Computing Storyline Visualizations with Few Block Crossings

Thomas C. van Dijk
Peter Markfelder

Alexander Wolff

Storyline Visualizations

[https://xkcd.com/657/]

Storyline Visualizations

[https://xkcd.com/657/]

Design considerations for storyline drawings:

- Line wiggles
- White space gaps
- Line crossings

Storyline Visualizations

[https://xkcd.com/657/]

Design considerations for storyline drawings:

- Line wiggles
- White space gaps
- Line crossings
[Tanahashi \& Ma, TVCG12]

Related Work: Simple Crossings

Aim: Drawing with a minimum number of crossings

Related Work: Simple Crossings

Aim: Drawing with a minimum number of crossings

- NP-hardness
- FPT for \#characters
- upper and lower bounds for some cases with pairwise meetings

Related Work: Simple Crossings

Aim: Drawing with a minimum number of crossings

- NP-hardness
- FPT for \#characters
- upper and lower bounds for some cases with pairwise meetings
- ILP solving the problem

Related Work: Block Crossings

Related Work: Block Crossings

- Block crossings for metro lines [Fink, Pupyrev, Wolff; 2015]
- Bundled Crossings [Alam, Fink, Pupyrev, GD 2016] [Fink et al., LATIN 2016]

Related Work: Block Crossings

- Block crossings for metro lines [Fink, Pupyrev, Wolff; 2015]

- Bundled Crossings [Alam, Fink, Pupyrev, GD 2016] [Fink et al., LATIN 2016]

Our Aim: Drawing with a minimum number of block crossings

Related Work: Block Crossings

- Block crossings for metro lines [Fink, Pupyrev, Wolff; 2015]

- Bundled Crossings [Alam, Fink, Pupyrev, GD 2016] [Fink et al., LATIN 2016]

Our Aim: Drawing with a minimum number of block crossings

- Storyline Block Crossing Minimization
- NP-hardness
- Approximation algorithm
- FPT [Van Dijk et al., GD 2016]

Related Work: Block Crossings

- Block crossings for metro lines [Fink, Pupyrev, Wolff; 2015]

- Bundled Crossings [Alam, Fink, Pupyrev, GD 2016] [Fink et al., LATIN 2016]

Our Aim: Drawing with a minimum number of block crossings

- Storyline Block Crossing Minimization
- NP-hardness
- Approximation algorithm
- FPT [Van Dijk et al., GD 2016]

Now:

Solve SBCM via a SAT formulation

Related Work: Block Crossings

- Block crossings for metro lines [Fink, Pupyrev, Wolff; 2015]

Our Aim: Drawing with a minimum number of block crossings

- Storyline Block Crossing Minimization
- NP-hardness
- Approximation algorithm
- FPT [Van Dijk et al., GD 2016]

Now:

Solve SBCM via a SAT formulation

Related Work: Block Crossings

- Block crossings for metro lines [Fink, Pupyrev, Wolff; 2015]

Our Aim: Drawing with a minimum number of block crossings

- Storyline Block Crossing Minimization
- NP-hardness
- Approximation algorithm
- FPT [Van Dijk et al., GD 2016]

Now:

Solve SBCM via a SAT formulation

Problem Definition

Meeting: set of characters, start and end time

Problem Definition

Meeting: set of characters, start and end time

Problem Definition

Meeting: set of characters, start and end time

Problem Definition

Meeting: set of characters, start and end time

No births and deaths in this talk - but in the paper.

Problem Definition

Meeting: set of characters, start and end time

Permutation π supports meetings
$\{2,3,4\}$ and $\{5,6\}$

Sets $\{2,3,4\}$ and $\{5,6\}$ each form a contiguous group in π

Problem Definition

Meeting: set of characters, start and end time

Permutation π supports meetings
$\{2,3,4\}$ and $\{5,6\}$

Sets $\{2,3,4\}$ and $\{5,6\}$ each form a contiguous group in π

Problem Definition

Meeting: set of characters, start and end time

Permutation π supports meetings
$\{2,3,4\}$ and $\{5,6\}$
\qquad
Sets $\{2,3,4\}$ and $\{5,6\}$ each form a contiguous group in π

Find a shortest sequence of permutations such that ...
... meetings are supported in the right order
... adjacent permutations differ by at most one block crossing

Problem Definition

Meeting: set of characters, start and end time

Permutation π
supports meetings
$\{2,3,4\}$ and $\{5,6\}$
\qquad
Sets $\{2,3,4\}$ and $\{5,6\}$ each form a contiguous group in π

Find a shortest sequence of permutations such that ...
... meetings are supported in the right order
...adjacent permutations differ by at most one block crossing

Approach of Gronemann et al.
Reduce to MLCM-TC (Multi-Layer Crossing Minimization Problem with Tree Constraints)

Approach of Gronemann et al.

Reduce to MLCM-TC (Multi-Layer Crossing Minimization
Problem with Tree Constraints)

Each event corresponds to a layer

Approach of Gronemann et al.

Reduce to MLCM-TC (Multi-Layer Crossing Minimization
Problem with Tree Constraints)

Each event corresponds to a layer

Trees describe neighborship between characters

Approach of Gronemann et al.

Reduce to MLCM-TC (Multi-Layer Crossing Minimization
Problem with Tree Constraints)

Each event corresponds to a layer

Trees describe neighborship between characters

Approach of Gronemann et al.

Reduce to MLCM-TC (Multi-Layer Crossing Minimization
Problem with Tree Constraints)

Each event corresponds to a layer

Trees describe neighborship between characters

Find a permutation for each layer

Approach of Gronemann et al.

Reduce to MLCM-TC (Multi-Layer Crossing Minimization
Problem with Tree Constraints)

Each event corresponds to a layer

Trees describe neighborship between characters

Find a permutation for each layer
Use ILP to solve MLCM-TC

Describing Permutations

Variables describing the order in each permutation: $x_{i j}^{r}$

Describing Permutations

Variables describing the order in each permutation: $x_{i j}^{r}$

Describing Permutations

Variables describing the order in each permutation: $x_{i j}^{r}$

Describing Permutations

Variables describing the order in each permutation: $x_{i j}^{r}$

Describing Permutations

Variables describing the order in each permutation: $x_{i j}^{r}$

Describing Permutations

Variables describing the order in each permutation: $x_{i j}^{r}$

Describing Permutations

Variables describing the order in each permutation: $x_{i j}^{r^{\prime}}$

$$
\begin{array}{llll}
x_{12}^{1}=1 & x_{21}^{1}=0 & x_{12}^{2}=1 & x_{21}^{2}=0 \\
x_{23}^{1}=1 & x_{32}^{1}=0 & x_{23}^{2}=0 & x_{32}^{2}=1 \\
x_{13}^{1}=1 & x_{31}^{1}=0 & x_{13}^{2}=0 & x_{31}^{2}=1
\end{array}
$$

Describing Permutations

Variables describing the order in each permutation: $x_{i j}^{r^{2}}$

Counting Block Crossings

Easy to count pairwise crossings using $x_{i j}^{r}$:
i and j cross after layer $r: \chi_{i j}^{r} \Leftrightarrow\left(x_{i j}^{r} \neq x_{i j}^{r+1}\right)$

Counting Block Crossings

Easy to count pairwise crossings using $x_{i j}^{r}$:
i and j cross after layer $r: \chi_{i j}^{r} \Leftrightarrow\left(x_{i j}^{r} \neq x_{i j}^{r+1}\right)$
Our approach for block crossings:
Allow at most one block crossing between two permutations

Counting Block Crossings

Easy to count pairwise crossings using $x_{i j}^{r}$:
i and j cross after layer $r: \chi_{i j}^{r} \Leftrightarrow\left(x_{i j}^{r} \neq x_{i j}^{r+1}\right)$
Our approach for block crossings:
Allow at most one block crossing between two permutations

Add more permutations

Counting Block Crossings

Easy to count pairwise crossings using $x_{i j}^{r}$:
i and j cross after layer $r: \chi_{i j}^{r} \Leftrightarrow\left(x_{i j}^{r} \neq x_{i j}^{r+1}\right)$
Our approach for block crossings:
Allow at most one block crossing between two permutations

Add more permutations

Counting Block Crossings

Easy to count pairwise crossings using $x_{i j}^{r}$:
i and j cross after layer $r: \chi_{i j}^{r} \Leftrightarrow\left(x_{i j}^{r} \neq x_{i j}^{r+1}\right)$
Our approach for block crossings:
Allow at most one block crossing between two permutations

Add more permutations

Counting Block Crossings

Easy to count pairwise crossings using $x_{i j}^{r}$:
i and j cross after layer $r: \chi_{i j}^{r} \Leftrightarrow\left(x_{i j}^{r} \neq x_{i j}^{r+1}\right)$
Our approach for block crossings:
Allow at most one block crossing between two permutations

Add more permutations

Prescribe maximum number of permutations

Describing Block Crossings

Blocks G and H cross

Describing Block Crossings

Blocks G and H cross

Constraints:
Exactly characters of G and H cross each other

Describing Block Crossings

Blocks G and H cross

Constraints:
Exactly characters of G and H cross each other
$\chi_{i j}^{r} \Leftrightarrow g_{i}^{r} \wedge h_{j}^{r}$

Describing Block Crossings

Blocks G and H cross

Constraints:

> | Exactly characters of G |
| :---: |
| and H cross each other |
| $\chi_{i j}^{r} \Leftrightarrow g_{i}^{r} \wedge h_{j}^{r}$ |

Describing Block Crossings

Blocks G and H cross

Constraints:

> | Exactly characters of G |
| :---: |
| and H cross each other |
| $\chi_{i j}^{r} \Leftrightarrow g_{i}^{r} \wedge h_{j}^{r}$ |

G is above H
$g_{i}^{r} \wedge h_{j}^{r} \Rightarrow$

Describing Block Crossings

Blocks G and H cross

Constraints:

> | Exactly characters of G |
| :---: |
| and H cross each other |
| $\chi_{i j}^{r} \Leftrightarrow g_{i}^{r} \wedge h_{j}^{r}$ |

G is above H $g_{i}^{r} \wedge h_{j}^{r} \Rightarrow x_{i j}^{r}$

Describing Block Crossings

Blocks G and H cross

Constraints:

Exactly characters of G and H cross each other $\chi_{i j}^{r} \Leftrightarrow g_{i}^{r} \wedge h_{j}^{r}$

G and H are adjacent

G is above H

$$
g_{i}^{r} \wedge h_{j}^{r} \Rightarrow x_{i j}^{r}
$$

Describing Block Crossings

Blocks G and H cross

Constraints:

Exactly characters of G and H cross each other $\chi_{i j}^{r} \Leftrightarrow g_{i}^{r} \wedge h_{j}^{r}$
G and H are adjacent
G is above H
$g_{i}^{r} \wedge h_{j}^{r} \Rightarrow x_{i j}^{r}$
G and H are contiguous blocks

Meeting Groups

Meeting Groups

Meeting Groups

Meeting Groups

Meeting Groups

Meeting Groups

Meeting Groups

Minimize the Number of Block Crossings

Choose a number of permutations λ and construct the clauses.

Minimize the Number of Block Crossings

Choose a number of permutations λ and construct the clauses.

There is a satisfying assignment
$\Leftrightarrow \exists$ solution for the SBCM instance using λ permutations.

Minimize the Number of Block Crossings

Choose a number of permutations λ and construct the clauses.
There is a satisfying assignment
$\Leftrightarrow \exists$ solution for the SBCM instance using λ permutations.
$O\left(\lambda\left(\kappa^{2}+\mu\right)\right)$ variables, $O\left(\lambda \mu\left(\lambda+\kappa^{3}\right)\right)$ clauses
λ : number of permutations
κ : number of characters
μ : number of meeting groups

Minimize the Number of Block Crossings

Choose a number of permutations λ and construct the clauses.
There is a satisfying assignment
$\Leftrightarrow \exists$ solution for the SBCM instance using λ permutations.
$O\left(\lambda\left(\kappa^{2}+\mu\right)\right)$ variables, $O\left(\lambda \mu\left(\lambda+\kappa^{3}\right)\right)$ clauses
λ : number of permutations
κ : number of characters
μ : number of meeting groups

Finding the optimum:
Repeatedly run the SAT solver with different values for λ (exponential search)

Experiments

FPT Breadth-first search a smarter state space; runtime:
$O\left(k!\cdot k^{3} \cdot n\right)$

- FPT are implemented in C++
- Concurrent meetings not implemented for FPT
- SAT clauses generated by Python and solved using MiniSat

Experiments

FPT Breadth-first search a smarter state space; runtime:
$O\left(k!\cdot k^{3} \cdot n\right)$

- FPT are implemented in C++
- Concurrent meetings not implemented for FPT
- SAT clauses generated by Python and solved using MiniSat

Test Data:

- Real-World instances (movies used by Gronemann et al.): The Matrix, Inception, Star Wars
- Random instances
- Random instances having a solution with few block crossings

SAT: Runtime vs Number of Permutations

Permutations

SAT: Runtime vs Number of Permutations

Permutations

SAT: Runtime vs Number of Permutations

Permutations

Uniform Random Instances: FPT

Uniform Random Instances: FPT

Uniform Random Instances: SAT

Small-OPT Random Instances: SAT

Results

Movie Instances:

	Our approach						Gronemann et al.			
Instance	cr	bcopt	Time [s]		cropt	bc	Time [s]			
Star Wars	54	10	3.77		39	18	0.99			
The Matrix	21	4	2.86		12	8	0.77			
Inception	51	12	1.54		35	20	2.02			

Results

Movie Instances:

	Our approach						Gronemann et al.		
Instance	cr	bcopt	Time [s]		cropt	bc	Time [s]		
Star Wars	54	10	3.77		39	18	0.99		
The Matrix	21	4	2.86		12	8	0.77		
Inception	51	12	1.54		35	20	2.02		

Results

Movie Instances:

	Our approach						Gronemann et al.		
Instance	cr	bcopt	Time [s]		cropt	bc	Time [s]		
Star Wars	54	10	3.77		39	18	0.99		
The Matrix	21	4	2.86		12	8	0.77		
Inception	51	12	1.54		35	20	2.02		

Results

Movie Instances:

	Our approach						Gronemann et al.			
Instance	cr	bcopt	Time [s]		cropt	bc	Time [s]			
Star Wars	54	10	3.77		39	18	0.99			
The Matrix	21	4	2.86		12	8	0.77			
Inception	51	12	1.54		35	20	2.02			

Example: The Matrix

Gronemann et al. 12 crossings / 8 block crossings

Our approach
21 crossings / 4 block crossings

Example: The Matrix

Gronemann et al. 12 crossings / 8 block crossings

Our approach
21 crossings / 4 block crossings

Example: The Matrix

Gronemann et al. 12 crossings / 8 block crossings

Our approach
21 crossings / 4 block crossings

Example: The Matrix

Gronemann et al. 12 crossings / 8 block crossings

Our approach
21 crossings / 4 block crossings

Conclusion

- Our SAT approach is usable for real-world instances.
- Use SAT instead of ILP - turned out to be much faster!
- Source code is available online.

Conclusion

- Our SAT approach is usable for real-world instances.
- Use SAT instead of ILP - turned out to be much faster!
- Source code is available online.

Future work

- Try other (parallel) SAT solvers.
- Find more efficient way to model lifespans.
- Consider additional quality criteria of the drawing, e.g., minimize wiggles.
[Fröschl \& Nöllenburg, GD17]
- Perform a user study on the effect of block crossings, especially for storyline visualizations.

Appendix

Describing Block Crossings

Blocks G and H cross

Describing Block Crossings

Blocks G and H cross

Constraints:
Exactly characters of G and H cross each other

Describing Block Crossings

Blocks G and H cross

Constraints:
Exactly characters of G and H cross each other
$\chi_{i j}^{r} \Leftrightarrow g_{i}^{r} \wedge h_{j}^{r}$

Describing Block Crossings

Blocks G and H cross

Constraints:

> | Exactly characters of G |
| :---: |
| and H cross each other |
| $\chi_{i j}^{r} \Leftrightarrow g_{i}^{r} \wedge h_{j}^{r}$ |

Describing Block Crossings

Blocks G and H cross

Constraints:

> | Exactly characters of G |
| :---: |
| and H cross each other |
| $\chi_{i j}^{r} \Leftrightarrow g_{i}^{r} \wedge h_{j}^{r}$ |

G is above H
$g_{i}^{r} \wedge h_{j}^{r} \Rightarrow$

Describing Block Crossings

Blocks G and H cross

Constraints:

> | Exactly characters of G |
| :---: |
| and H cross each other |
| $\chi_{i j}^{r} \Leftrightarrow g_{i}^{r} \wedge h_{j}^{r}$ |

G is above H $g_{i}^{r} \wedge h_{j}^{r} \Rightarrow x_{i j}^{r}$

Describing Block Crossings

Blocks G and H cross

Constraints:

Exactly characters of G and H cross each other $\chi_{i j}^{r} \Leftrightarrow g_{i}^{r} \wedge h_{j}^{r}$

G and H are adjacent

G is above H

$$
g_{i}^{r} \wedge h_{j}^{r} \Rightarrow x_{i j}^{r}
$$

Describing Block Crossings

Blocks G and H cross

Constraints:

Exactly characters of G and H cross each other $\chi_{i j}^{r} \Leftrightarrow g_{i}^{r} \wedge h_{j}^{r}$
G and H are adjacent
$x_{i j}^{r} \wedge x_{j k}^{r} \wedge g_{i}^{r} \wedge h_{k}^{r} \Rightarrow$
G is above H

$$
g_{i}^{r} \wedge h_{j}^{r} \Rightarrow x_{i j}^{r}
$$

Describing Block Crossings

Blocks G and H cross

Constraints:

Exactly characters of G and H cross each other $\chi_{i j}^{r} \Leftrightarrow g_{i}^{r} \wedge h_{j}^{r}$

> | $\begin{array}{l}G \text { and } H \text { are adjacent } \\ x_{i j}^{r} \wedge x_{j k}^{r} \wedge g_{i}^{r} \wedge h_{k}^{r} \Rightarrow \neg f_{j}^{r}\end{array}$ |
| :--- |

G is above H

$$
g_{i}^{r} \wedge h_{j}^{r} \Rightarrow x_{i j}^{r}
$$

Describing Block Crossings

Blocks G and H cross

Constraints:

Exactly characters of G and H cross each other
$\chi_{i j}^{r} \Leftrightarrow g_{i}^{r} \wedge h_{j}^{r}$

> | G and H are adjacent
 $x_{i j}^{r} \wedge x_{j k}^{r} \wedge g_{i}^{r} \wedge h_{k}^{r} \Rightarrow \neg f_{j}^{r}$ |
| :--- |

G and H are contiguous blocks

G is above H
 $g_{i}^{r} \wedge h_{j}^{r} \Rightarrow x_{i j}^{r}$

Describing Block Crossings

Blocks G and H cross

Constraints:

Exactly characters of G and H cross each other
$\chi_{i j}^{r} \Leftrightarrow g_{i}^{r} \wedge h_{j}^{r}$
G and H are adjacent $x_{i j}^{r} \wedge x_{j k}^{r} \wedge g_{i}^{r} \wedge h_{k}^{r} \Rightarrow \neg f_{j}^{r}$
G and H are contiguous blocks

$$
x_{i j}^{r} \wedge x_{j k}^{r} \wedge g_{i}^{r} \wedge g_{k}^{r} \Rightarrow
$$

G is above H
 $g_{i}^{r} \wedge h_{j}^{r} \Rightarrow x_{i j}^{r}$

Describing Block Crossings

Blocks G and H cross

Constraints:

Exactly characters of G and H cross each other
$\chi_{i j}^{r} \Leftrightarrow g_{i}^{r} \wedge h_{j}^{r}$
G and H are adjacent $x_{i j}^{r} \wedge x_{j k}^{r} \wedge g_{i}^{r} \wedge h_{k}^{r} \Rightarrow \neg f_{j}^{r}$
G and H are contiguous blocks

$$
x_{i j}^{r} \wedge x_{j k}^{r} \wedge g_{i}^{r} \wedge g_{k}^{r} \Rightarrow g_{j}^{r}
$$

G is above H
 $g_{i}^{r} \wedge h_{j}^{r} \Rightarrow x_{i j}^{r}$

Describing Block Crossings

Blocks G and H cross

Constraints:

G and H are contiguous blocks

$$
\begin{aligned}
& x_{i j}^{r} \wedge x_{j k}^{r} \wedge g_{i}^{r} \wedge g_{k}^{r} \Rightarrow g_{j}^{r} \\
& x_{i j}^{r} \wedge x_{j k}^{r} \wedge h_{i}^{r} \wedge h_{k}^{r} \Rightarrow h_{j}^{r} \\
& \hline
\end{aligned}
$$

G is above H
 $g_{i}^{r} \wedge h_{j}^{r} \Rightarrow x_{i j}^{r}$

Meeting Groups

Meeting Groups

Meeting Groups

Meeting Groups

Meeting Groups

Meeting Groups

Meeting Groups

Mapping the Meeting Groups

- Map the meeting groups in the right order:
- Map every meeting group exactly once:
- Force meeting characters to be next to each other:

Mapping the Meeting Groups

- Map the meeting groups in the right order: $q_{\ell}^{r} \Rightarrow \bigvee_{u=1}^{r} q_{\ell-1}^{u}$
- Map every meeting group exactly once:
- Force meeting characters to be next to each other:

Mapping the Meeting Groups

- Map the meeting groups in the right order: $q_{\ell}^{r} \Rightarrow \bigvee_{u=1}^{r} q_{\ell-1}^{u}$
- Map every meeting group exactly once:
$\bigvee_{r=1}^{\lambda} q_{\ell}^{r}$ and $\neg\left(q_{\ell}^{r} \wedge q_{\ell}^{p}\right)$
- Force meeting characters to be next to each other:

Mapping the Meeting Groups

- Map the meeting groups in the right order: $q_{\ell}^{r} \Rightarrow \bigvee_{u=1}^{r} q_{\ell-1}^{u}$
- Map every meeting group exactly once:
$\bigvee_{r=1}^{\lambda} q_{\ell}^{r}$ and $\neg\left(q_{\ell}^{r} \wedge q_{\ell}^{p}\right)$
- Force meeting characters to be next to each other: If i and k are part of the same meeting in meeting group ℓ and j is not: $q_{\ell}^{r} \Rightarrow\left(x_{i j}^{r}=x_{k j}^{r}\right)$

