Representing Graphs and Hypergraphs by Touching Polygons in 3D

Paweł Rzążewski, Noushin Saeedi

joint work with William Evans, Chan-Su Shin, and Alexander Wolff

How to draw a graph? (in 2d)

- non-crossing drawings

How to draw a graph? (in 2d)

- non-crossing drawings \rightarrow planar graphs, polynomial-time

How to draw a graph? (in 2d)

- non-crossing drawings \rightarrow planar graphs, polynomial-time
- intersection representations
- segments
- convex sets

How to draw a graph? (in 2d)

- non-crossing drawings \rightarrow planar graphs, polynomial-time
- intersection representations
- segments \rightarrow SEG, $\exists \mathbb{R}$-complete
- convex sets \rightarrow CONV, $\exists \mathbb{R}$-complete

How to draw a graph? (in 2d)

- non-crossing drawings \rightarrow planar graphs, polynomial-time
- contact representations
- intersection representations
- segments \rightarrow SEG, $\exists \mathbb{R}$-complete
- convex sets \rightarrow CONV, $\exists \mathbb{R}$-complete

Contact representations by polygons in 2d

- polygons are interior-disjoint
- at most two polygons touch in one point
- G admits a contact representation $\rightarrow G$ planar

Contact representations by polygons in 2d

- polygons are interior-disjoint
- at most two polygons touch in one point
- G admits a contact representation $\rightarrow G$ planar

Contact representations by polygons in 2d

- polygons are interior-disjoint
- at most two polygons touch in one point
- G admits a contact representation $\rightarrow G$ planar

Contact representations by polygons in 2d

- polygons are interior-disjoint
- at most two polygons touch in one point
- G admits a contact representation $\rightarrow G$ planar

Contact representations by polygons in 2d

- polygons are interior-disjoint
- at most two polygons touch in one point
- G admits a contact representation $\rightarrow G$ planar
- G planar $\rightarrow G$ admits a contact representation

Contact representations by polygons in 2d

- polygons are interior-disjoint
- at most two polygons touch in one point
- G admits a contact representation $\rightarrow G$ planar
- G planar $\rightarrow G$ admits a contact representation

Contact representations by polygons in 2d

- polygons are interior-disjoint
- at most two polygons touch in one point
- G admits a contact representation $\rightarrow G$ planar
- G planar $\rightarrow G$ admits a contact representation

Contact representations by polygons in 2d

- polygons are interior-disjoint
- at most two polygons touch in one point
- G admits a contact representation $\rightarrow G$ planar
- G planar $\rightarrow G$ admits a contact representation

Contact representations by polygons in 2d

- polygons are interior-disjoint
- at most two polygons touch in one point
- G admits a contact representation $\rightarrow G$ planar
- G planar $\rightarrow G$ admits a contact representation

How to draw a graph? (in 2d)

- non-crossing drawings \rightarrow planar graphs, polynomial-time
- contact representations \rightarrow planar graphs, polynomial-time
- intersection representations
- segments \rightarrow SEG, $\exists \mathbb{R}$-complete
- convex sets \rightarrow CONV, $\exists \mathbb{R}$-complete

How to draw a graph? (in 3d)

- non-crossing drawings
- contact representations
- intersection representations
- segments
- convex sets

How to draw a graph? (in 3d)

- non-crossing drawings \rightarrow every graph, trivial
- contact representations
- intersection representations
- segments
- convex sets

How to draw a graph? (in 3d)

- non-crossing drawings \rightarrow every graph, trivial
- contact representations
- intersection representations
- segments $\rightarrow \exists \mathbb{R}$-complete
- convex sets

Theorem. Recognizing segment intersection graphs in 3d is $\exists \mathbb{R}$-complete.

How to draw a graph? (in 3d)

- non-crossing drawings \rightarrow every graph, trivial
- contact representations
- intersection representations
- segments $\rightarrow \exists \mathbb{R}$-complete
- convex sets

Theorem. Recognizing segment intersection graphs in 3d is $\exists \mathbb{R}$-complete.

Contact representations by touching polygons

Theorem. Every graph can be represented by touching convex polygons in 3d.

- in particular, this is an intersection representation by convex sets

Key lemma

Lemma. For every $n \geq 3$ there is an arrangement of lines $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$, such that:
a) ℓ_{i} intersects $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ in this ordering ($p_{i, j}:=\ell_{i} \cap \ell_{j}$),
b) distances decrease exponentially: for every i, j we have

$$
\operatorname{dist}\left(p_{i, j-1}, p_{i, j}\right) \geq 2 \operatorname{dist}\left(p_{i, j}, p_{i, j+1}\right)
$$

Key lemma

Lemma. For every $n \geq 3$ there is an arrangement of lines $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$, such that:
a) ℓ_{i} intersects $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ in this ordering ($p_{i, j}:=\ell_{i} \cap \ell_{j}$),
b) distances decrease exponentially: for every i, j we have

$$
\operatorname{dist}\left(p_{i, j-1}, p_{i, j}\right) \geq 2 \operatorname{dist}\left(p_{i, j}, p_{i, j+1}\right)
$$

Key lemma

Lemma. For every $n \geq 3$ there is an arrangement of lines $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$, such that:
a) ℓ_{i} intersects $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ in this ordering ($p_{i, j}:=\ell_{i} \cap \ell_{j}$),
b) distances decrease exponentially: for every i, j we have

$$
\operatorname{dist}\left(p_{i, j-1}, p_{i, j}\right) \geq 2 \operatorname{dist}\left(p_{i, j}, p_{i, j+1}\right)
$$

Key lemma

Lemma. For every $n \geq 3$ there is an arrangement of lines $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$, such that:
a) ℓ_{i} intersects $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ in this ordering ($p_{i, j}:=\ell_{i} \cap \ell_{j}$),
b) distances decrease exponentially: for every i, j we have

$$
\operatorname{dist}\left(p_{i, j-1}, p_{i, j}\right) \geq 2 \operatorname{dist}\left(p_{i, j}, p_{i, j+1}\right)
$$

Representing graphs

- assume G is complete
- set height of $p_{i, j}$ to $\min (i, j)$
- v_{i} is represented by convex hull of $p_{i, j}$'s

Representing graphs

- assume G is complete
- set height of $p_{i, j}$ to $\min (i, j)$
- v_{i} is represented by convex hull of $p_{i, j}$'s

Representing graphs

- assume G is complete
- set height of $p_{i, j}$ to $\min (i, j)$
- v_{i} is represented by convex hull of $p_{i, j}$'s
- consider $i<j: p_{i, j}$ is the touching point

Representing graphs

- assume G is complete
- set height of $p_{i, j}$ to $\min (i, j)$
- v_{i} is represented by convex hull of $p_{i, j}$'s
- consider $i<j: p_{i, j}$ is the touching point
- P_{i} and P_{j} are interior-disjoint

Representing graphs

- assume G is complete
- set height of $p_{i, j}$ to $\min (i, j)$
- v_{i} is represented by convex hull of $p_{i, j}$'s
- consider $i<j: p_{i, j}$ is the touching point
- P_{i} and P_{j} are interior-disjoint
- for arbitrary graphs: if $v_{i} v_{j}$ is a non-edge, remove $p_{i, j}$ from P_{i} and P_{j}

How to draw a graph? (in 3d)

- non-crossing drawings \rightarrow every graph, trivial
- contact representations \rightarrow every graph, non-trivial
- intersection representations
- segments $\rightarrow \exists \mathbb{R}$-complete
- convex sets \rightarrow every graph, non-trivial

Grid size

- our representation requires exponential-sized grid
- we consider also special classes of graphs

Graph class	general	bipartite	1-plane cubic	subcubic
Grid volume	super-poly	$O\left(n^{4}\right)$	$O\left(n^{2}\right)$	$O\left(n^{3}\right)$
Running time	$O\left(n^{2}\right)$	linear	linear	$O\left(n \log ^{2} n\right)$

Drawing Hypergraphs

Graph $G=(V, E)$

Hypergraph $H=(V, E)$

Drawing Hypergraphs

Graph $G=(V, E)$
 Polygons Contact points

Hypergraph $H=(V, E)$

Drawing Hypergraphs

Hypergraph $H=(V, E)$ Contact points

Complete 3-uniform Hypergraphs

A hypergraph is 3-uniform if all its hyperedges are of cardinality 3.
Theorem (Carmesin [ArXiv'19])
Complete 3 -uniform hypergraphs with $n \geq 6$ vertices cannot be realized by non-crossing triangles in 3d.

Complete 3-uniform Hypergraphs

A hypergraph is 3-uniform if all its hyperedges are of cardinality 3.

Theorem (Carmesin [ArXiv'19])
Complete 3 -uniform hypergraphs with $n \geq 6$ vertices cannot be realized by non-crossing triangles in 3d.

- The link graph of a simplicial 2-complex at a vertex v has
- a node for every segment at v, and

- an arc between two nodes if they share a face at v.

Complete 3-uniform Hypergraphs

A hypergraph is 3-uniform if all its hyperedges are of cardinality 3 .

Theorem (Carmesin [ArXiv'19])
Complete 3 -uniform hypergraphs with $n \geq 6$ vertices cannot be realized by non-crossing triangles in 3d.

- The link graph of a simplicial 2-complex at a vertex v has
- a node for every segment at v, and

- an arc between two nodes if they share a face at v.

Complete 3-uniform Hypergraphs

A hypergraph is 3-uniform if all its hyperedges are of cardinality 3.

Theorem (Carmesin [ArXiv'19])
Complete 3 -uniform hypergraphs with $n \geq 6$ vertices cannot be realized by non-crossing triangles in 3d.

- The link graph of a simplicial 2-complex at a vertex v has
- a node for every segment at v, and

- an arc between two nodes if they share a face at v.

Complete 3-uniform Hypergraphs

A hypergraph is 3-uniform if all its hyperedges are of cardinality 3 .

Theorem (Carmesin [ArXiv'19])
Complete 3 -uniform hypergraphs with $n \geq 6$ vertices cannot be realized by non-crossing triangles in 3d.

- The link graph of a simplicial 2-complex at a vertex v has
- a node for every segment at v, and

- an arc between two nodes if they share a face at v.

Complete 3-uniform Hypergraphs

A hypergraph is 3-uniform if all its hyperedges are of cardinality 3.

Theorem (Carmesin [ArXiv'19])
Complete 3 -uniform hypergraphs with $n \geq 6$ vertices cannot be realized by non-crossing triangles in 3d.

- The link graph of a simplicial 2-complex at a vertex v has
- a node for every segment at v, and

- an arc between two nodes if they share a face at v.
- If there is a non-crossing drawing, the link graph at any vertex must be planar.

Steiner Systems

A Steiner system $S(t, k, n)$ is an n-element set S together with a set of k-element subsets of S, called blocks, such that each t-element subset of S is contained in exactly one block.

Steiner	iple	
$S(2,3,7)$	$S(2,3,9)$	
123	123	159
147	456	267
156	789	348
246	147	168
257	258	249
345	369	357
367		

Steiner Quadruple System

$S(3,4,8)$	
1248	3567
2358	1467
3468	1257
4578	1236
1568	2347
2678	1345
1378	2456

[^0]
Steiner Triple Systems

$S(2,3,7)$
123
1447
156
246
257
345
367

2d drawing

top 3d view

side $3 d$ view

Steiner Triple Systems (cont.)

Theorem
The Steiner triple system $S(2,3,9)$ has a non-crossing drawing.

Steiner Triple Systems (cont.)

Theorem
The Steiner triple system $S(2,3,9)$ has a non-crossing drawing.

Steiner Triple Systems (cont.)

Theorem
The Steiner triple system $S(2,3,9)$ has a non-crossing drawing.

Steiner Triple Systems (cont.)

Theorem
The Steiner triple system $S(2,3,9)$ has a non-crossing drawing.

Steiner Triple Systems (cont.)

Theorem
The Steiner triple system $S(2,3,9)$ has a non-crossing drawing.

Steiner Triple Systems (cont.)

Steiner Quadruple Systems

Theorem
The Steiner quadruple system $S(3,4,8)$ does not have a non-crossing drawing.

$S(3,4,8)$		
1248	3567	
2358	1467	
3468	1257	
4578	1236	
1568	2347	
2678	1345	
13	78	2456

Steiner Quadruple Systems

Theorem
The Steiner quadruple system $S(3,4,8)$ does not have a non-crossing drawing.

$S(3,4,8)$		
12248	3567	
2358	1467	
3468	1257	
4578	1236	
156	2347	
26	78	1345
13	78	2456

Steiner Quadruple Systems

Theorem
The Steiner quadruple system $S(3,4,8)$ does not have a non-crossing drawing.

$$
\begin{array}{|l|l|}
\hline 1248 & 36 \\
\hline
\end{array} P_{1236} \cap P_{3468}=I_{36} \text { and } I_{12} \cap I_{48} \in I_{36}
$$

$S(3,4,8)$	
1248	3567
2358	1467
3468	1257
4578	1236
1568	2347
2678	1345
1378	2456

Steiner Quadruple Systems

Theorem
The Steiner quadruple system $S(3,4,8)$ does not have a non-crossing drawing.

1248	36	$P_{1236} \cap P_{3468}=I_{36}$ and $I_{12} \cap I_{48} \in I_{36}$	$S(3,4,8)$	
1248	37	$P_{1378} \cap P_{2347}=I_{37}$ and $I_{18} \cap I_{24} \in I_{37}$	1248	3567
1248	67	$P_{1467} \cap P_{2678}=I_{67}$ and $I_{14} \cap I_{28} \in I_{67}$	2358 3468	1467 1257
If there is a drawing,-3,6, and 7 are all placed at the same point.			$\begin{aligned} & 4578 \\ & 1568 \\ & 2678 \\ & 1378 \end{aligned}$	1236 2347 1345 2456
			1378	2456

- 3567 is degenerate; a contradiction.
(In fact, we can show that 3567 is just a point.)

Steiner Quadruple Systems

Theorem
The Steiner quadruple system $S(3,4,8)$ does not have a non-crossing drawing.

1248	$P_{1236} \cap P_{3468}=I_{36}$ and $I_{12} \cap I_{48} \in I_{36}$	$S(3,4,8)$	
1248	$P_{1378} \cap P_{2347}=I_{37}$ and $I_{18} \cap I_{24} \in I_{37}$	1248	3567
1248	$P_{1467} \cap P_{2678}=I_{67}$ and $I_{14} \cap I_{28} \in I_{67}$	2358 3468	1467 1257
If there - 3,6	drawing,	$\begin{aligned} & 4578 \\ & 1568 \\ & 2678 \\ & 1378 \end{aligned}$	$\begin{aligned} & 1236 \\ & 2347 \\ & 1345 \\ & 2456 \end{aligned}$

- 3567 is degenerate; a contradiction.
(In fact, we can show that 3567 is just a point.)
Theorem
The Steiner quadruple system $S(3,4,10)$ cannot be drawn using all convex or all non-convex non-crossing quadrilaterals.

Steiner Quadruple Systems (cont.)

Theorem
No Steiner quadruple system can be drawn using convex quadrilaterals ${ }^{2}$.

- Any vertex v is incident to $\frac{(n-1)(n-2)}{6}$ quadrilaterals.
- Add the diagonals incident to v to get a simplicial 2-complex.
- The link graph at v has $\frac{(n-1)(n-2)}{3}$ edges and $n-1$ vertices.
- For $n>8$, the link graph is not planar.

[^1]
Steiner Quadruple Systems (cont.)

Theorem
No Steiner quadruple system can be drawn using convex quadrilaterals ${ }^{2}$.

- Any vertex v is incident to $\frac{(n-1)(n-2)}{6}$ quadrilaterals.
- Add the diagonals incident to v to get a simplicial 2-complex.
- The link graph at v has $\frac{(n-1)(n-2)}{3}$ edges and $n-1$ vertices.
- For $n>8$, the link graph is not planar.

Theorem

No Steiner quadruple system with 20 or more vertices can be drawn using quadrilaterals.

[^2]
Steiner Quadruple Systems (cont.)

Theorem
No Steiner quadruple system can be drawn using convex quadrilaterals ${ }^{2}$.

- Any vertex v is incident to $\frac{(n-1)(n-2)}{6}$ quadrilaterals.
- Add the diagonals incident to v to get a simplicial 2-complex.
- The link graph at v has $\frac{(n-1)(n-2)}{3}$ edges and $n-1$ vertices.
- For $n>8$, the link graph is not planar.

Theorem

No Steiner quadruple system with 20 or more vertices can be drawn using quadrilaterals.

Conjecture

No Steiner quadruple system can be drawn using non-crossing quadrilaterals.

[^3]
Open problems

Other hypergraphs

Hardness

Larger Steiner triple systems/projective planes.

Is deciding whether a 3-uniform hypergraph has a non-crossing drawing with triangles NP-hard?

Grid size
Can any graph be represented with convex polygons on a polynomial sized grid?

Nicer drawings Small aspect ratio, large angle resolution, etc.

[^0]: ${ }^{1}$ Ossona de Mendez [JGAA'02] shows that any 3-uniform hypergraph with incidence poset dimension 4 has a non-crossing drawing with triangles. This implies the existence of 3d representations (with exponential coordinates) for the two smallest Steiner triple systems.

[^1]: ${ }^{2}$ We thank Arnaud de Mesmay and Eric Sedgwick for pointing us to a lemma of Dey and Edelsbrunner [DCG'94], which uses the same proof idea.

[^2]: ${ }^{2}$ We thank Arnaud de Mesmay and Eric Sedgwick for pointing us to a lemma of Dey and Edelsbrunner [DCG'94], which uses the same proof idea.

[^3]: ${ }^{2}$ We thank Arnaud de Mesmay and Eric Sedgwick for pointing us to a lemma of Dey and Edelsbrunner [DCG'94], which uses the same proof idea.

