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Contact representations by touching polygons

Theorem. Every graph can be represented by touching convex
polygons in 3d.

I in particular, this is an intersection representation by convex
sets



Key lemma

Lemma. For every n ≥ 3 there is an arrangement of lines
`1, `2, . . . , `n, such that:
a) `i intersects `1, `2, . . . , `n in this ordering (pi ,j := `i ∩ `j),
b) distances decrease exponentially: for every i , j we have

dist(pi ,j−1, pi ,j) ≥ 2dist(pi ,j , pi ,j+1).
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Representing graphs
I assume G is complete
I set height of pi ,j to min(i , j)
I vi is represented by convex hull of pi ,j ’s

I consider i < j : pi ,j is the touching point
I Pi and Pj are interior-disjoint

I for arbitrary graphs: if vivj is a non-edge, remove pi ,j from Pi
and Pj
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How to draw a graph? (in 3d)

I non-crossing drawings → every graph, trivial

I contact representations → every graph, non-trivial

I intersection representations

I segments → ∃R-complete
I convex sets → every graph, non-trivial



Grid size

I our representation requires exponential-sized grid
I we consider also special classes of graphs

Graph class general bipartite 1-plane subcubic
cubic

Grid volume super-poly O(n4) O(n2) O(n3)
Running time O(n2) linear linear O(n log2 n)
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Complete 3-uniform Hypergraphs
A hypergraph is 3-uniform if all its hyperedges are of cardinality 3.

Theorem (Carmesin [ArXiv’19])
Complete 3-uniform hypergraphs with n ≥ 6 vertices cannot be
realized by non-crossing triangles in 3d.

I The link graph of a simplicial 2-complex at a vertex v
has
I a node for every segment at v , and
I an arc between two nodes if they share a face at v .

I If there is a non-crossing drawing, the link graph at any
vertex must be planar.
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Steiner Systems

A Steiner system S(t, k, n) is an n-element set S together
with a set of k-element subsets of S, called blocks, such that
each t-element subset of S is contained in exactly one block.

Steiner Triple Systems1

S(2, 3, 7)

1 2 3
1 4 7
1 5 6
2 4 6
2 5 7
3 4 5
3 6 7

S(2, 3, 9)

1 2 3 1 5 9
4 5 6 2 6 7
7 8 9 3 4 8
1 4 7 1 6 8
2 5 8 2 4 9
3 6 9 3 5 7

Steiner Quadruple System

S(3, 4, 8)

1 2 4 8 3 5 6 7
2 3 5 8 1 4 6 7
3 4 6 8 1 2 5 7
4 5 7 8 1 2 3 6
1 5 6 8 2 3 4 7
2 6 7 8 1 3 4 5
1 3 7 8 2 4 5 6

1Ossona de Mendez [JGAA’02] shows that any 3-uniform hypergraph with
incidence poset dimension 4 has a non-crossing drawing with triangles. This implies
the existence of 3d representations (with exponential coordinates) for the two smallest
Steiner triple systems.



Steiner Triple Systems

Theorem
The Fano plane S(2, 3, 7) has a non-crossing
drawing.

S(2, 3, 7)

1 2 3
1 4 7
1 5 6
2 4 6
2 5 7
3 4 5
3 6 7

5 72

3

1
4 6

2d drawing

1

2

6
4

7

3

5

top 3d view

1

2
6 4

7
3

5

side 3d view



Steiner Triple Systems (cont.)
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Steiner Quadruple Systems
Theorem
The Steiner quadruple system S(3, 4, 8) does not have a
non-crossing drawing.

1248 36 P1236 ∩ P3468 = l36 and l12 ∩ l48 ∈ l36

1248 37 P1378 ∩ P2347 = l37 and l18 ∩ l24 ∈ l37

1248 67 P1467 ∩ P2678 = l67 and l14 ∩ l28 ∈ l67

S(3, 4, 8)

1 2 4 8 3 5 6 7
2 3 5 8 1 4 6 7
3 4 6 8 1 2 5 7
4 5 7 8 1 2 3 6
1 5 6 8 2 3 4 7
2 6 7 8 1 3 4 5
1 3 7 8 2 4 5 6

If there is a drawing,
I 3,6, and 7 are all placed at the same point.
I 3567 is degenerate; a contradiction.

(In fact, we can show that 3567 is just a point.)

Theorem
The Steiner quadruple system S(3, 4, 10) cannot be drawn using all
convex or all non-convex non-crossing quadrilaterals.



Steiner Quadruple Systems
Theorem
The Steiner quadruple system S(3, 4, 8) does not have a
non-crossing drawing.

1248 36 P1236 ∩ P3468 = l36 and l12 ∩ l48 ∈ l36

1248 37 P1378 ∩ P2347 = l37 and l18 ∩ l24 ∈ l37

1248 67 P1467 ∩ P2678 = l67 and l14 ∩ l28 ∈ l67

S(3, 4, 8)

1 2 4 8 3 5 6 7
2 3 5 8 1 4 6 7
3 4 6 8 1 2 5 7
4 5 7 8 1 2 3 6
1 5 6 8 2 3 4 7
2 6 7 8 1 3 4 5
1 3 7 8 2 4 5 6

If there is a drawing,
I 3,6, and 7 are all placed at the same point.
I 3567 is degenerate; a contradiction.

(In fact, we can show that 3567 is just a point.)

Theorem
The Steiner quadruple system S(3, 4, 10) cannot be drawn using all
convex or all non-convex non-crossing quadrilaterals.



Steiner Quadruple Systems
Theorem
The Steiner quadruple system S(3, 4, 8) does not have a
non-crossing drawing.

1248 36 P1236 ∩ P3468 = l36 and l12 ∩ l48 ∈ l36

1 4

2

8

3

6

S(3, 4, 8)

1 2 4 8 3 5 6 7
2 3 5 8 1 4 6 7
3 4 6 8 1 2 5 7
4 5 7 8 1 2 3 6
1 5 6 8 2 3 4 7
2 6 7 8 1 3 4 5
1 3 7 8 2 4 5 6

If there is a drawing,
I 3,6, and 7 are all placed at the same point.
I 3567 is degenerate; a contradiction.

(In fact, we can show that 3567 is just a point.)

Theorem
The Steiner quadruple system S(3, 4, 10) cannot be drawn using all
convex or all non-convex non-crossing quadrilaterals.



Steiner Quadruple Systems
Theorem
The Steiner quadruple system S(3, 4, 8) does not have a
non-crossing drawing.

1248 36 P1236 ∩ P3468 = l36 and l12 ∩ l48 ∈ l36

1248 37 P1378 ∩ P2347 = l37 and l18 ∩ l24 ∈ l37

1248 67 P1467 ∩ P2678 = l67 and l14 ∩ l28 ∈ l67

S(3, 4, 8)

1 2 4 8 3 5 6 7
2 3 5 8 1 4 6 7
3 4 6 8 1 2 5 7
4 5 7 8 1 2 3 6
1 5 6 8 2 3 4 7
2 6 7 8 1 3 4 5
1 3 7 8 2 4 5 6

If there is a drawing,
I 3,6, and 7 are all placed at the same point.
I 3567 is degenerate; a contradiction.

(In fact, we can show that 3567 is just a point.)

Theorem
The Steiner quadruple system S(3, 4, 10) cannot be drawn using all
convex or all non-convex non-crossing quadrilaterals.



Steiner Quadruple Systems
Theorem
The Steiner quadruple system S(3, 4, 8) does not have a
non-crossing drawing.

1248 36 P1236 ∩ P3468 = l36 and l12 ∩ l48 ∈ l36

1248 37 P1378 ∩ P2347 = l37 and l18 ∩ l24 ∈ l37

1248 67 P1467 ∩ P2678 = l67 and l14 ∩ l28 ∈ l67

S(3, 4, 8)

1 2 4 8 3 5 6 7
2 3 5 8 1 4 6 7
3 4 6 8 1 2 5 7
4 5 7 8 1 2 3 6
1 5 6 8 2 3 4 7
2 6 7 8 1 3 4 5
1 3 7 8 2 4 5 6

If there is a drawing,
I 3,6, and 7 are all placed at the same point.
I 3567 is degenerate; a contradiction.

(In fact, we can show that 3567 is just a point.)

Theorem
The Steiner quadruple system S(3, 4, 10) cannot be drawn using all
convex or all non-convex non-crossing quadrilaterals.



Steiner Quadruple Systems (cont.)
Theorem
No Steiner quadruple system can be drawn using convex
quadrilaterals2.
I Any vertex v is incident to (n−1)(n−2)

6 quadrilaterals.
I Add the diagonals incident to v to get a simplicial 2-complex.
I The link graph at v has (n−1)(n−2)

3 edges and n − 1 vertices.
I For n > 8, the link graph is not planar.

Theorem
No Steiner quadruple system with 20 or more
vertices can be drawn using quadrilaterals.

Conjecture
No Steiner quadruple system can be drawn using non-crossing
quadrilaterals.

2We thank Arnaud de Mesmay and Eric Sedgwick for pointing us to a
lemma of Dey and Edelsbrunner [DCG’94], which uses the same proof idea.
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Open problems

Other hypergraphs Larger Steiner triple systems/projective
planes.

Hardness Is deciding whether a 3-uniform hypergraph
has a non-crossing drawing with triangles
NP-hard?

Grid size Can any graph be represented with convex
polygons on a polynomial sized grid?

Nicer drawings Small aspect ratio, large angle resolution, etc.


