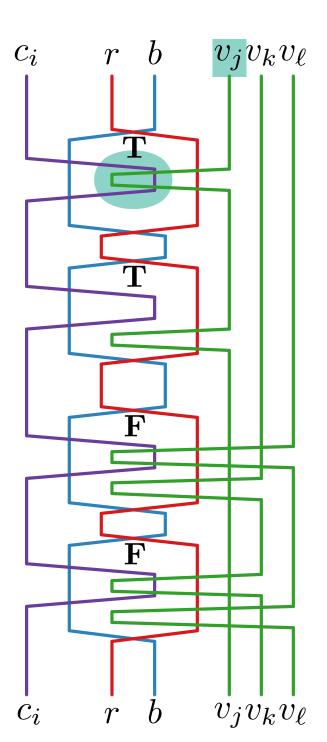


- Two wires build 4 *loops* that we consider.
- Two loops represent *true*, the other two *false*.
- For each clause, there is a wire with an *arm* in each of the 4 loops.
- For each variable, there is a wire entering either both *true* or both *false* loops.
- Each clause wire meets precisely its three corresponding variable wires each one in a different loop.

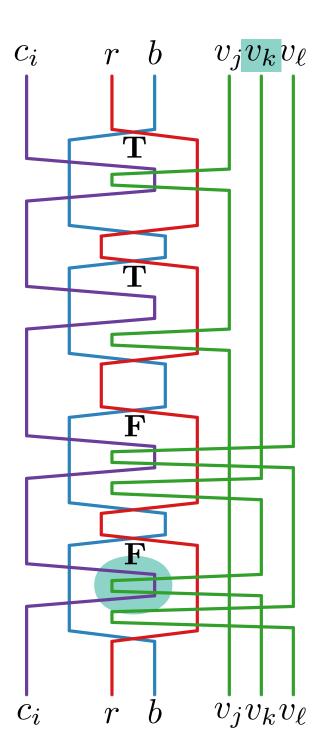


### ldea

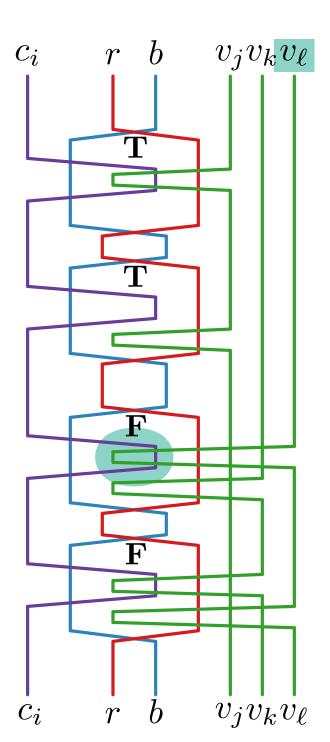
- Two wires build 4 *loops* that we consider.
- Two loops represent true, the other two false.
- For each clause, there is a wire with an *arm* in each of the 4 loops.
- For each variable, there is a wire entering either both *true* or both *false* loops.
- Each clause wire meets precisely its three corresponding variable wires each one in a different loop.



- Two wires build 4 *loops* that we consider.
- Two loops represent *true*, the other two *false*.
- For each clause, there is a wire with an *arm* in each of the 4 loops.
- For each variable, there is a wire entering either both *true* or both *false* loops.
- Each clause wire meets precisely its three corresponding variable wires each one in a different loop.

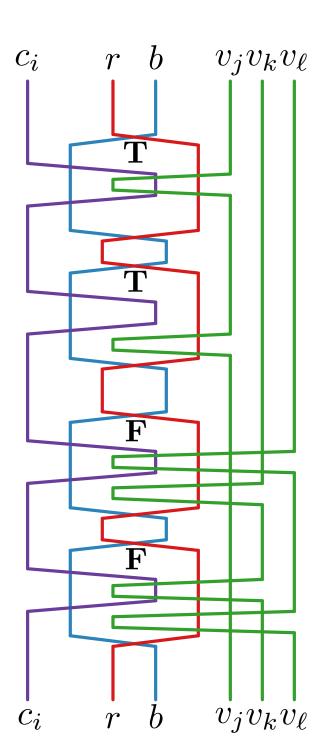


- Two wires build 4 *loops* that we consider.
- Two loops represent true, the other two false.
- For each clause, there is a wire with an *arm* in each of the 4 loops.
- For each variable, there is a wire entering either both *true* or both *false* loops.
- Each clause wire meets precisely its three corresponding variable wires each one in a different loop.

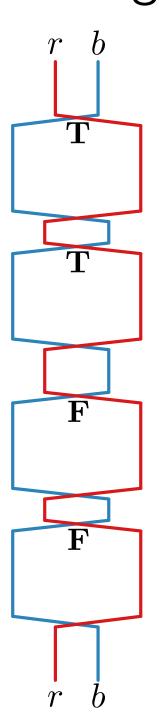


### ldea

- Two wires build 4 *loops* that we consider.
- Two loops represent true, the other two false.
- For each clause, there is a wire with an *arm* in each of the 4 loops.
- For each variable, there is a wire entering either both *true* or both *false* loops.
- Each clause wire meets precisely its three corresponding variable wires each one in a different loop.
- Only 2 true loops and 2 false loops ⇒ clause wires meet all their variable wires iff POSITIVE NOT-ALL-EQUAL 3-SAT DIFF formula is satisfiable.

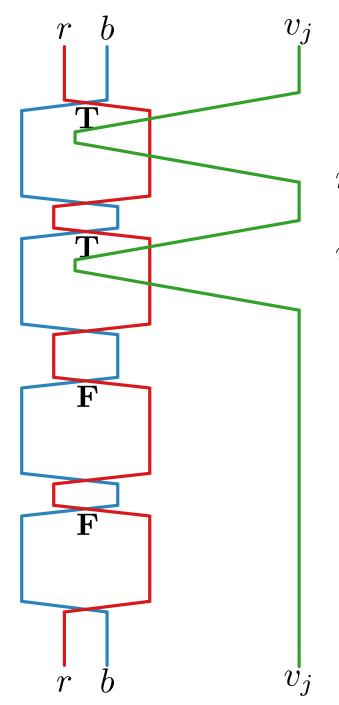


# Variable Gadget



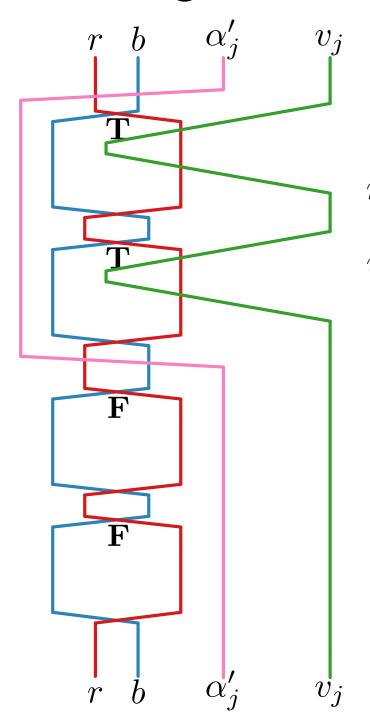
r,b: central loop structure

# Variable Gadget



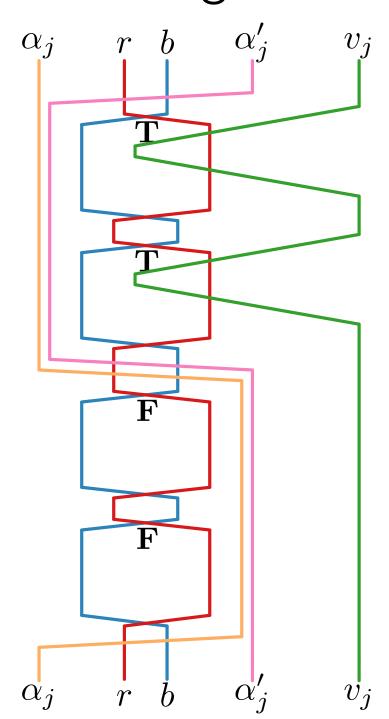
r,b: central loop structure

 $v_j$ : variable wire of j-th variable



r, b: central loop structure

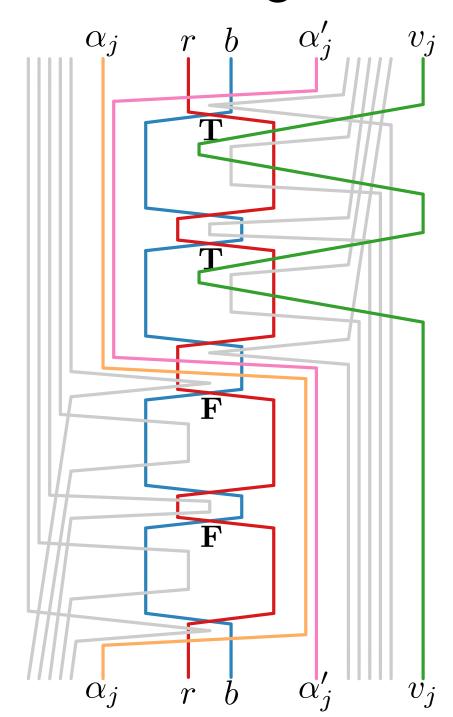
 $v_j$ : variable wire of j-th variable



r, b: central loop structure

 $v_j$ : variable wire of j-th variable

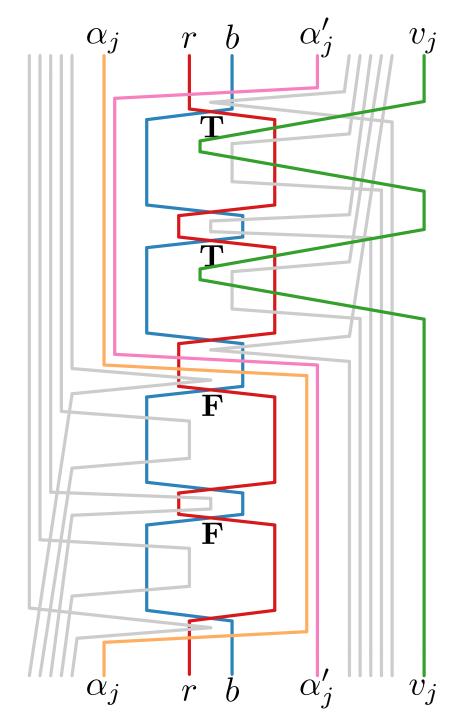
 $\alpha_j, \alpha_j'$ : make  $v_j$  appear only in true or in false loops



r, b: central loop structure

 $v_j$ : variable wire of j-th variable

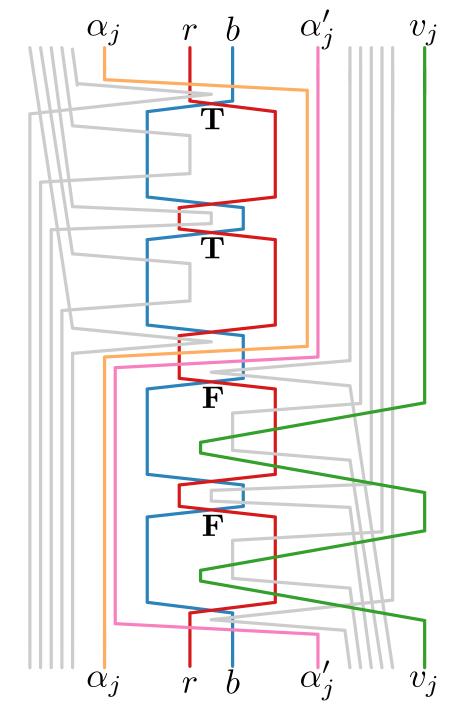
 $\alpha_j, \alpha_j'$ : make  $v_j$  appear only in true or in false loops

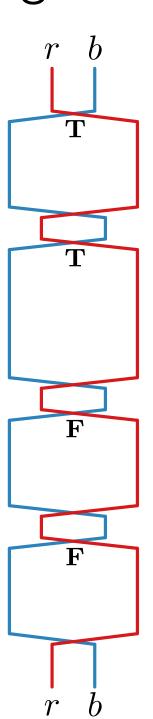


r, b: central loop structure

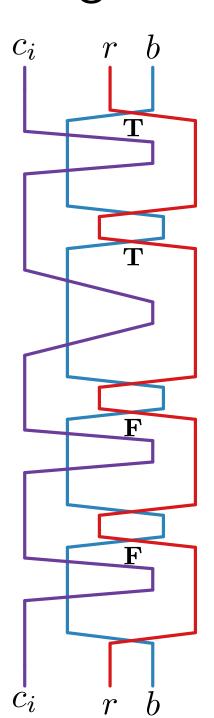
 $v_j$ : variable wire of j-th variable

 $\alpha_j, \alpha_j'$ : make  $v_j$  appear only in true or in false loops



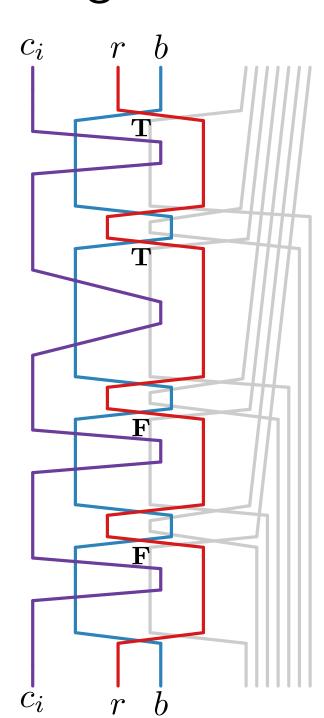


r,b: central loop structure



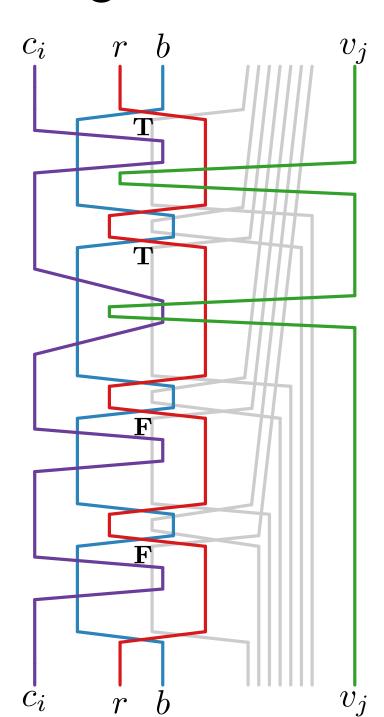
r, b: central loop structure

 $c_i$ : clause wire of i-th clause



r, b: central loop structure

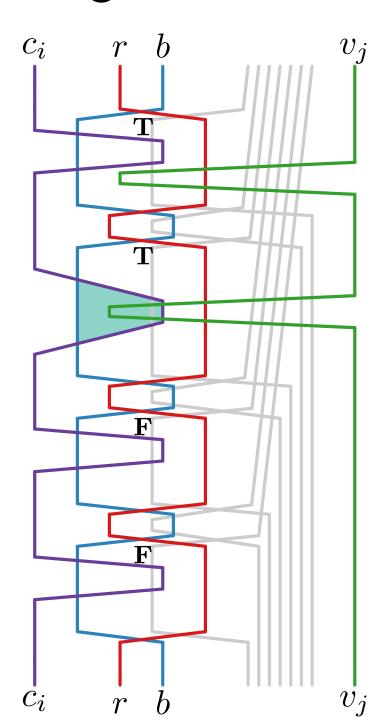
 $c_i$ : clause wire of i-th clause



r, b: central loop structure

 $c_i$ : clause wire of i-th clause

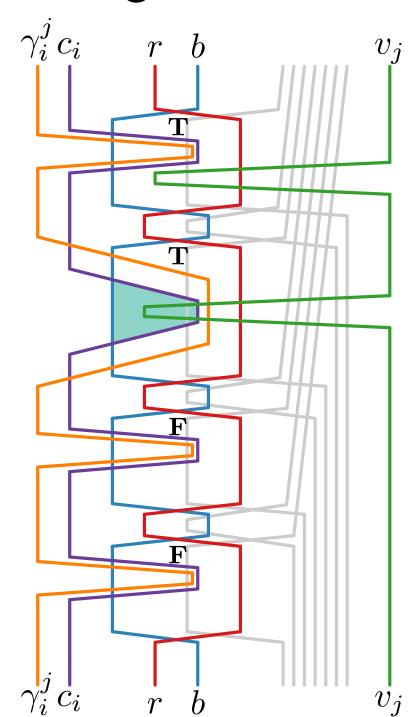
 $v_i$ : variable wire of j-th variable



r, b: central loop structure

 $c_i$ : clause wire of i-th clause

 $v_i$ : variable wire of j-th variable

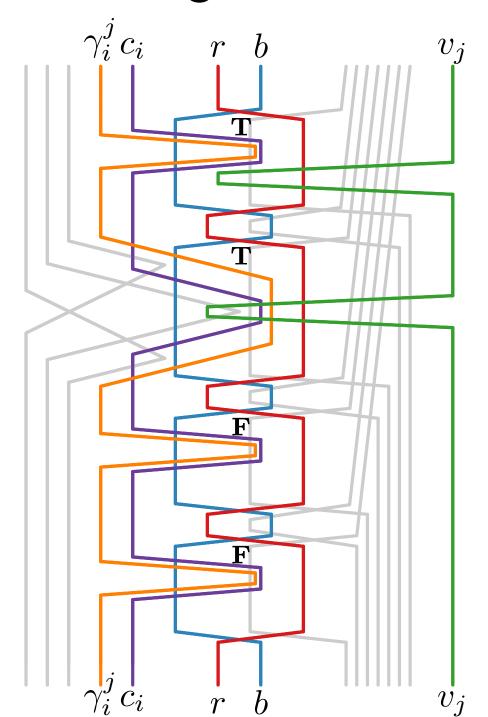


r, b: central loop structure

 $c_i$ : clause wire of *i*-th clause

 $v_j$ : variable wire of j-th variable

 $\gamma_i^j$ : protects the arm of  $c_i$  that intersects  $v_j$  from other variable wires

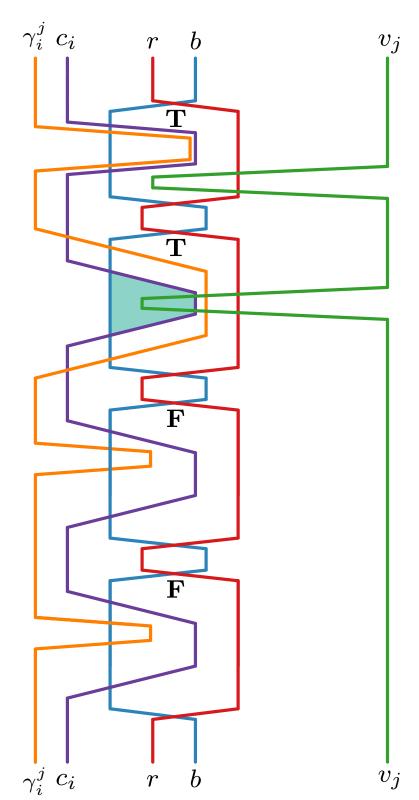


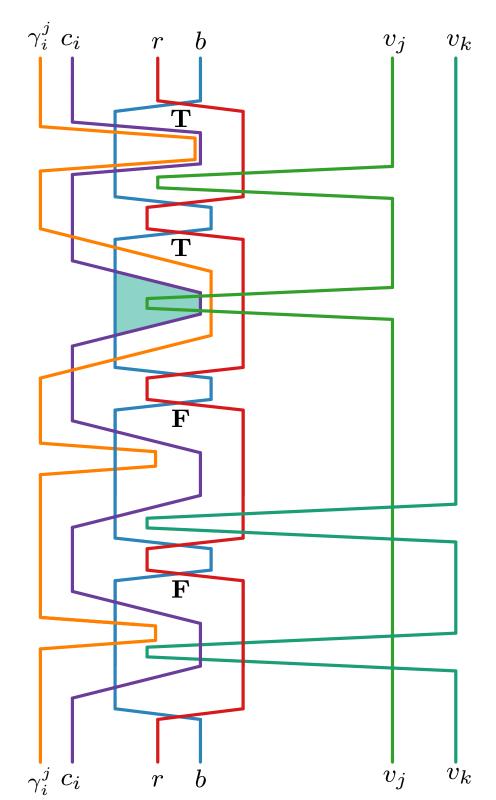
r, b: central loop structure

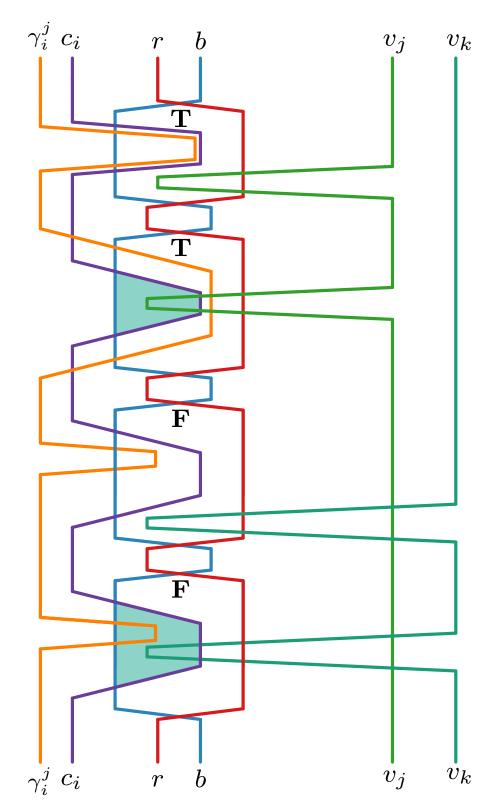
 $c_i$ : clause wire of *i*-th clause

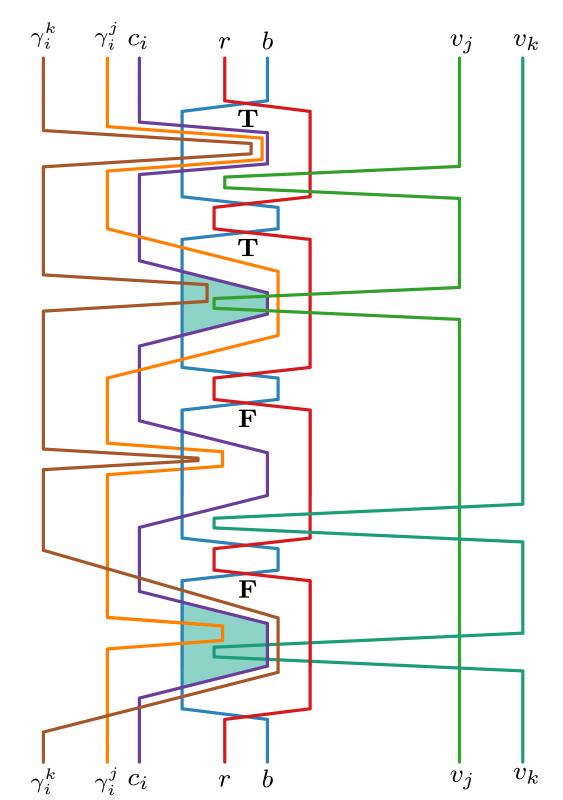
 $v_j$ : variable wire of j-th variable

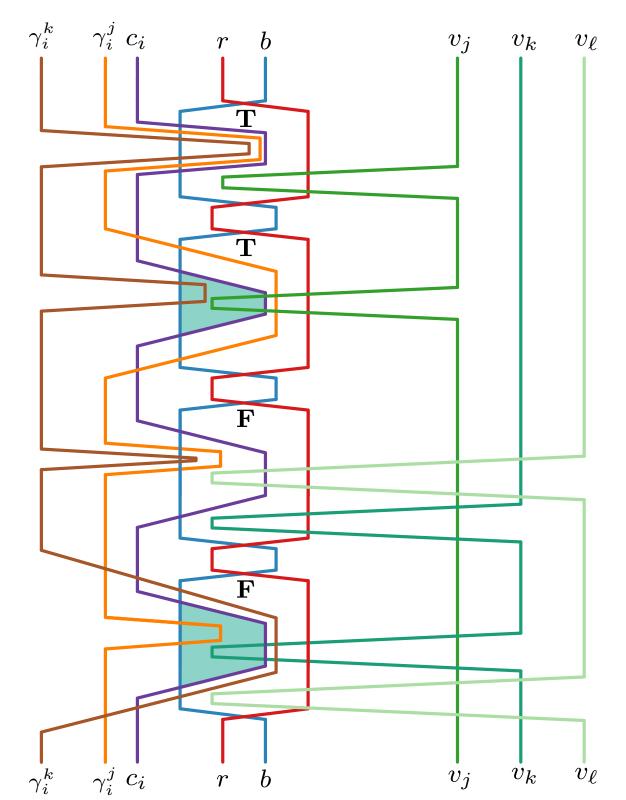
 $\gamma_i^j$ : protects the arm of  $c_i$  that intersects  $v_j$  from other variable wires

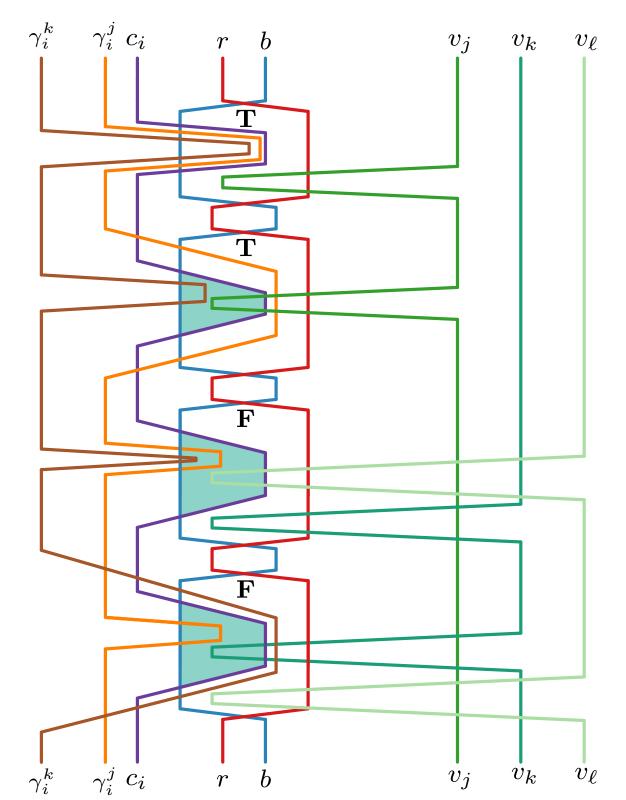


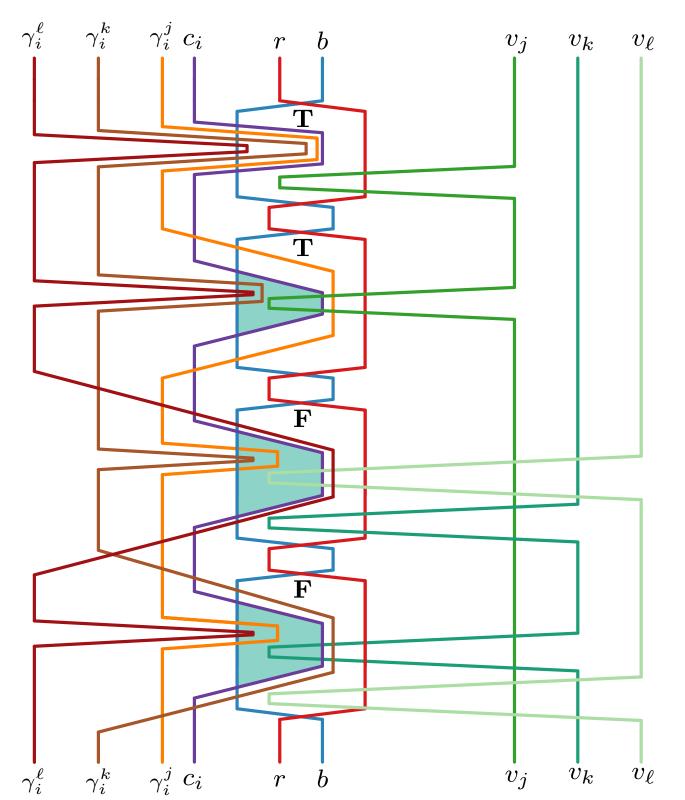








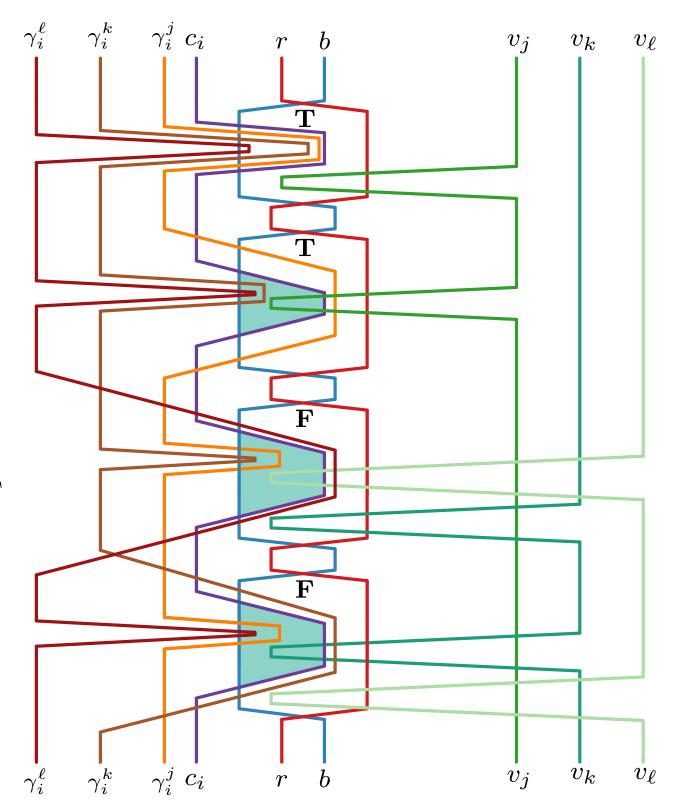




#### Hence:

Only 2 *true* loops and 2 *false* loops

⇒ clause wires meet all their
variable wires iff
POSITIVE NOT-ALL-EQUAL 3-SAT DIFF
formula is satisfiable.



### Our contribution

We consider the **feasibility** problem – whether a given list has a tangle.

Complexity: improve the NP-hardness result of [Yamanaka et al., CCCG'18]

Given a list of swaps, it is NP-complete to decide if it is feasible even if every pair of wires has O(1) (eight) swaps.

Exp.-Time Algorithm: can check feasibility faster than finding optimal-height tangles via [FKWRZ, GD'19]

■ FPT Algorithm parametrized by the number of wires

### Our contribution

We consider the **feasibility** problem – whether a given list has a tangle.

Complexity: improve the NP-hardness result of [Yamanaka et al., CCCG'18]

Given a list of swaps, it is NP-complete to decide if it is feasible even if every pair of wires has O(1) (eight) swaps.

■ Exp.-Time Algorithm: can check feasibility faster than finding optimal-height tangles via [FKWRZ, GD'19]

■ FPT Algorithm parametrized by the number of wires

$$O\left(\lambda \varphi^n n \log |L|\right) \longrightarrow O\left(\lambda n^3 \log |L|\right)$$
[FKWRZ, GD'19]

Let  $L = (\ell_{ij})$  be the given list of swaps with n wires.



Let  $L = (\ell_{ij})$  be the given list of swaps with n wires.

 $\lambda = \#$  of distinct sublists of L.



[FKWRZ, GD'19]

 $L' = (\ell'_{ij})$  is a sublist of L if  $\ell'_{ij} \leq \ell_{ij}$ 

Let  $L = (\ell_{ij})$  be the given list of swaps with n wires.

$$\lambda = \#$$
 of distinct sublists of  $L$ .

 $\varphi$  is the golden ration ( $\approx 1.618$ ).



[FKWRZ, GD'19]

 $L' = (\ell'_{ij})$  is a sublist of L if  $\ell'_{ij} \leq \ell_{ij}$ 

Let  $L = (\ell_{ij})$  be the given list of swaps with n wires.

$$\lambda = \#$$
 of distinct sublists of  $L$ .

 $\varphi$  is the golden ration ( $\approx 1.618$ ).

$$|L| = \sum l_{ij}$$
.



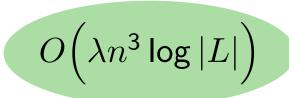
[FKWRZ, GD'19]

 $L' = (\ell'_{ij})$  is a *sublist* of L if  $\ell'_{ij} \leq \ell_{ij}$ 

Let  $L = (\ell_{ij})$  be the given list of swaps with n wires.

 $\lambda = \#$  of distinct sublists of L.

Consider them in order of **increasing length**.



$$L' = (\ell'_{ij})$$
 is a sublist of  $L$  if  $\ell'_{ij} \leq \ell_{ij}$ 

Let  $L = (\ell_{ij})$  be the given list of swaps with n wires.

$$O\Big(\lambda n^3 \log |L|\Big)$$

$$\lambda = \#$$
 of distinct sublists of  $L$ .

Consider them in order of increasing length.

$$L' = (\ell'_{ij})$$
 is a *sublist* of  $L$  if  $\ell'_{ij} \leq \ell_{ij}$ 

Create a **Boolean table** with one entry for each sublist L': true iff L' is feasible.

Let  $L = (\ell_{ij})$  be the given list of swaps with n wires.

$$O\Big(\lambda n^3 \log |L|\Big)$$

$$\lambda = \#$$
 of distinct sublists of  $L$ .

Consider them in order of increasing length.

$$L' = (\ell'_{ij})$$
 is a *sublist* of  $L$  if  $\ell'_{ij} \leq \ell_{ij}$ 

Create a **Boolean table** with one entry for each sublist L': true iff L' is feasible.

Base case: the empty list is feasible.

Let  $L = (\ell_{ij})$  be the given list of swaps with n wires.

 $O\Big(\lambda n^3 \log |L|\Big)$ 

$$\lambda = \#$$
 of distinct sublists of  $L$ .

Consider them in order of increasing length.

$$L' = (\ell'_{ij})$$
 is a *sublist* of  $L$  if  $\ell'_{ij} \leq \ell_{ij}$ 

Create a **Boolean table** with one entry for each sublist L': true iff L' is feasible.

Base case: the empty list is feasible.

Let L' be the next list to consider.

Let  $L = (\ell_{ij})$  be the given list of swaps with n wires.

$$\lambda = \#$$
 of distinct sublists of  $L$ .

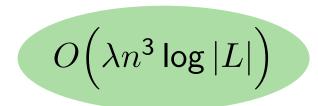
Consider them in order of increasing length.

Create a **Boolean table** with one entry for each sublist L': true iff L' is feasible.

Base case: the empty list is feasible.

Let L' be the next list to consider.

For each swap ij in L', check if there is a tangle realizing L' such that ij is **the last swap**.



$$L' = (\ell'_{ij})$$
 is a sublist of  $L$  if  $\ell'_{ij} \leq \ell_{ij}$ 

Let  $L = (\ell_{ij})$  be the given list of swaps with n wires.

$$\lambda = \#$$
 of distinct sublists of  $L$ .

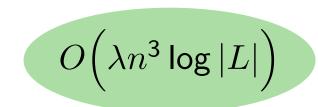
Consider them in order of increasing length.

Create a **Boolean table** with one entry for each sublist L': true iff L' is feasible.

Base case: the empty list is feasible.

Let L' be the next list to consider.

For each swap ij in L', check if there is a tangle realizing L' such that ij is **the last swap**. yes — true, no — false



$$L' = (\ell'_{ij})$$
 is a sublist of  $L$  if  $\ell'_{ij} \leq \ell_{ij}$ 

Let  $L = (\ell_{ij})$  be the given list of swaps with n wires.

 $\lambda = \#$  of distinct sublists of L.

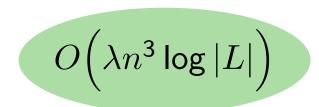
Consider them in order of increasing length.

Create a **Boolean table** with one entry for each sublist L': true iff L' is feasible.

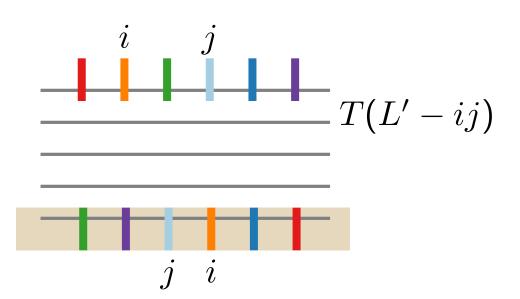
Base case: the empty list is feasible.

Let L' be the next list to consider.

For each swap ij in L', check if there is a tangle realizing L' such that ij is **the last swap**. yes — true, no — false



$$L' = (\ell'_{ij})$$
 is a sublist of  $L$  if  $\ell'_{ij} \leq \ell_{ij}$ 



Let  $L = (\ell_{ij})$  be the given list of swaps with n wires.

$$\lambda = \#$$
 of distinct sublists of  $L$ .

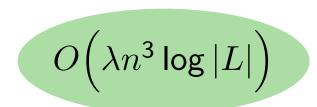
Consider them in order of increasing length.

Create a **Boolean table** with one entry for each sublist L': true iff L' is feasible.

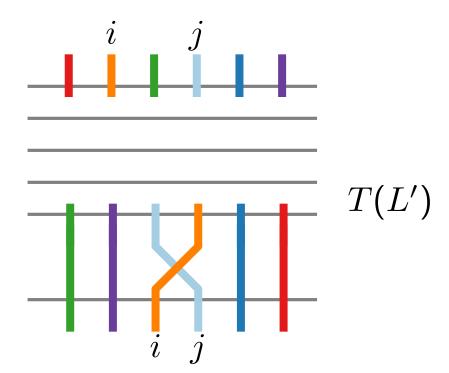
Base case: the empty list is feasible.

Let L' be the next list to consider.

For each swap ij in L', check if there is a tangle realizing L' such that ij is **the last swap**. yes — true, no — false



$$L' = (\ell'_{ij})$$
 is a sublist of  $L$  if  $\ell'_{ij} \leq \ell_{ij}$ 



Let  $L = (\ell_{ij})$  be the given list of swaps with n wires.

 $\lambda = \#$  of distinct sublists of L.

Consider them in order of increasing length.

Create a **Boolean table** with one entry for each sublist L': true iff L' is feasible.

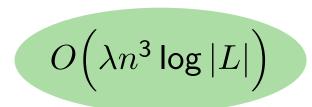
Base case: the empty list is feasible.

Let L' be the next list to consider.

For each swap ij in L', check if there is a tangle realizing L' such that ij is **the last swap**.

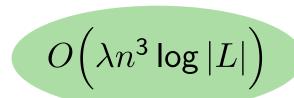
#### Running time

*O*(



 $L' = (\ell'_{ij})$  is a sublist of L if  $\ell'_{ij} \leq \ell_{ij}$ 

Let  $L = (\ell_{ij})$  be the given list of swaps with n wires.



### $\lambda = \#$ of distinct sublists of L.

Consider them in order of increasing length.

Create a **Boolean table** with one entry for each sublist L': true iff L' is feasible.

Base case: the empty list is feasible.

Let L' be the next list to consider.

For each swap ij in L', check if there is a tangle realizing L' such that ij is **the last swap**.

### Running time

$$O(\lambda)$$

 $L' = (\ell'_{ij})$  is a sublist of L if  $\ell'_{ij} \leq \ell_{ij}$ 

Let  $L = (\ell_{ij})$  be the given list of swaps with n wires.

$$\lambda = \#$$
 of distinct sublists of  $L$ .

Consider them in order of increasing length.

Create a **Boolean table** with one entry for each sublist L': true iff L' is feasible.

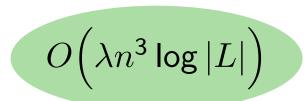
Base case: the empty list is feasible.

Let L' be the next list to consider.

For each swap ij in L', check if there is a tangle realizing L' such that ij is **the last swap**.

### Running time

$$O(\lambda) \cdot O(n^2)$$



$$L' = (\ell'_{ij})$$
 is a sublist of  $L$  if  $\ell'_{ij} \leq \ell_{ij}$ 

Note that each layer has exactly one swap.

Let  $L = (\ell_{ij})$  be the given list of swaps with n wires.

$$\lambda = \#$$
 of distinct sublists of  $L$ .

Consider them in order of increasing length.

Create a **Boolean table** with one entry for each sublist L': true iff L' is feasible.

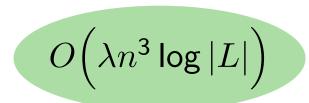
Base case: the empty list is feasible.

Let L' be the next list to consider.

For each swap ij in L', check if there is a tangle realizing L' such that ij is **the last swap**.

### **Running time**

$$O(\lambda) \cdot O(n^2) \cdot O(n \log |L|)$$



$$L' = (\ell'_{ij})$$
 is a sublist of  $L$  if  $\ell'_{ij} \leq \ell_{ij}$ 

Note that each layer has exactly one swap.

Let  $L = (\ell_{ij})$  be the given list of swaps with n wires.

 $O\left(\lambda n^3 \log |L|\right)$ 

$$\lambda = \#$$
 of distinct sublists of  $L$ .

Consider them in order of increasing length.

$$L'=(\ell'_{ij})$$
 is a *sublist* of  $L$  if  $\ell'_{ij}\leq \ell_{ij}$ 

Create a **Boolean table** with one entry for each sublist L': true iff L' is feasible.

Note that each layer has exactly one swap.

Base case: the empty list is feasible.

Let L' be the next list to consider.

For each swap ij in L', check if there is a tangle realizing L' such that ij is **the last swap**.

$$\lambda = \prod_{i < j} (\ell_{ij} + 1) \leq \left(rac{2|L|}{n^2} + 1
ight)^{n^2/2}$$

$$O(\lambda) \cdot O(n^2) \cdot O(n \log |L|)$$

Let  $L = (\ell_{ij})$  be the given list of swaps with n wires.

$$O\Big( \left( \frac{2|L|}{n^2} + 1 \right)^{n^2/2} n^3 \log |L| \Big)$$

$$\lambda = \#$$
 of distinct sublists of  $L$ .

Consider them in order of increasing length.

 $L' = (\ell'_{ij})$  is a *sublist* of L if  $\ell'_{ij} \leq \ell_{ij}$ 

Create a **Boolean table** with one entry for each sublist L': true iff L' is feasible.

Note that each layer has exactly one swap.

Base case: the empty list is feasible.

Let L' be the next list to consider.

For each swap ij in L', check if there is a tangle realizing L' such that ij is **the last swap**.

$$\lambda = \prod_{i < j} (\ell_{ij} + 1) \leq \left(rac{2|L|}{n^2} + 1
ight)^{n^2/2}$$

$$O(\lambda) \cdot O(n^2) \cdot O(n \log |L|)$$

### Our contribution

We consider the **feasibility** problem – whether a given list has a tangle.

Complexity: improve the NP-hardness result of [Yamanaka et al., CCCG'18]

Given a list of swaps, it is NP-complete to decide if it is feasible even if every pair of wires has O(1) (eight) swaps.

■ Exp.-Time Algorithm: can check feasibility faster than finding optimal-height tangles via [FKWRZ, GD'19]

■ FPT Algorithm parametrized by the number of wires

### Our contribution

We consider the **feasibility** problem – whether a given list has a tangle.

Complexity: improve the NP-hardness result of [Yamanaka et al., CCCG'18]

Given a list of swaps, it is NP-complete to decide if it is feasible even if every pair of wires has O(1) (eight) swaps.

■ Exp.-Time Algorithm: can check feasibility faster than finding optimal-height tangles via [FKWRZ, GD'19]

■ FPT Algorithm parametrized by the number of wires

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}n^3\log|L|\right)$$

$$|L| =$$
size of input.

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}n^3\log|L|\right)$$

|L|= size of input. Note that  $|L|\geq n/2$ .

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}n^3\log|L|\right)$$

|L|= size of input. Note that  $|L|\geq n/2$ .

We now consider n as our parameter.

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}n^3\log|L|\right)$$

$$|L|=$$
 size of input. Note that  $|L|\geq n/2$ .

$$O\Big( \left( \frac{2|L|}{n^2} + 1 \right)^{n^2/2} n^3 \log |L| \Big)$$

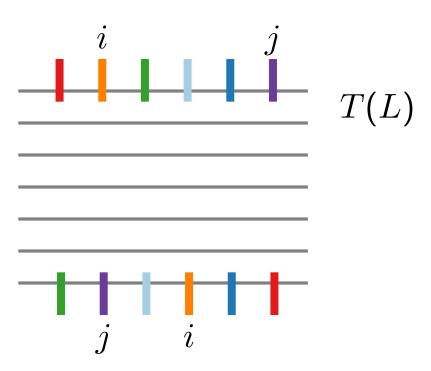
We now consider n as our parameter. Need to separate n and |L| in runtime!

|L|= size of input. Note that  $|L|\geq n/2$ .

$$O\Big( \left( \frac{2|L|}{n^2} + 1 \right)^{n^2/2} n^3 \log |L| \Big)$$

We now consider n as our parameter. Need to separate n and |L| in runtime!

Let L be a feasible list.



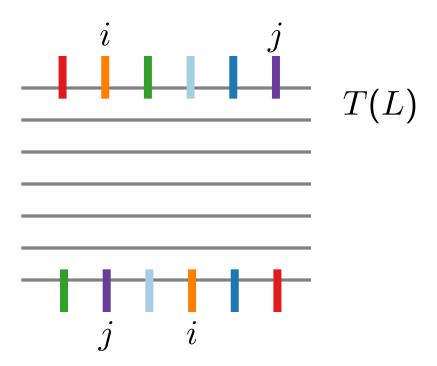
|L|= size of input. Note that  $|L|\geq n/2$ .

$$O\Big( ig( rac{2|L|}{n^2} + 1 ig)^{n^2/2} n^3 \log |L| \Big)$$

We now consider n as our parameter. Need to separate n and |L| in runtime!

Let L be a feasible list.

Let L' be identical to L, but with two additional ij swaps.



|L|= size of input. Note that  $|L|\geq n/2$ .

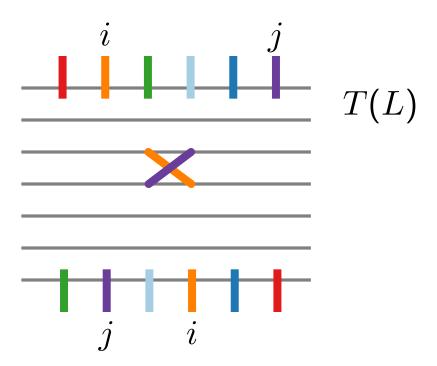
$$O\Big( \left( \frac{2|L|}{n^2} + 1 \right)^{n^2/2} n^3 \log |L| \Big)$$

We now consider n as our parameter. Need to separate n and |L| in runtime!

Let L be a feasible list.

Let L' be identical to L, but with two additional ij swaps.

If L contains a swap ij



|L|= size of input. Note that  $|L|\geq n/2$ .

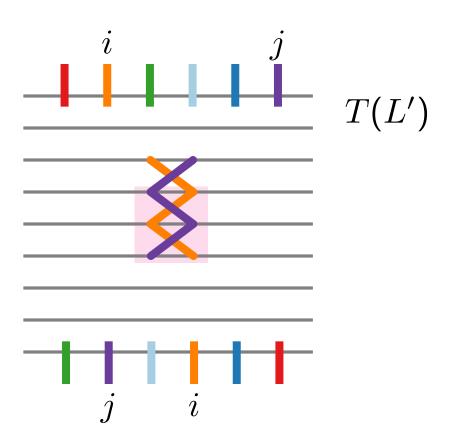
$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}n^3\log|L|\right)$$

We now consider n as our parameter. Need to separate n and |L| in runtime!

Let L be a feasible list.

Let L' be identical to L, but with two additional ij swaps.

If L contains a swap ij



|L|= size of input. Note that  $|L|\geq n/2$ .

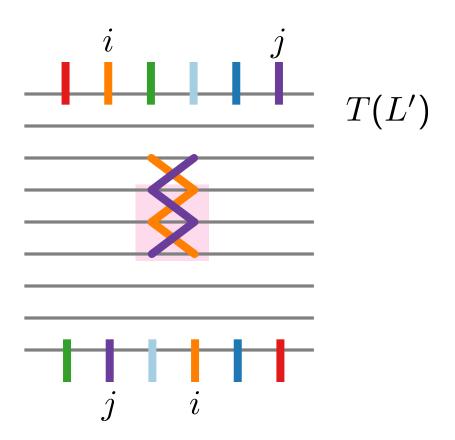
$$O\Big( \left( \frac{2|L|}{n^2} + 1 \right)^{n^2/2} n^3 \log |L| \Big)$$

We now consider n as our parameter. Need to separate n and |L| in runtime!

Let L be a feasible list.

Let L' be identical to L, but with two additional ij swaps.

If L contains a swap ij, L' is feasible.



|L|= size of input. Note that  $|L|\geq n/2$ .

$$O\Big( \left( \frac{2|L|}{n^2} + 1 \right)^{n^2/2} n^3 \log |L| \Big)$$

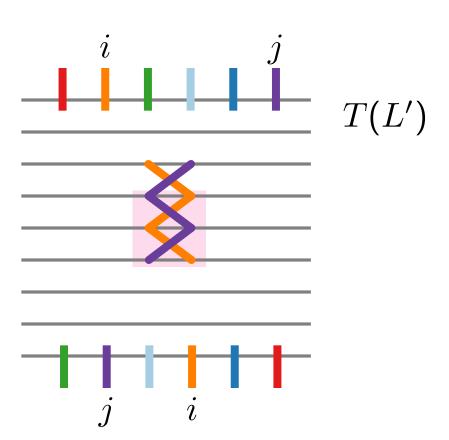
We now consider n as our parameter. Need to separate n and |L| in runtime!

Let L be a feasible list.

Let L' be identical to L, but with two additional ij swaps.

If L contains a swap ij, L' is feasible.

We say that L can be extended to L'.



|L|= size of input. Note that  $|L|\geq n/2$ .

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}n^3\log|L|\right)$$

We now consider n as our parameter. Need to separate n and |L| in runtime!

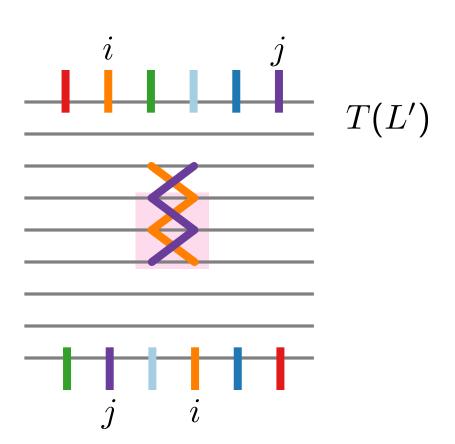
Let L be a feasible list.

Let L' be identical to L, but with two additional ij swaps.

If L contains a swap ij, L' is feasible.

We say that L can be extended to L'.

We say that a feasible list  $L_{\min}$  is minimal if there is no feasible list L that can be extended to  $L_{\min}$ .



|L|= size of input. Note that  $|L|\geq n/2$ .

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}n^3\log|L|\right)$$

We now consider n as our parameter. Need to separate n and |L| in runtime!

Let L be a feasible list.

Let L' be identical to L, but with two additional ij swaps.

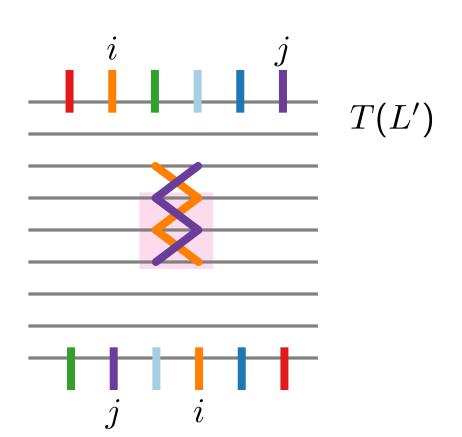
If L contains a swap ij, L' is feasible.

We say that L can be extended to L'.

We say that a feasible list  $L_{\min}$  is minimal if there is no feasible list L that can be extended to  $L_{\min}$ .

#### Lemma.

If  $L = (l_{ij})$  is a minimal feasible list with n wires, then  $l_{ij} \leq n^2/4 + 1$  for each  $i, j \in [n]$ .



#### Theorem.

There is an FPT algorithm for LIST-FEASIBILITY w.r.t. n.

$$O\Big( \left( \frac{2|L|}{n^2} + 1 \right)^{n^2/2} n^3 \log |L| \Big)$$



$$O\left(\left(\frac{n}{2}\right)^{n^2} \cdot n^3 \log n + n^2 \log |L|\right)$$

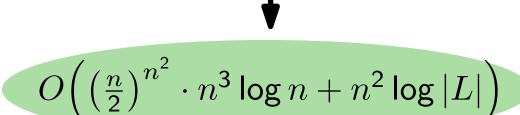
#### Theorem.

There is an FPT algorithm for LIST-FEASIBILITY w.r.t. n.

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}n^3\log|L|\right)$$

#### Proof idea.

Create a list 
$$L' = (l'_{ij})$$
 from  $L = (l_{ij})$  by setting  $l'_{ij} = \min\{l_{ij}, n^2/4 + 1\}.$ 



#### Theorem.

There is an FPT algorithm for LIST-FEASIBILITY w.r.t. n.

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}n^3\log|L|\right)$$

#### Proof idea.

Create a list 
$$L' = (l'_{ij})$$
 from  $L = (l_{ij})$  by setting  $l'_{ij} = \min\{l_{ij}, n^2/4 + 1\}.$ 

Use the algorithm described before for L'.



$$O\Big(\big(\frac{n}{2}\big)^{n^2} \cdot n^3 \log n + n^2 \log |L|\Big)$$

#### Theorem.

There is an FPT algorithm for LIST-FEASIBILITY w.r.t. n.

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}n^3\log|L|\right)$$

#### Proof idea.

Create a list 
$$L' = (l'_{ij})$$
 from  $L = (l_{ij})$  by setting  $l'_{ij} = \min\{l_{ij}, n^2/4 + 1\}.$ 

Use the algorithm described before for L'.

Check if there is a feasible sublist of L' that can be extended to L.



$$O\left(\left(\frac{n}{2}\right)^{n^2} \cdot n^3 \log n + n^2 \log |L|\right)$$

#### Theorem.

There is an FPT algorithm for LIST-FEASIBILITY w.r.t. n.

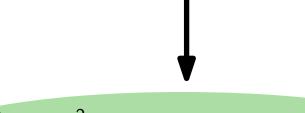
$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}n^3\log|L|\right)$$

#### Proof idea.

Create a list 
$$L' = (l'_{ij})$$
 from  $L = (l_{ij})$  by setting  $l'_{ij} = \min\{l_{ij}, n^2/4 + 1\}.$ 

Use the algorithm described before for L'.

Check if there is a feasible sublist of L' that can be extended to L.



$$O\left(\left(\frac{n}{2}\right)^{n^2} \cdot n^3 \log n + n^2 \log |L|\right)$$

#### Theorem.

There is an FPT algorithm for LIST-FEASIBILITY w.r.t. n.

$$O\Big( \left( \frac{2|L|}{n^2} + 1 \right)^{n^2/2} n^3 \log |L| \Big)$$

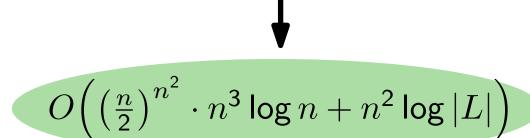
#### Proof idea.

Create a list 
$$L' = (l'_{ij})$$
 from  $L = (l_{ij})$  by setting  $l'_{ij} = \min\{l_{ij}, n^2/4 + 1\}.$ 

Use the algorithm described before for L'.

Check if there is a feasible sublist of L' that can be extended to L.

$$O\left(\left(\frac{2|L'|}{n^2} + 1\right)^{n^2/2} n^3 \log |L'| + n^2 \log |L|\right)$$



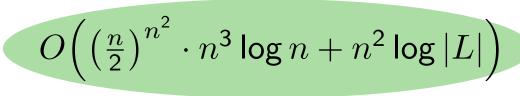
#### Theorem.

There is an FPT algorithm for LIST-FEASIBILITY w.r.t. n.

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}n^3\log|L|\right)$$

#### Proof idea.

Create a list 
$$L' = (l'_{ij})$$
 from  $L = (l_{ij})$  by setting  $l'_{ij} = \min\{l_{ij}, n^2/4 + 1\}.$ 



Use the algorithm described before for L'.

Check if there is a feasible sublist of L' that can be extended to L.

$$O\left(\left(\frac{2|L'|}{n^2} + 1\right)^{n^2/2} n^3 \log |L'| + n^2 \log |L|\right)$$

#### Theorem.

There is an FPT algorithm for LIST-FEASIBILITY w.r.t. n.

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}n^3\log|L|\right)$$

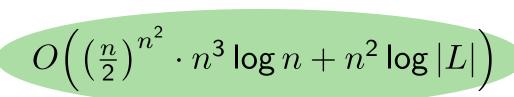
#### Proof idea.

Create a list 
$$L' = (l'_{ij})$$
 from  $L = (l_{ij})$  by setting  $l'_{ij} = \min\{l_{ij}, n^2/4 + 1\}.$ 

Use the algorithm described before for L'.

Check if there is a feasible sublist of L' that can be extended to L.

$$O\Big( \left( \frac{2|L'|}{n^2} + 1 \right)^{n^2/2} n^3 \log |L'| + n^2 \log |L| \Big)$$



#### Theorem.

There is an FPT algorithm for LIST-FEASIBILITY w.r.t. n.

$$O\left(\left(\frac{2|L|}{n^2}+1\right)^{n^2/2}n^3\log|L|\right)$$

#### Proof idea.

Create a list 
$$L' = (l'_{ij})$$
 from  $L = (l_{ij})$  by setting  $l'_{ij} = \min\{l_{ij}, n^2/4 + 1\}.$ 

Use the algorithm described before for L'.

Check if there is a feasible sublist of L' that can be extended to L.

$$O\left(\left(\frac{2|L'|}{n^2} + 1\right)^{n^2/2} n^3 \log |L'| + n^2 \log |L|\right) - 1$$

$$O\left(\left(\frac{n}{2}\right)^{n^2} \cdot n^3 \log n + n^2 \log |L|\right)$$

Lemma: 
$$|L'| \leq \binom{n}{2}(\frac{n^2}{4}+1)$$

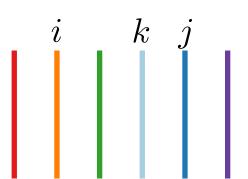
Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

Conjecture. [FKWRZ, GD'19]

Every non-separable even list L is feasible.

**Den Problems**Let L be a list where each swap occurs even number of times.

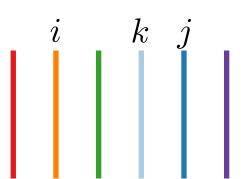


**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .

Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?



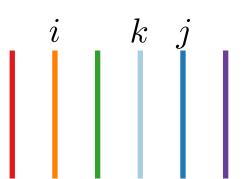
**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

No!

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .

Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?



**Conjecture.** [FKWRZ, GD'19]

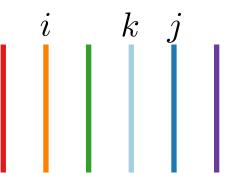
Every non-separable even list L is feasible.

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .

No!

Let L be a list where each swap occurs at most once. [Sado and Igarashi, TSC'87] We can find a tangle that has height at most OPT+1 in polynomial time. Can we also always find a tangle of height OPT efficiently?

Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?



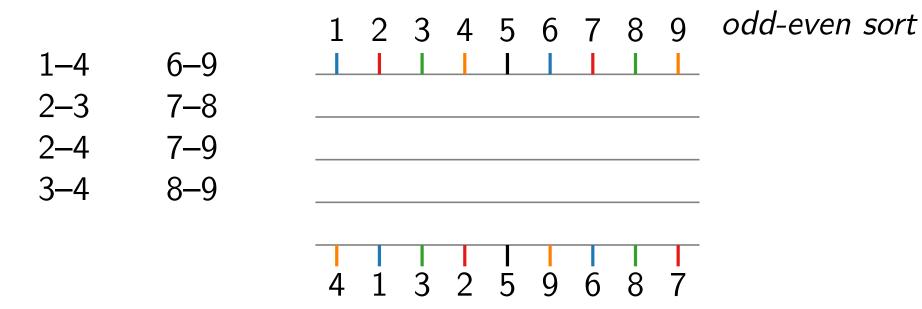
**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

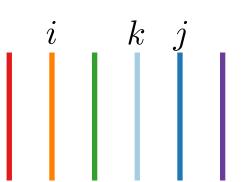
No!

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .

Let L be a list where each swap occurs at most once. [Sado and Igarashi, TSC'87] We can find a tangle that has height at most OPT+1 in polynomial time. Can we also always find a tangle of height OPT efficiently?



Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?



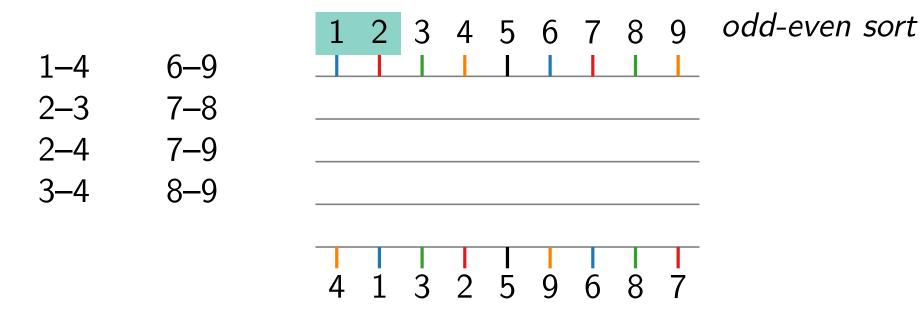
Conjecture. [FKWRZ, GD'19]

Every non-separable even list L is feasible.

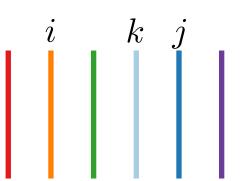
A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .

No!

Let L be a list where each swap occurs at most once. [Sado and Igarashi, TSC'87] We can find a tangle that has height at most OPT+1 in polynomial time. Can we also always find a tangle of height OPT efficiently?



Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?



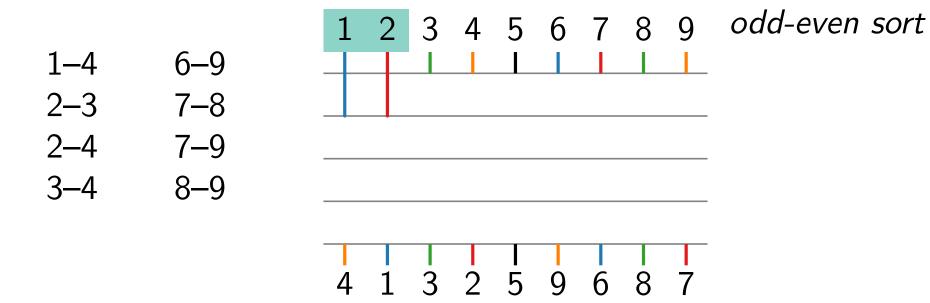
**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

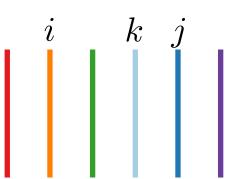
A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .

No!

 $\blacksquare$  Let L be a list where each swap occurs at most once. [Sado and Igarashi, TSC'87] We can find a tangle that has height at most OPT+1 in polynomial time. Can we also always find a tangle of height OPT efficiently?



Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

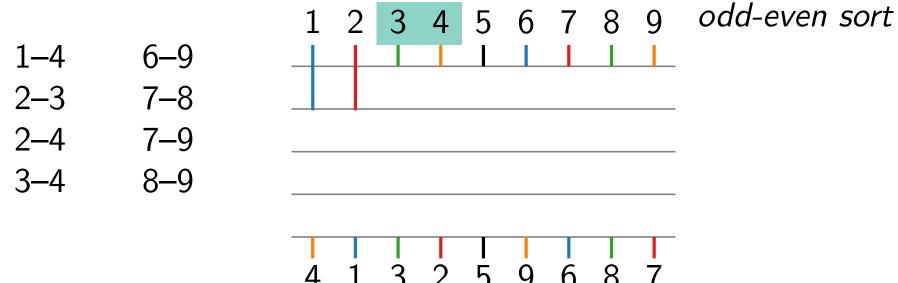


**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

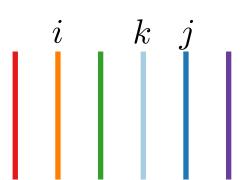
A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .

No!



Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

No!



**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

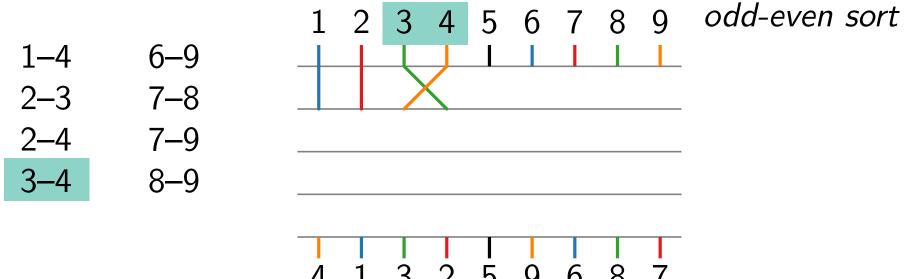
A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .

 $\blacksquare$  Let L be a list where each swap occurs at most once.

[Sado and Igarashi, TSC'87]

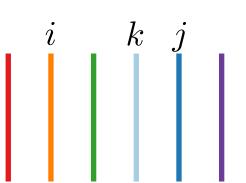
We can find a tangle that has height at most OPT+1 in polynomial time.

Can we also always find a tangle of height OPT efficiently?



Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

No!



**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

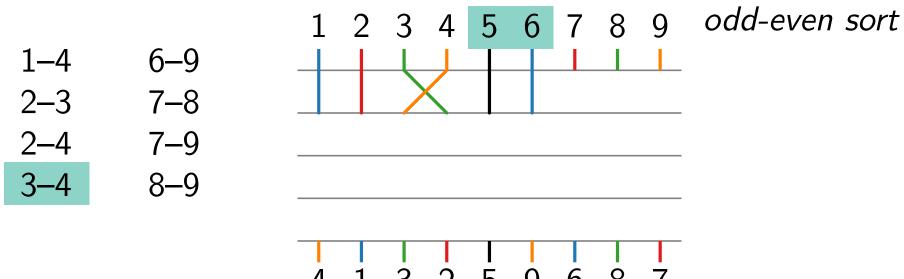
A list 
$$(\ell_{ij})$$
 is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .

 $\blacksquare$  Let L be a list where each swap occurs at most once.

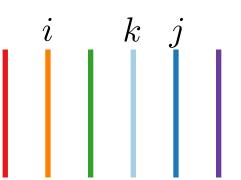
[Sado and Igarashi, TSC'87]

We can find a tangle that has height at most OPT+1 in polynomial time.

Can we also always find a tangle of height OPT efficiently?



Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?



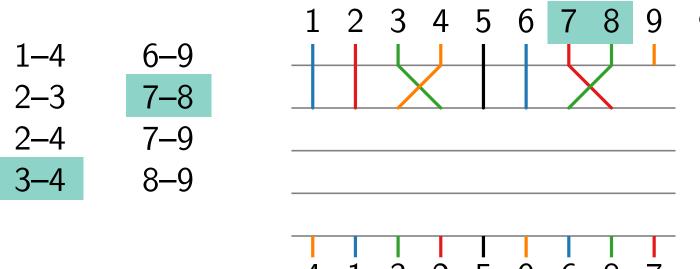
**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

No!

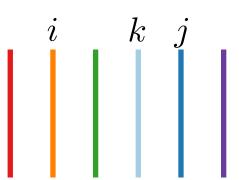
A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .

Let L be a list where each swap occurs at most once. [Sado and Igarashi, TSC'87] We can find a tangle that has height at most OPT+1 in polynomial time. Can we also always find a tangle of height OPT efficiently?



odd-even sort

Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

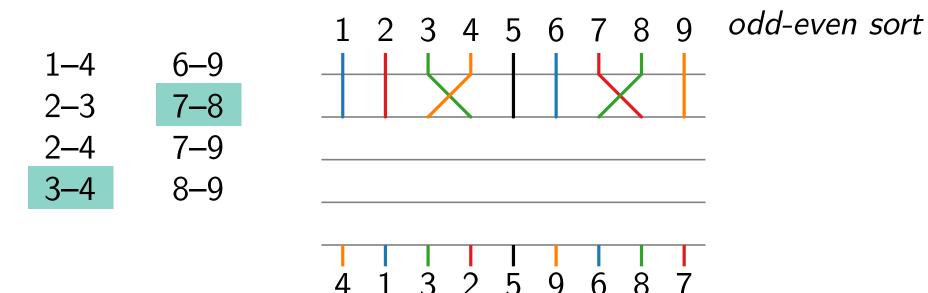


Conjecture. [FKWRZ, GD'19]

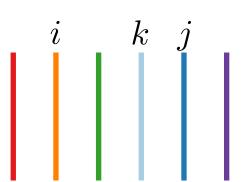
Every non-separable even list L is feasible.

No!

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .



Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

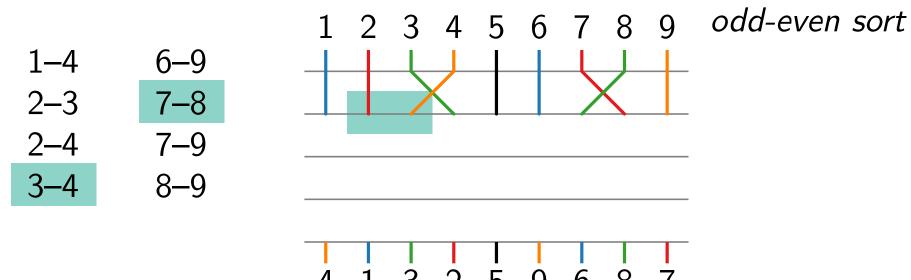


**Conjecture.** [FKWRZ, GD'19]

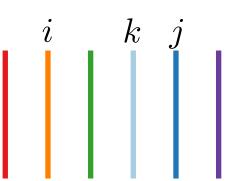
Every non-separable even list L is feasible.

No!

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .



Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

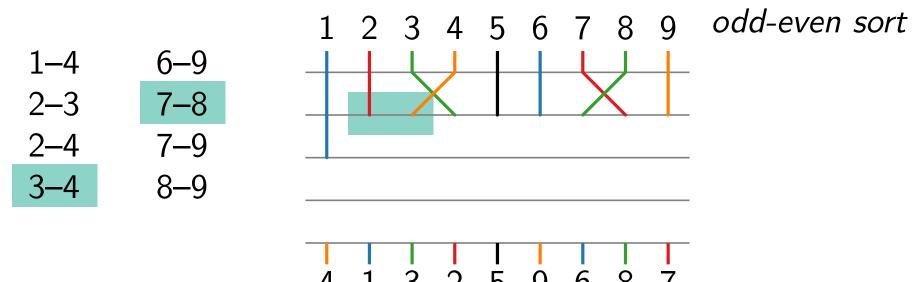


**Conjecture.** [FKWRZ, GD'19]

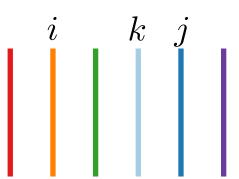
Every non-separable even list L is feasible.

No!

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .



Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

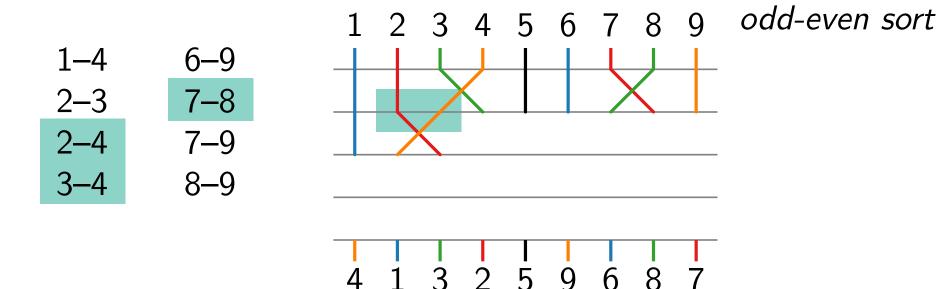


**Conjecture.** [FKWRZ, GD'19]

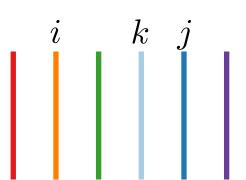
Every non-separable even list L is feasible.

No!

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .



Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

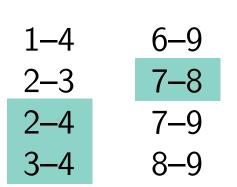


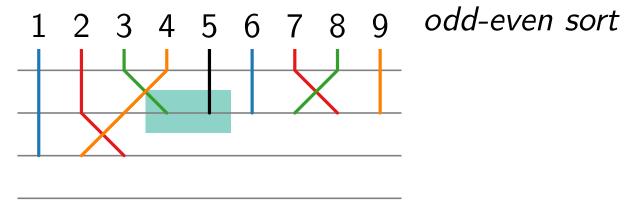
**Conjecture.** [FKWRZ, GD'19]

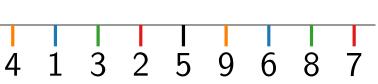
Every non-separable even list L is feasible.

No!

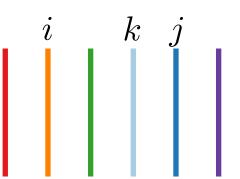
A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .







Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

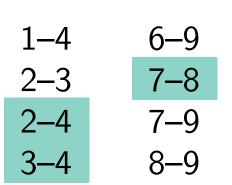


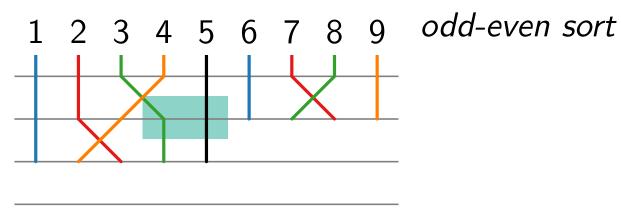
**Conjecture.** [FKWRZ, GD'19]

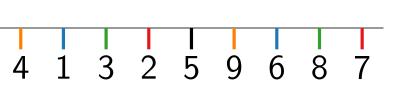
Every non-separable even list L is feasible.

No!

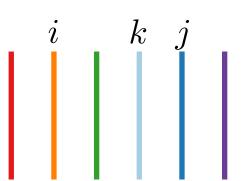
A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .







Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

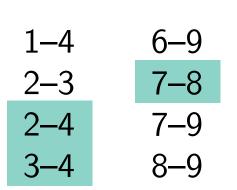


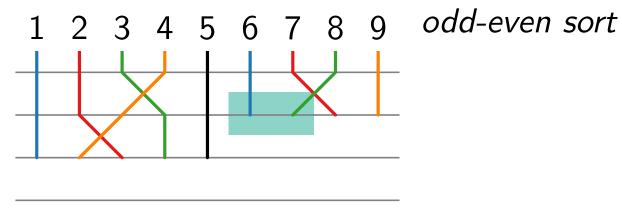
**Conjecture.** [FKWRZ, GD'19]

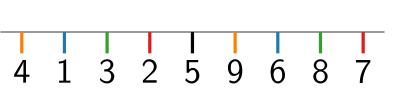
Every non-separable even list L is feasible.

No!

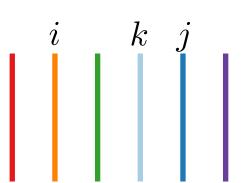
A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .







Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

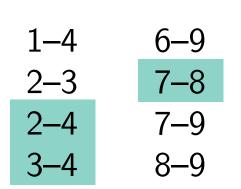


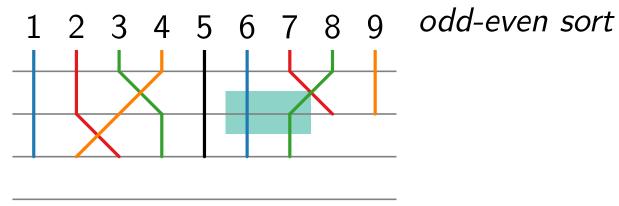
**Conjecture.** [FKWRZ, GD'19]

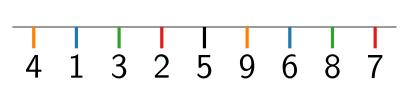
Every non-separable even list L is feasible.

No!

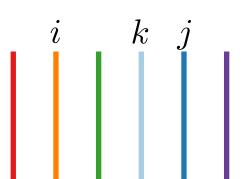
A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .







Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

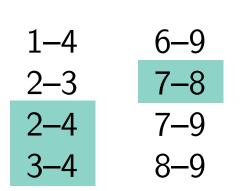


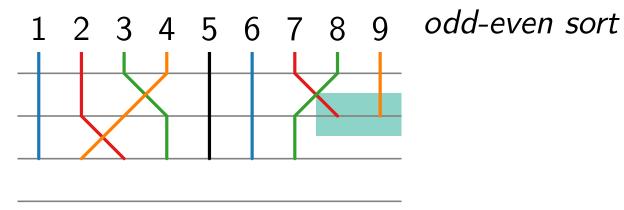
**Conjecture.** [FKWRZ, GD'19]

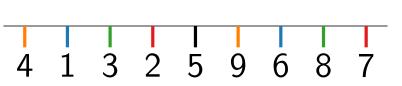
Every non-separable even list L is feasible.

No!

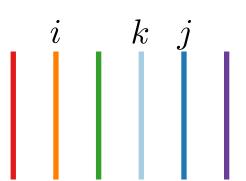
A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .







Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

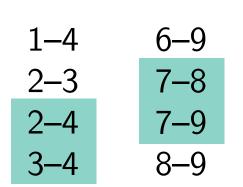


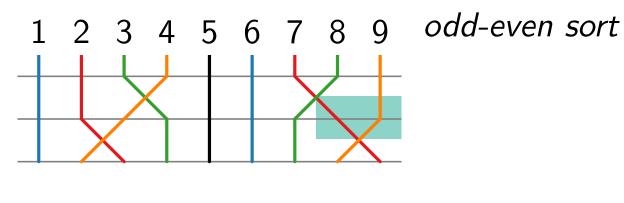
**Conjecture.** [FKWRZ, GD'19]

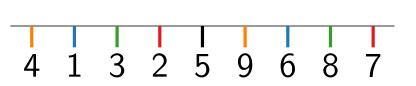
Every non-separable even list L is feasible.

No!

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .

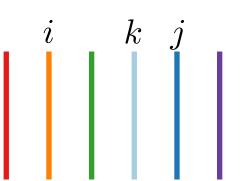






Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

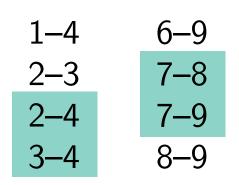
No!

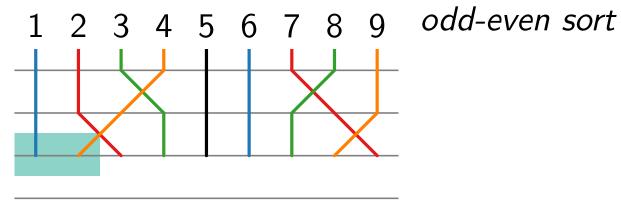


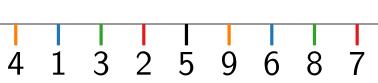
**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

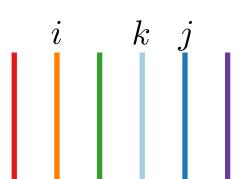
A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .







Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

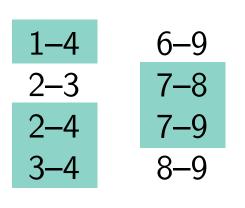


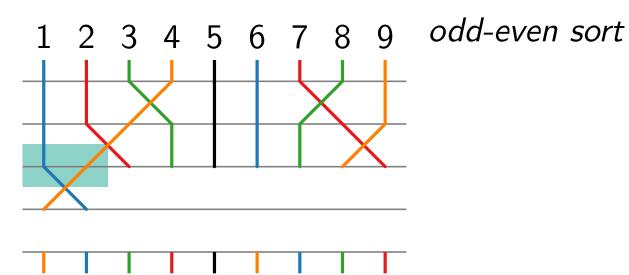
**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

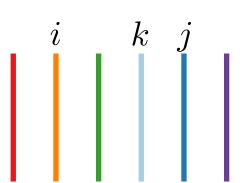
No!

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .





Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

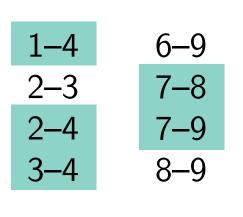


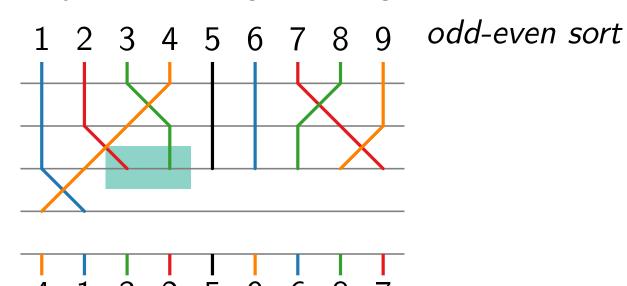
**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

No!

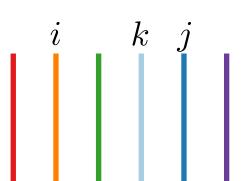
A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .





Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

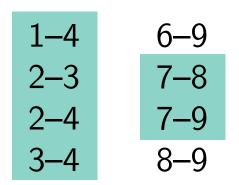
No!

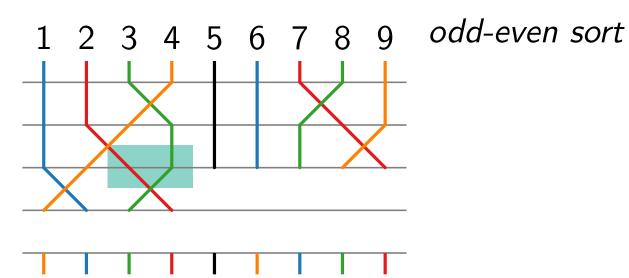


**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

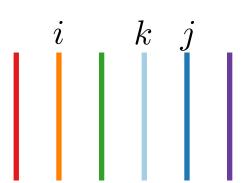
A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .





Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

No!



**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

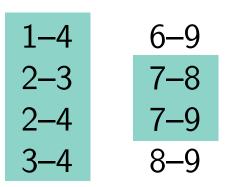
A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .

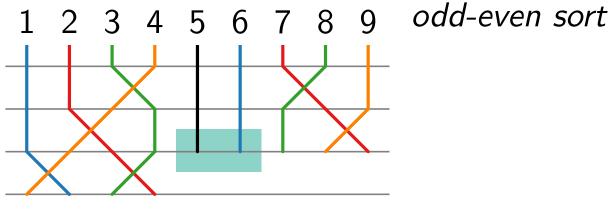
 $\blacksquare$  Let L be a list where each swap occurs at most once.

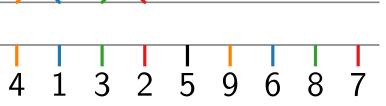
[Sado and Igarashi, TSC'87]

We can find a tangle that has height at most OPT+1 in polynomial time.

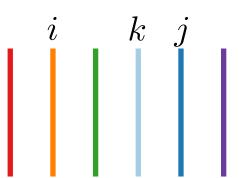
Can we also always find a tangle of height OPT efficiently?







Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

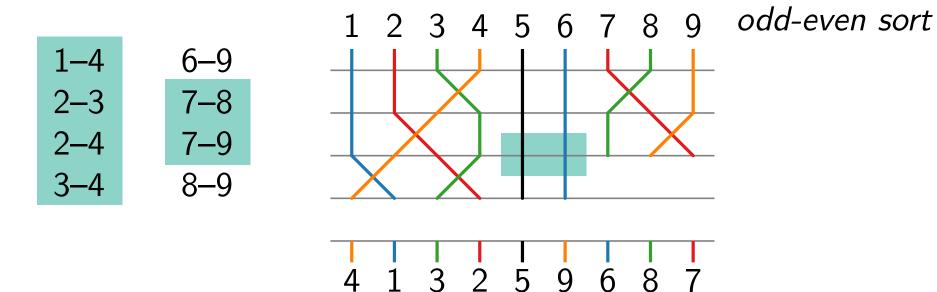


Conjecture. [FKWRZ, GD'19]

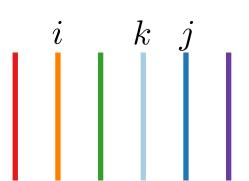
Every non-separable even list L is feasible.

No!

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .



Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

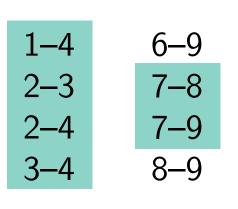


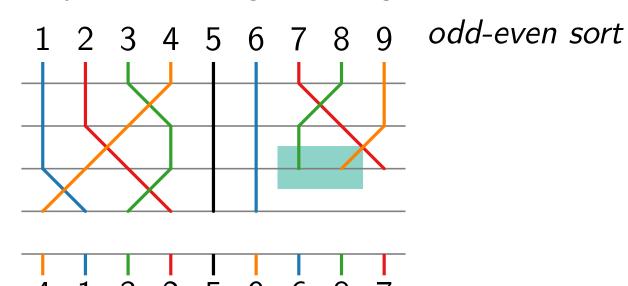
**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .

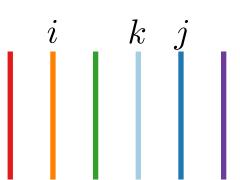
No!





Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

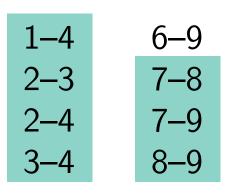
No!

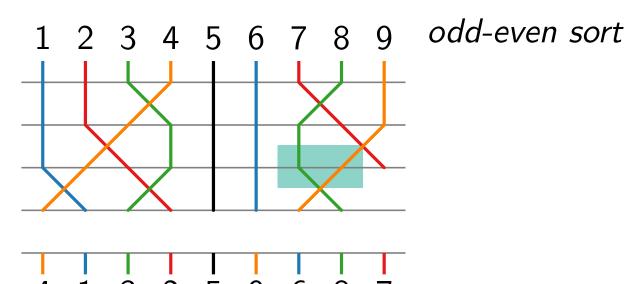


**Conjecture.** [FKWRZ, GD'19]

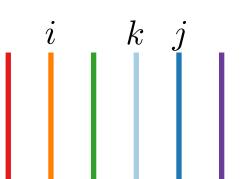
Every non-separable even list L is feasible.

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .





Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

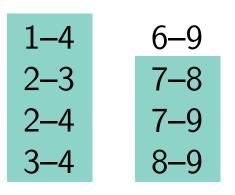


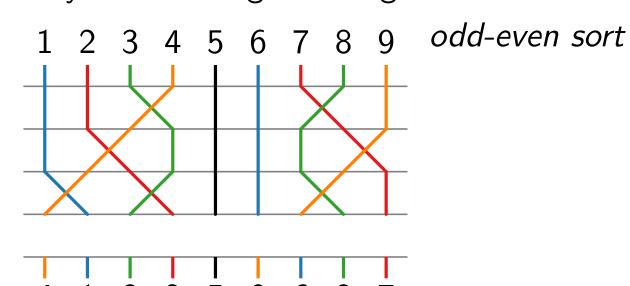
**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

No!

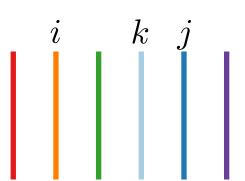
A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .





Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

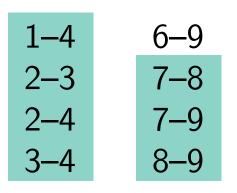
No!

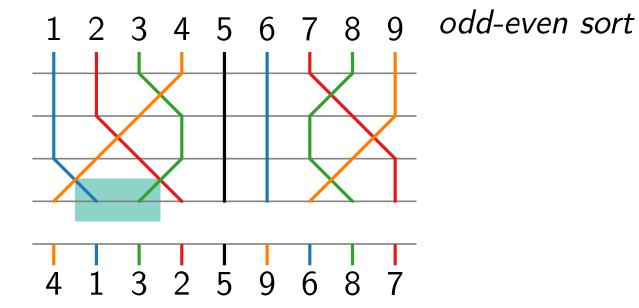


**Conjecture.** [FKWRZ, GD'19]

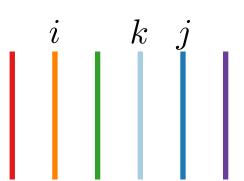
Every non-separable even list L is feasible.

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .





Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

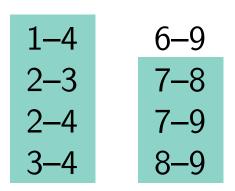


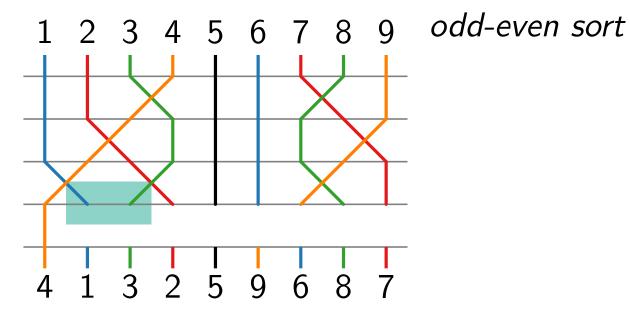
**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

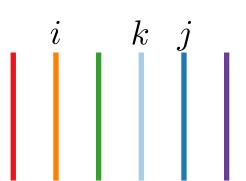
No!

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .





Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

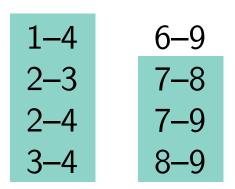


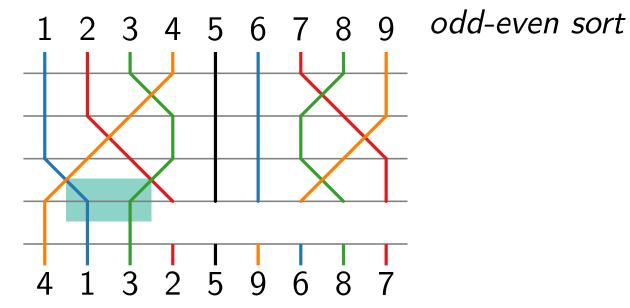
**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

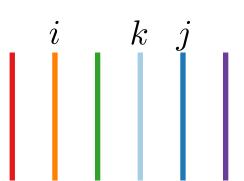
No!

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .





Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

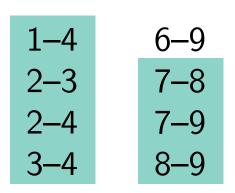


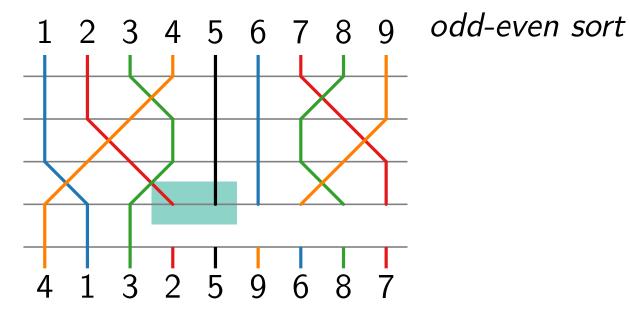
**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

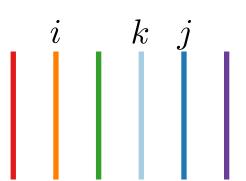
No!

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .





Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

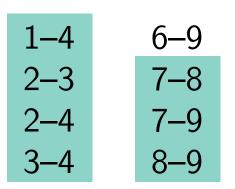


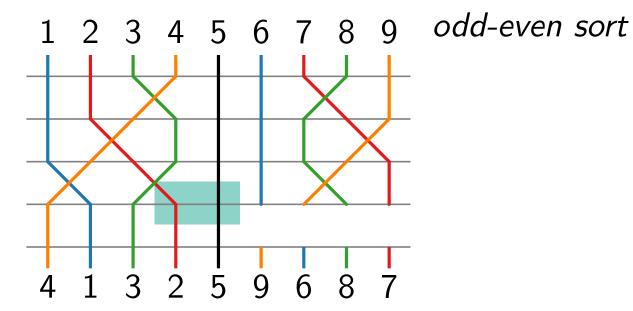
**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

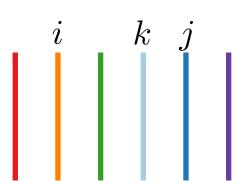
No!

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .





Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

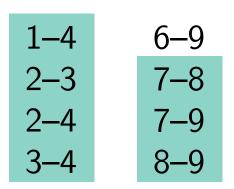


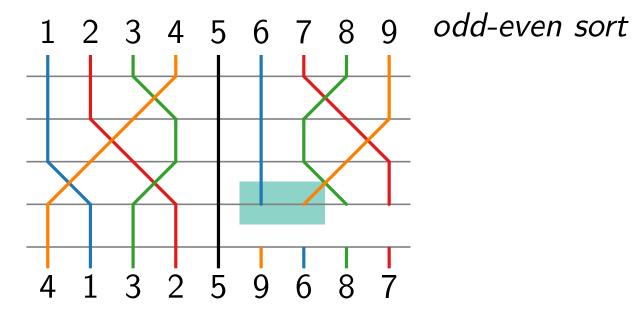
**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

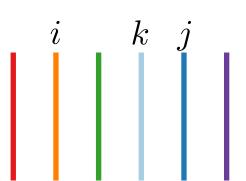
No!

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .





Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

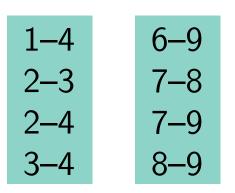


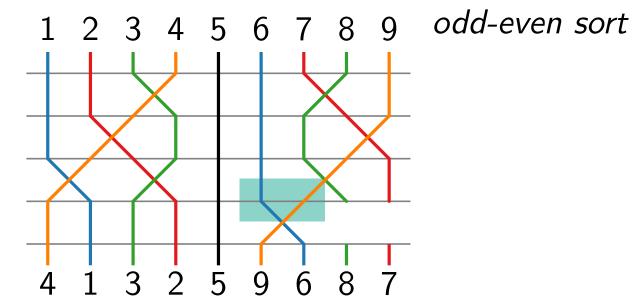
**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

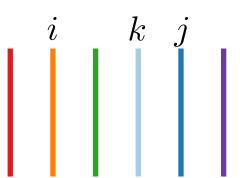
No!

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .





Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

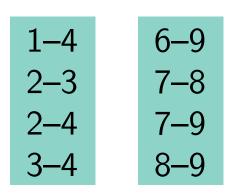


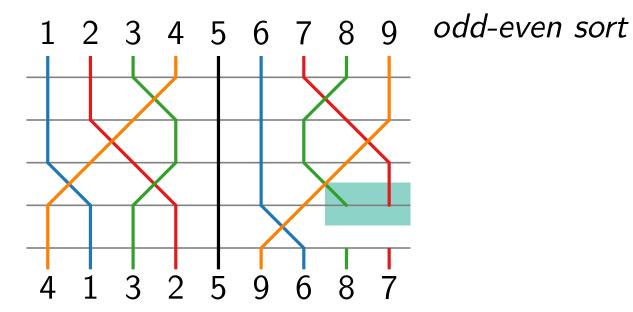
**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

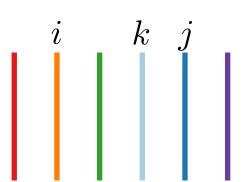
No!

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .





Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

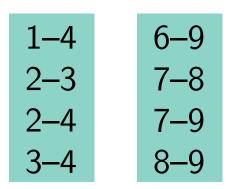


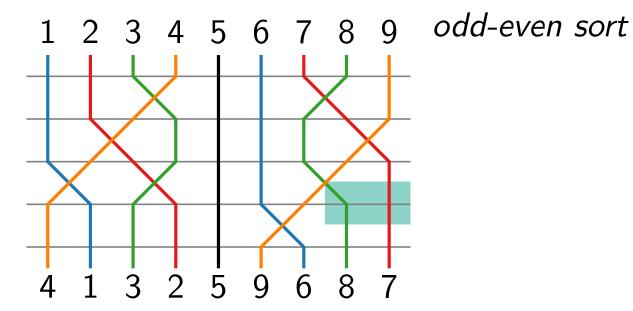
**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

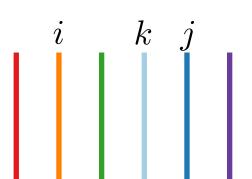
No!

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .





Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?

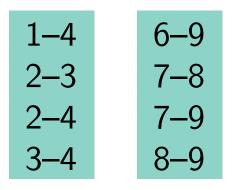


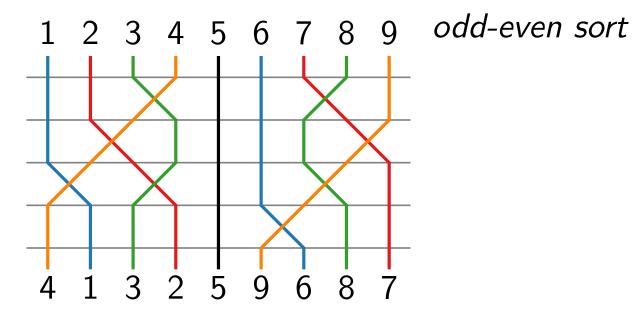
**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

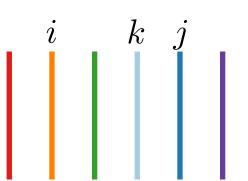
No!

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .





Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?



OPT

**Conjecture.** [FKWRZ, GD'19]

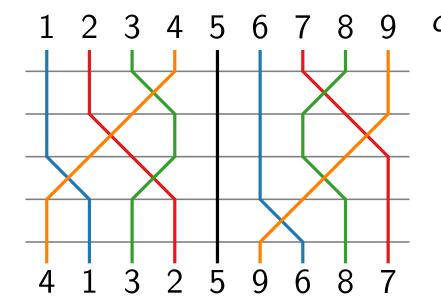
Every non-separable even list L is feasible.

No!

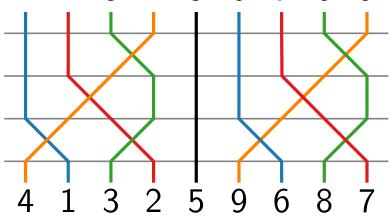
A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .

 $\blacksquare$  Let L be a list where each swap occurs at most once. [Sado and Igarashi, TSC'87] We can find a tangle that has height at most OPT+1 in polynomial time. Can we also always find a tangle of height OPT efficiently?

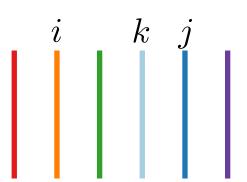
1–4 6-9 2-3 7–8 2-4 7–9 8–9 3-4



2 3 4 5 6 7 8 9 *odd-even sort* 1 2 3 4 5 6 7 8 9



Let L be a list where each swap occurs even number of times. How difficult is it to check feasibility of L?



**Conjecture.** [FKWRZ, GD'19]

Every non-separable even list L is feasible.

No!

A list  $(\ell_{ij})$  is non-separable if  $\forall i < k < j$ :  $(\ell_{ik} = \ell_{kj} = 0 \text{ implies } \ell_{ij} = 0)$ .

 $\blacksquare$  Let L be a list where each swap occurs at most once. [Sado and Igarashi, TSC'87] We can find a tangle that has height at most OPT+1 in polynomial time. Can we also always find a tangle of height OPT efficiently?

OPT

