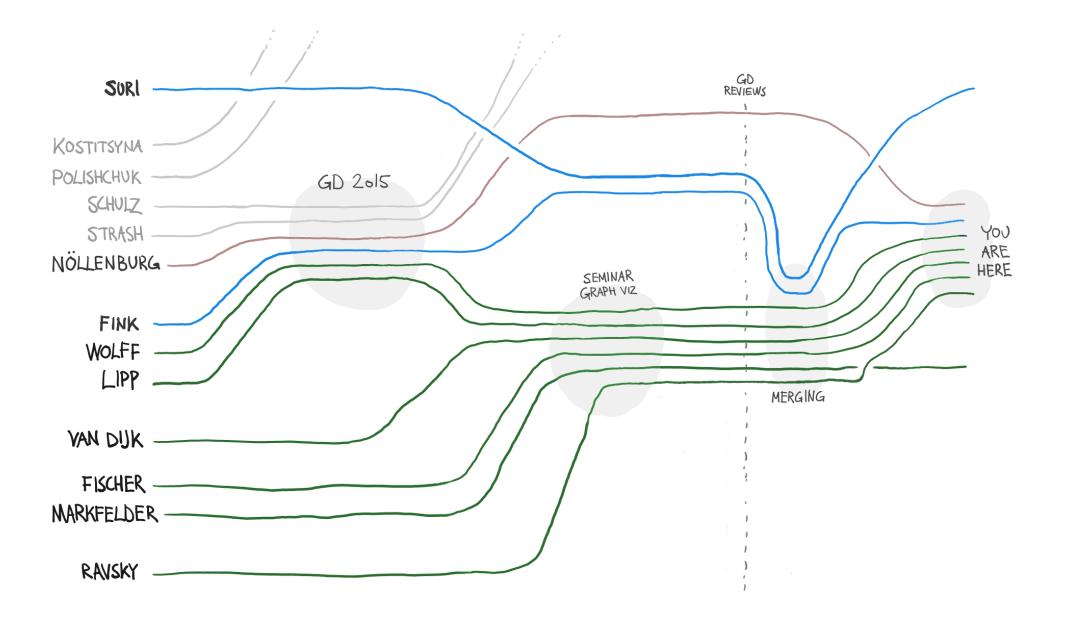
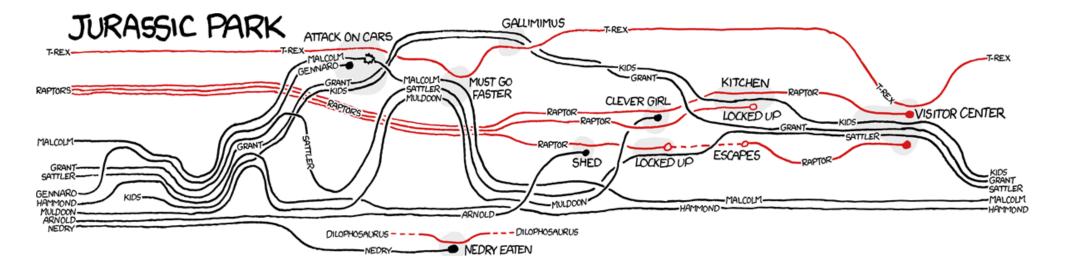
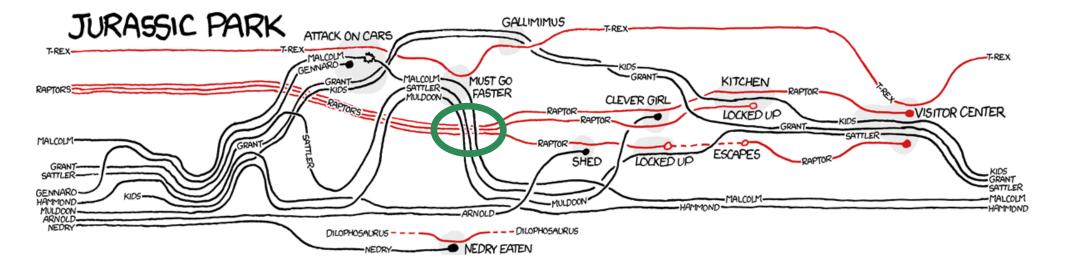
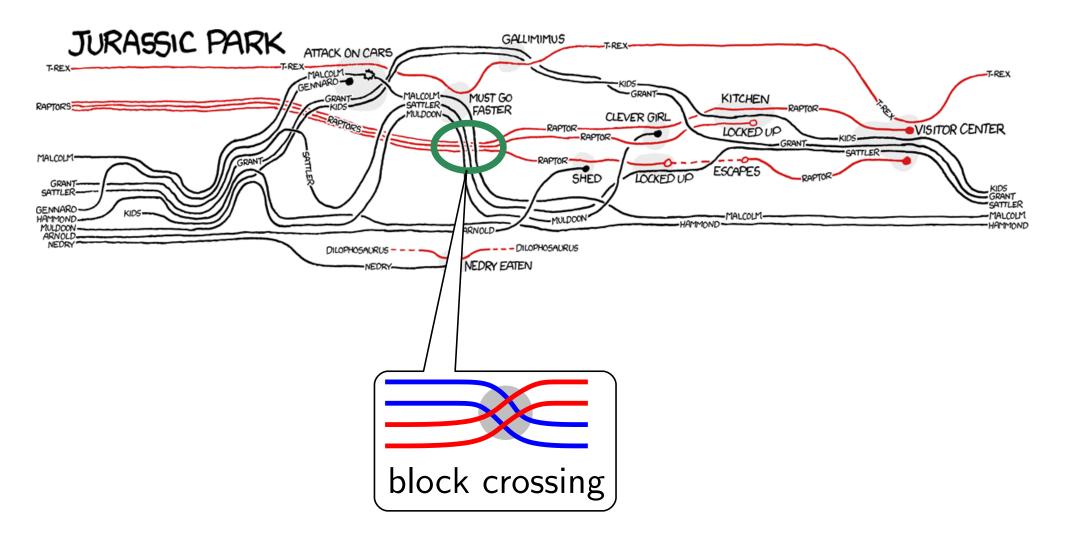
Block Crossings in Storyline Visualizations

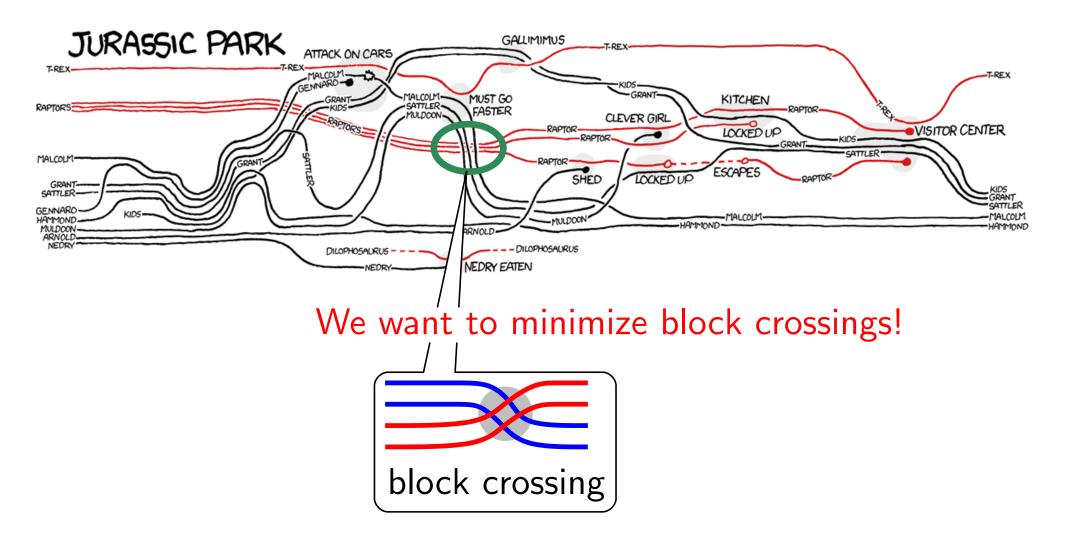
Thomas van Dijk, *Martin Fink*, Norbert Fischer, Fabian Lipp, Peter Markfelder, Alexander Ravsky, Subhash Suri, and Alexander Wolff











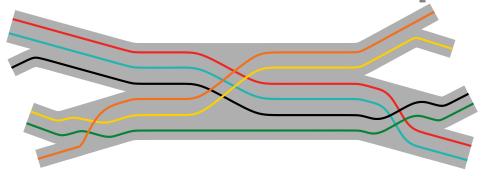
Previous Results – Simple Crossings

[Kostitsyna et al, GD'15]

- NP-hardness
- FPT for #characters
- upper and lower bounds for some cases with pairwise meetings

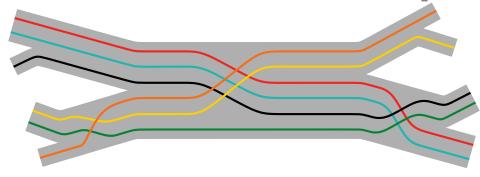
Related Work

• Block crossings for metro lines [Fink, Pupyrev, Wolff; 2015]

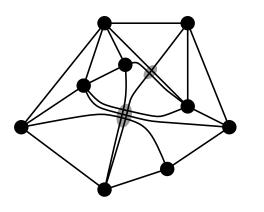


Related Work

• Block crossings for metro lines [Fink, Pupyrev, Wolff; 2015]



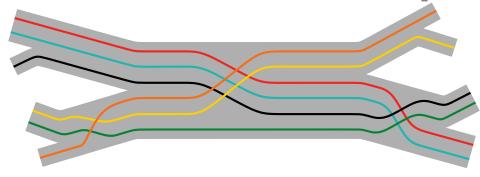
• Bundled Crossings



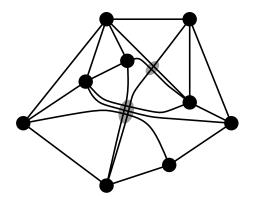
[Fink et al., 2016]

Related Work

• Block crossings for metro lines [Fink, Pupyrev, Wolff; 2015]

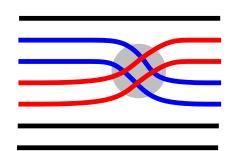


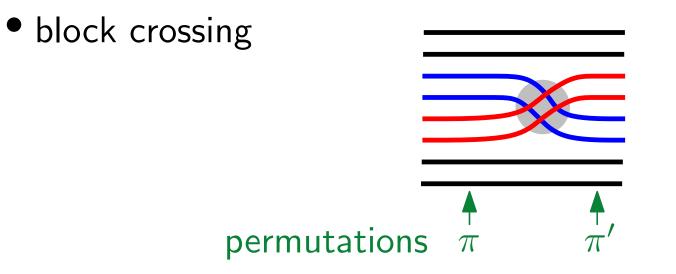
Bundled Crossings

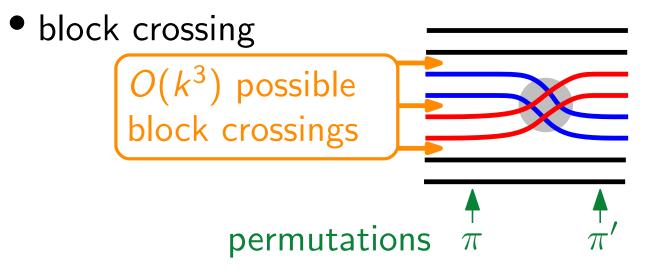


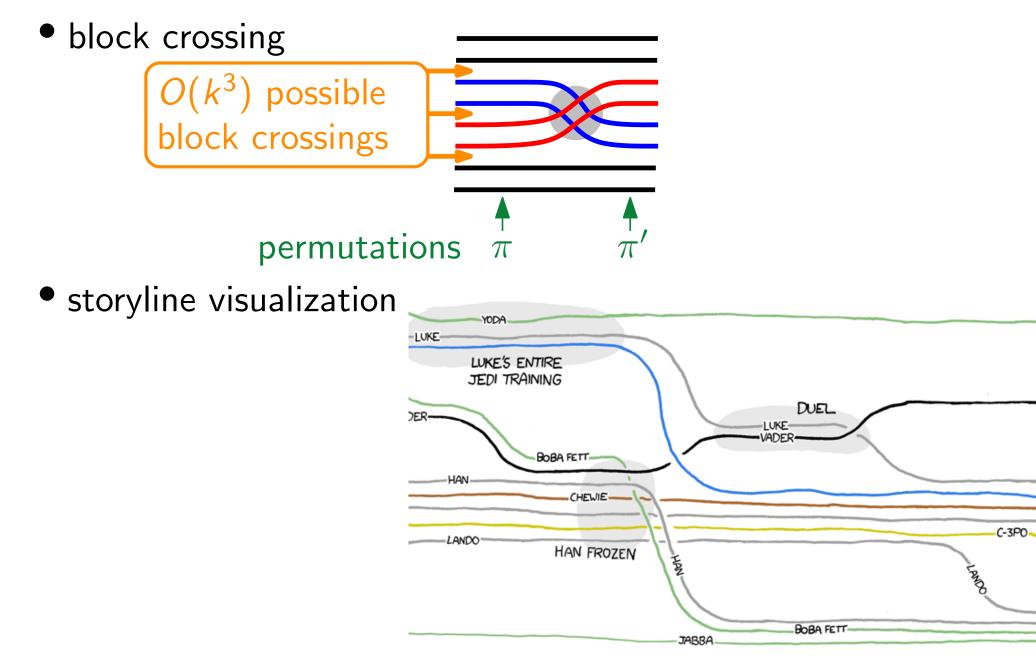
• Bundled Crossing Number [Alam, Fink, Pupyrev; next talk]

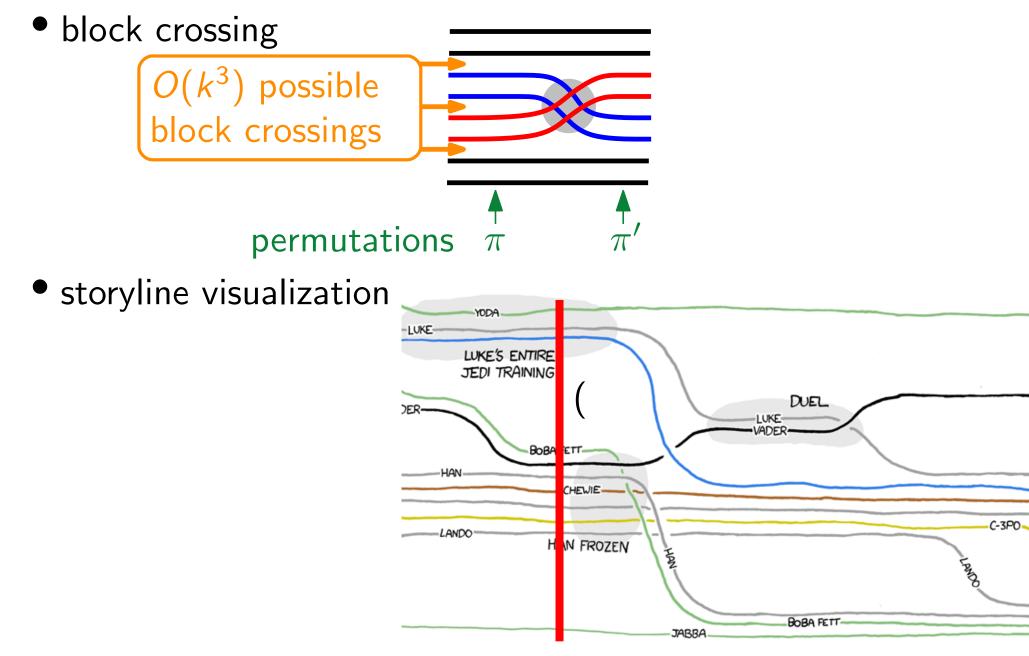
block crossing

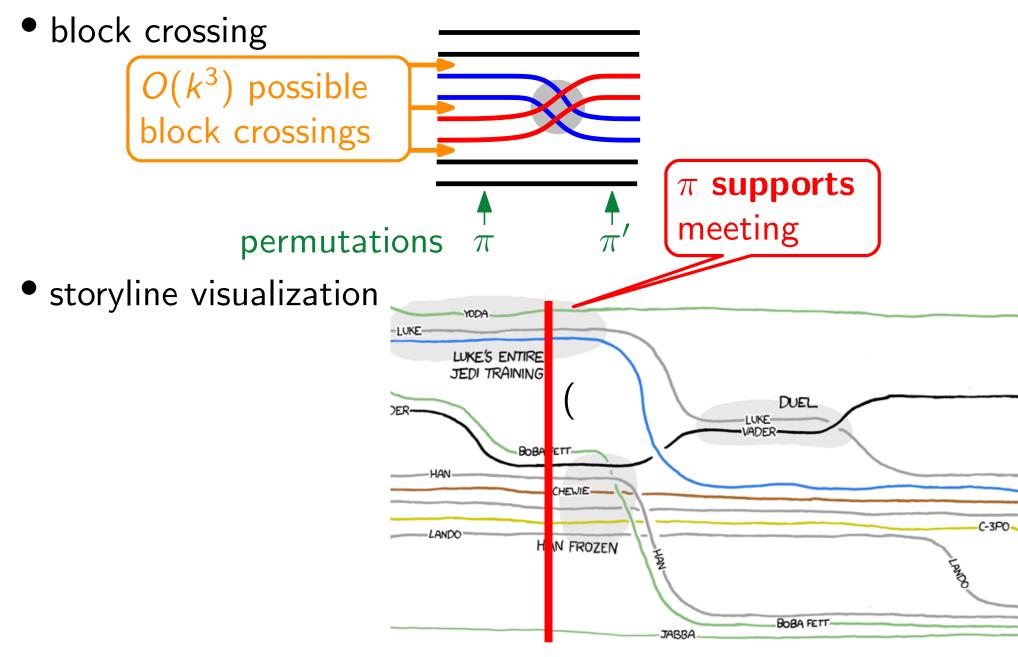


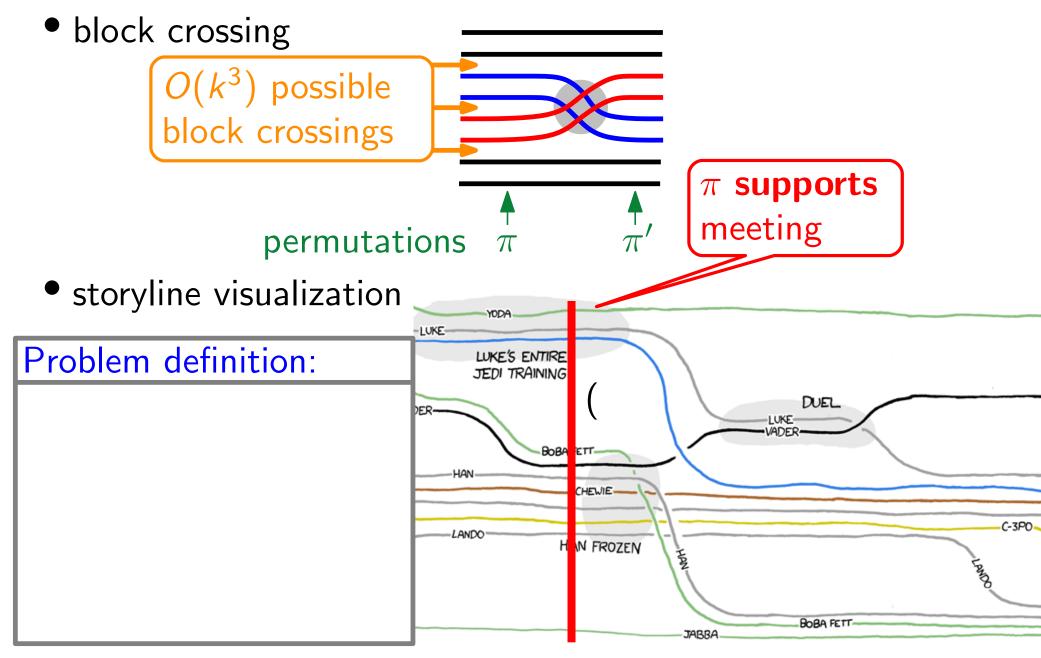


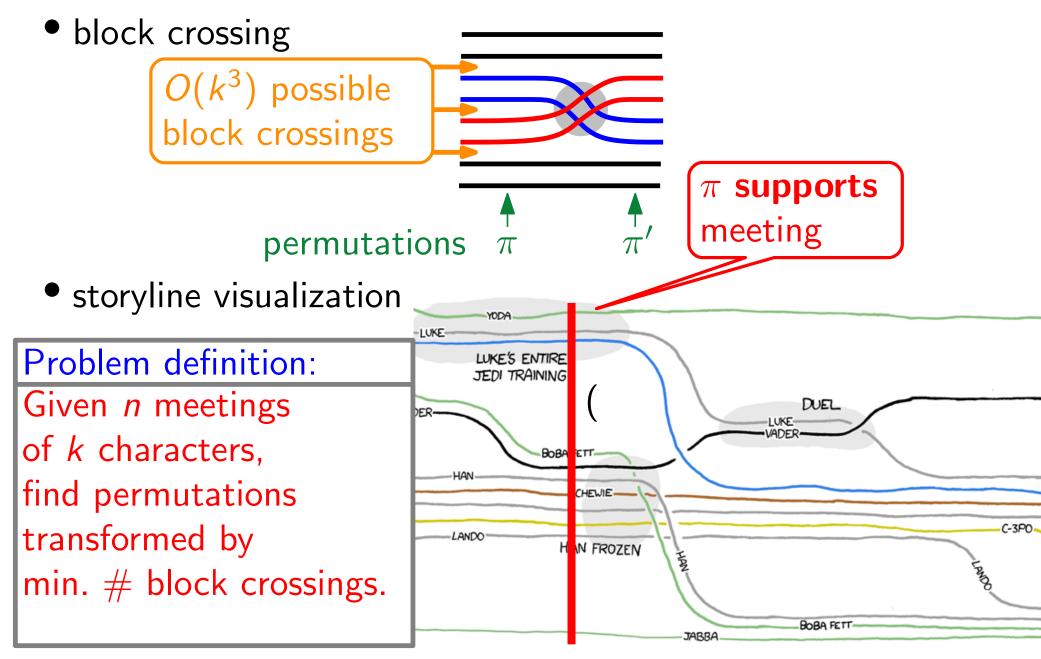


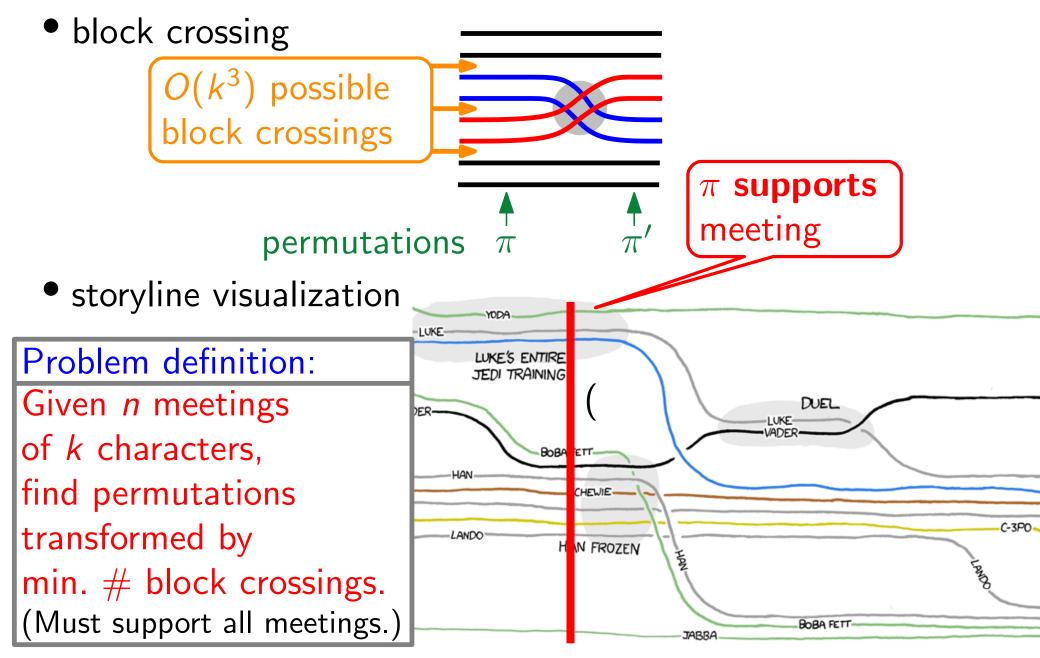






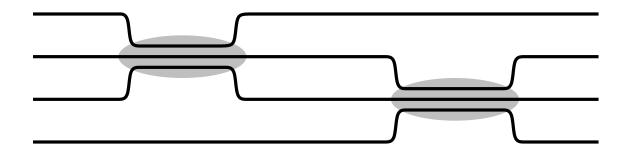


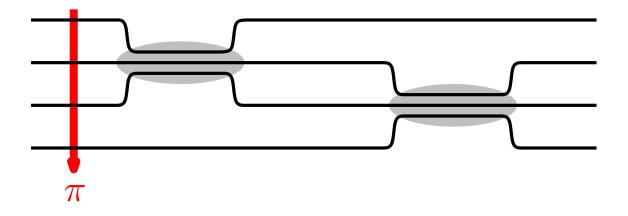


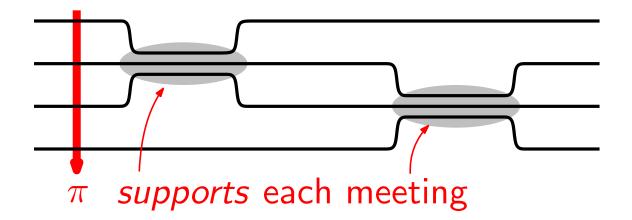


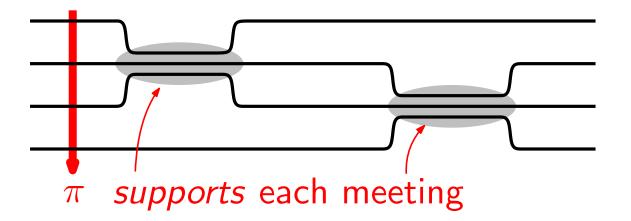
Our Results

- recognize crossing-free instances
- NP-hardness
- approximation
- FPT/exact algorithms
- greedy heuristic for pairwise meetings

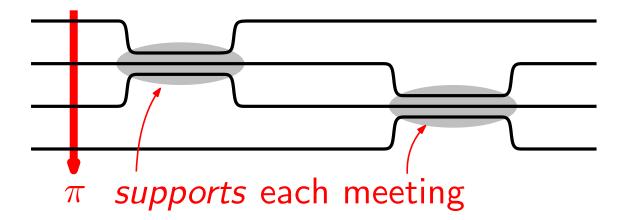




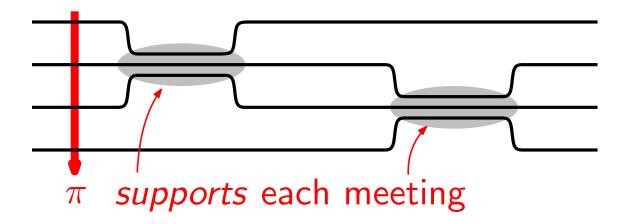




• group hypergraph $\mathcal{H} = (C, \Gamma)$ is interval hypergraph

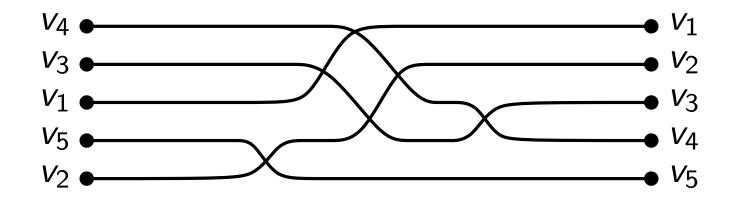


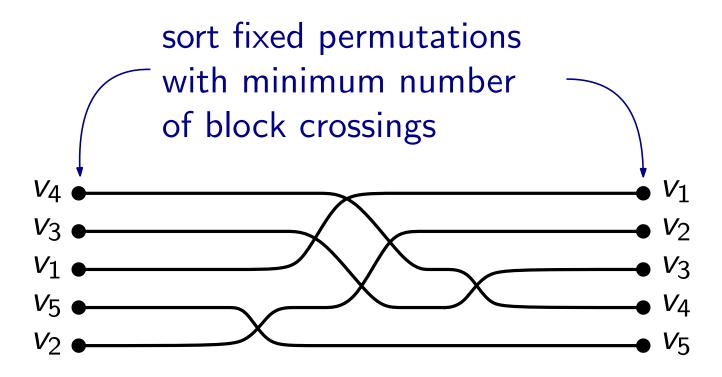
• group hypergraph $\mathcal{H} = (C, \Gamma)$ is interval hypergraph groups that meet

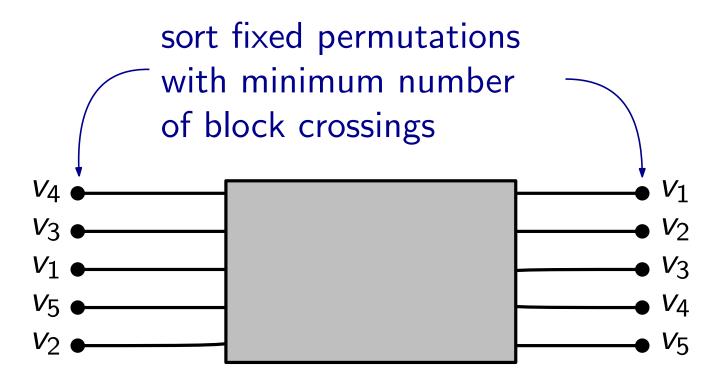


• group hypergraph $\mathcal{H} = (C, \Gamma)$ is interval hypergraph groups that meet

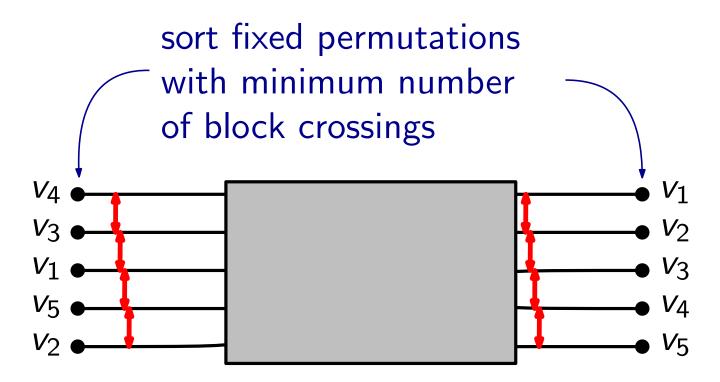
• interval hypergraph property can be checked in $O(k^2)$ time [Trotter, Moore, 1976]





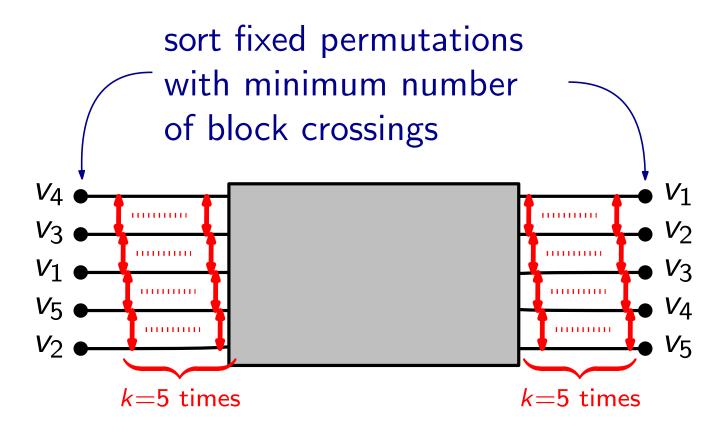


• Reduction from *Sorting by Transpositions*

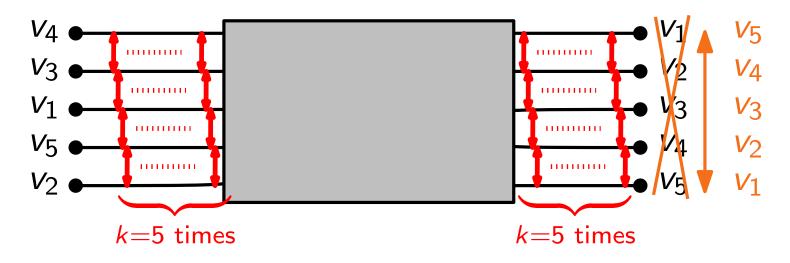


• fix permutations by repeated meetings

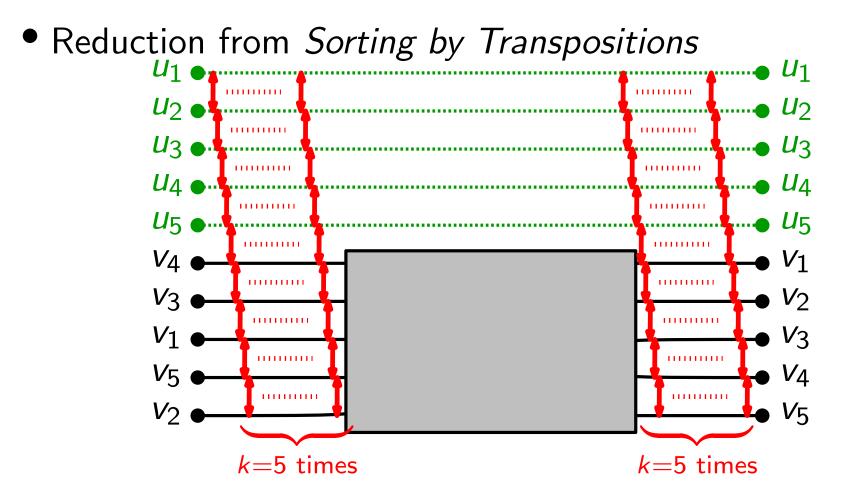
• Reduction from *Sorting by Transpositions*



• fix permutations by repeated meetings



- fix permutations by repeated meetings
- add frame to prevent reversal



- fix permutations by repeated meetings
- add frame to prevent reversal

Approximation Algorithm

- all meetings of size $\leq d$ (constant)
- no repeated meetings

Approximation Algorithm

- all meetings of size $\leq d$ (constant)
- no repeated meetings

idea:

- 1. choose starting order π that supports many meetings
- 2. *temporarily* change order for each unsupported meeting

Approximation Algorithm

- all meetings of size $\leq d$ (constant)
- no repeated meetings

idea:

- 1. choose starting order π that supports many meetings
- 2. *temporarily* change order for each unsupported meeting

 $\leq 2(d-1)$ block crossings

- all meetings of size $\leq d$ (constant)
- no repeated meetings

idea:

- 1. choose starting order π that supports many meetings
- 2. *temporarily* change order for each unsupported meeting

 $\leq 2(d-1)$ block crossings

meetings supported by π are free

- all meetings of size $\leq d$ (constant)
- no repeated meetings

idea:

- 1. choose starting order π that supports many meetings
- 2. *temporarily* change order for each unsupported meeting

meetings supported by π are free

$$\leq 2(d-1)$$
 block crossings

Lemma: starting order π has α unsupported meetings \Rightarrow at least $4\alpha/(3d^2)$ block crossings necessary

- all meetings of size $\leq d$ (constant)
- no repeated meetings

idea:

- 1. choose starting order π that supports many meetings
- 2. temporarily change order for each unsupported meeting

meetings supported by π are free

 $\leq 2(d-1)$ block crossings

approximate α_{OPT} \Rightarrow approximate block crossings

Lemma: starting order π has α unsupported meetings \Rightarrow at least $4\alpha/(3d^2)$ block crossings necessary

find π minimizing # unsupported meetings

find π minimizing #unsupported meetings \leftrightarrow remove minimum #meetings so that storyline crossing-free

find π minimizing #unsupported meetings \leftrightarrow remove minimum #meetings so that storyline crossing-free \leftrightarrow remove minimum #hyperedges so that \mathcal{H} is interval hypergraph

find π minimizing #unsupported meetings

 \leftrightarrow remove minimum # meetings so that storyline crossing-free

 \leftrightarrow remove minimum # hyperedges so that $\mathcal H$ is interval hypergraph

Theorem: INTERVAL HYPERGRAPH EDGE DELETION admits a (d + 1)-approximation (constant rank d).

find π minimizing #unsupported meetings

 \leftrightarrow remove minimum # meetings so that storyline crossing-free

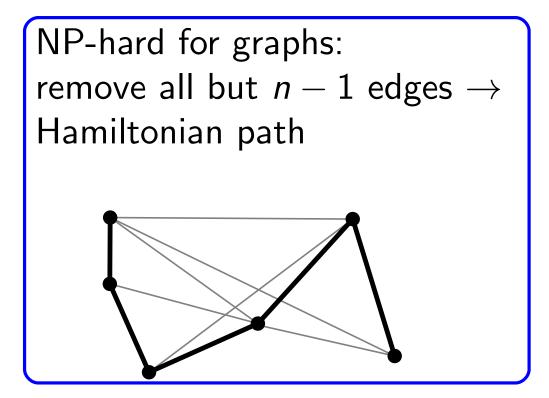
 \leftrightarrow remove minimum # hyperedges so that ${\mathcal H}$ is interval hypergraph

Theorem: INTERVAL HYPERGRAPH EDGE DELETION admits a (d + 1)-approximation (constant rank d).

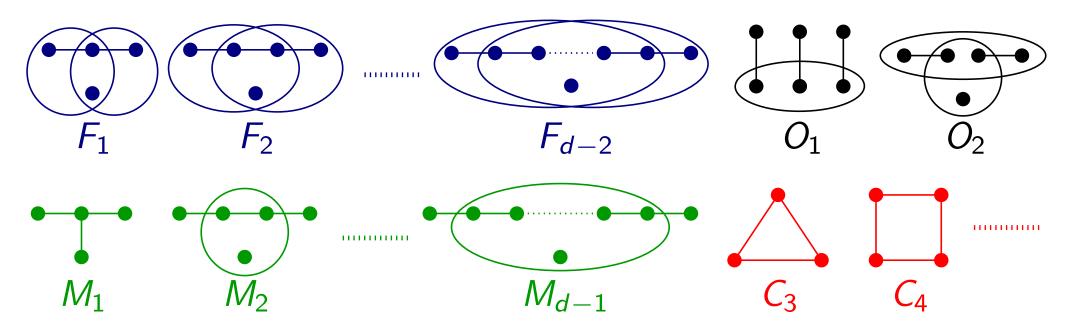
Theorem: We can find a $(3(d^2 - 1)d^2/2)$ -approximation for the minimum number of block crossings in storyline visualizations in O(kn) time.

• Remove minimum number of hyperedges so that $\mathcal{H} = (V, E)$ becomes interval hypergraph

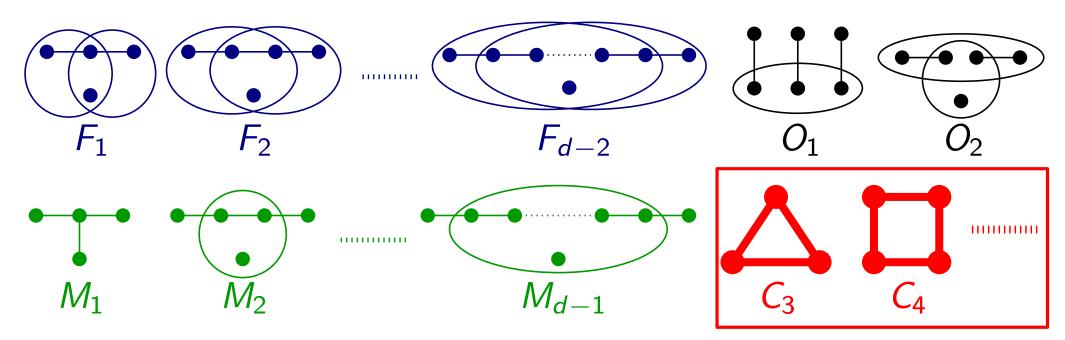
• Remove minimum number of hyperedges so that $\mathcal{H} = (V, E)$ becomes interval hypergraph

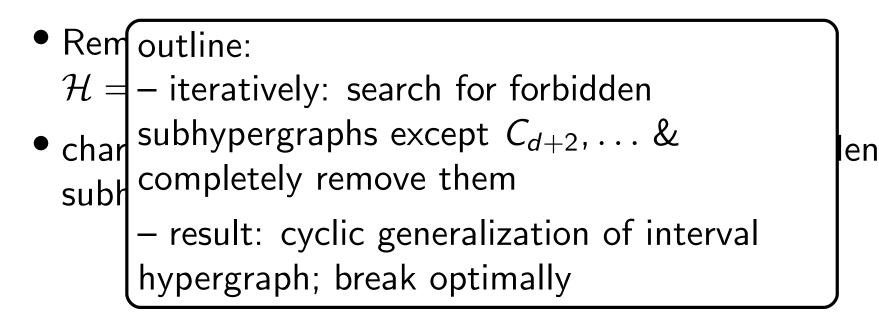


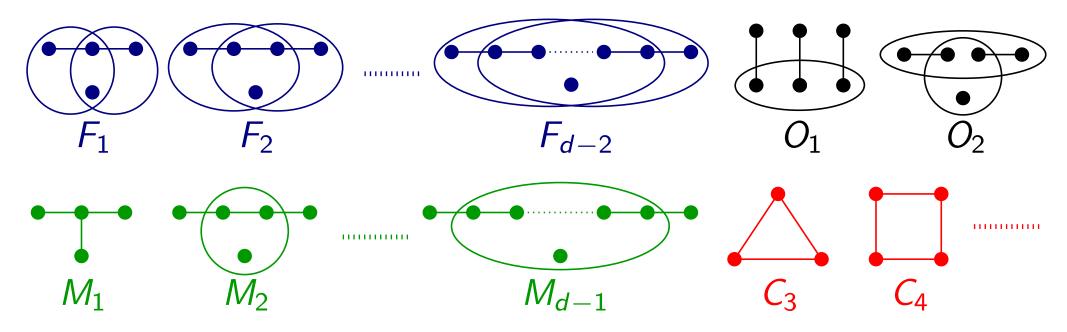
- Remove minimum number of hyperedges so that $\mathcal{H} = (V, E)$ becomes interval hypergraph
- characterization of interval hypergraphs by forbidden subhypergraphs

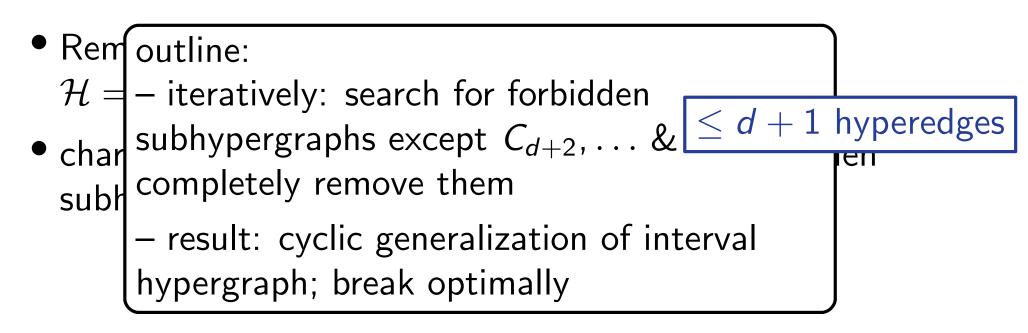


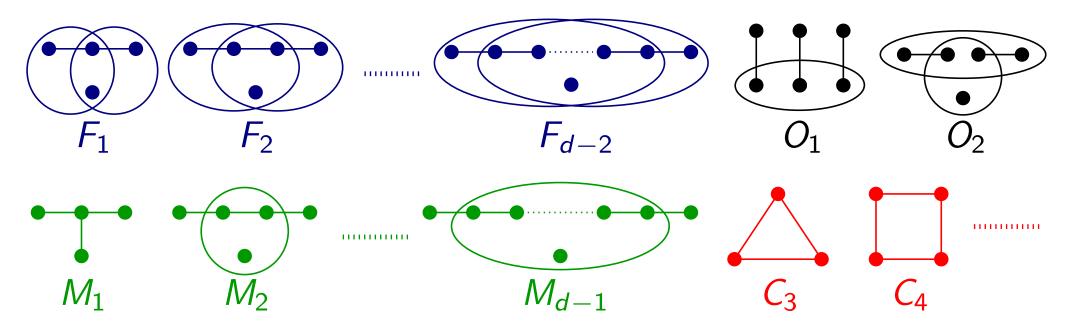
- Remove minimum number of hyperedges so that $\mathcal{H} = (V, E)$ becomes interval hypergraph
- characterization of interval hypergraphs by forbidden subhypergraphs

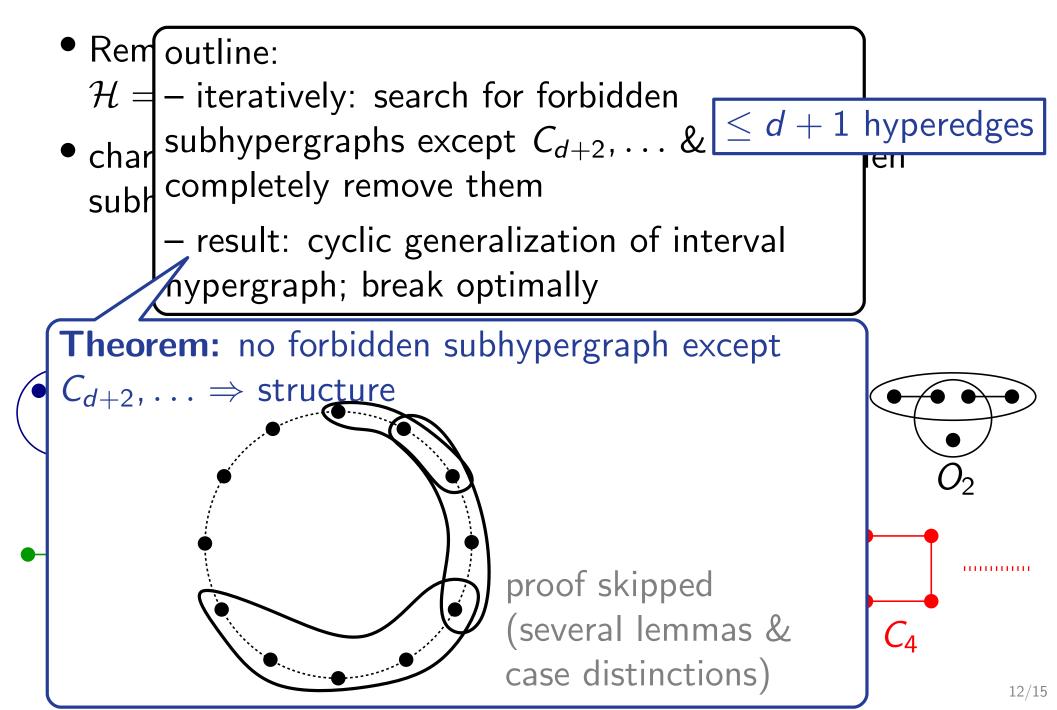


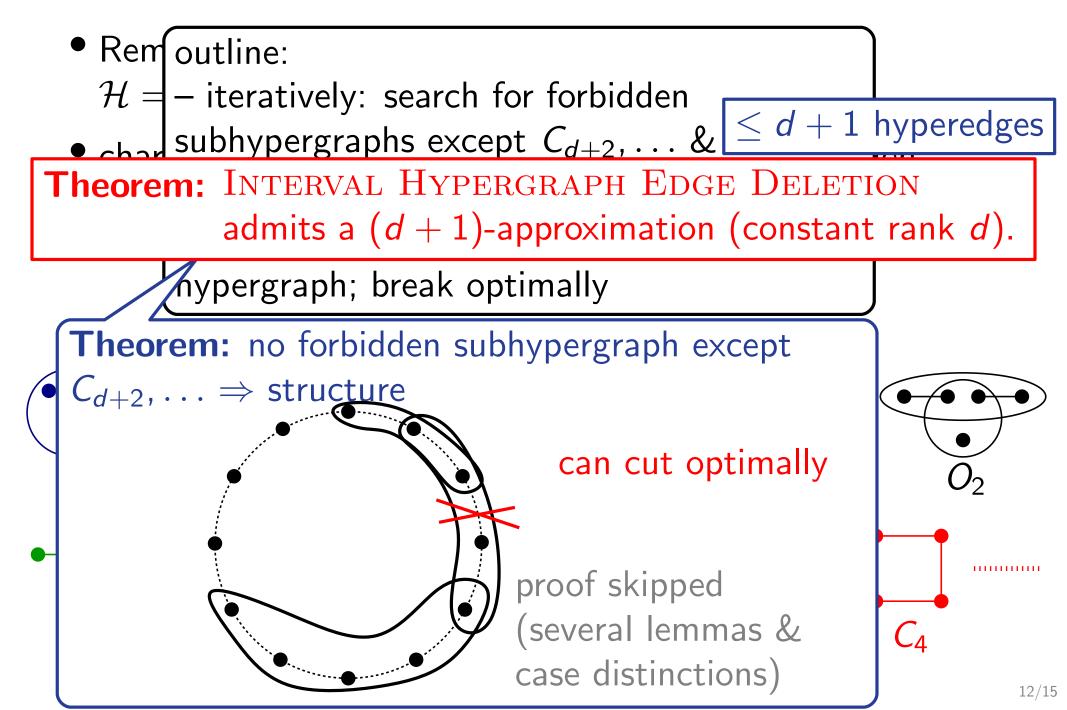


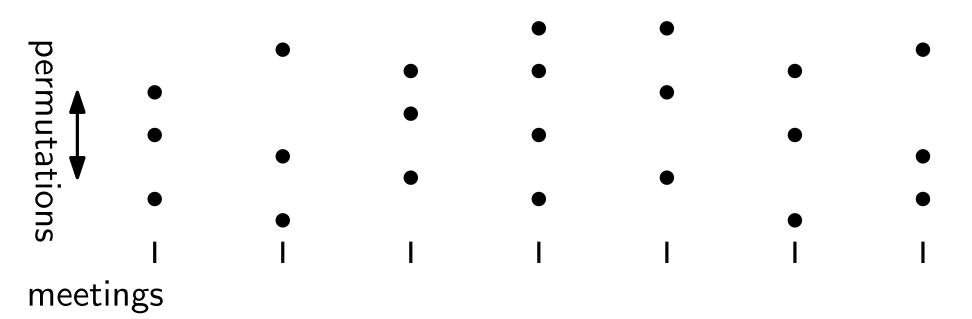


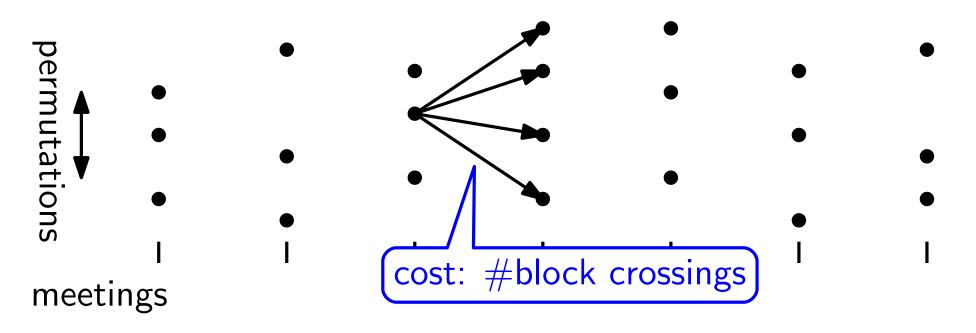


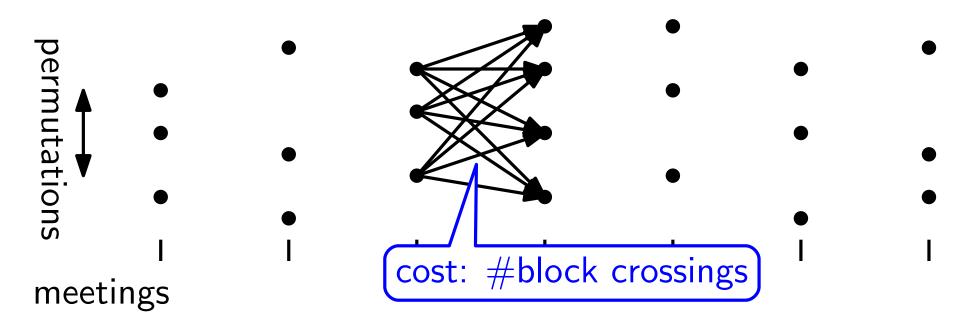




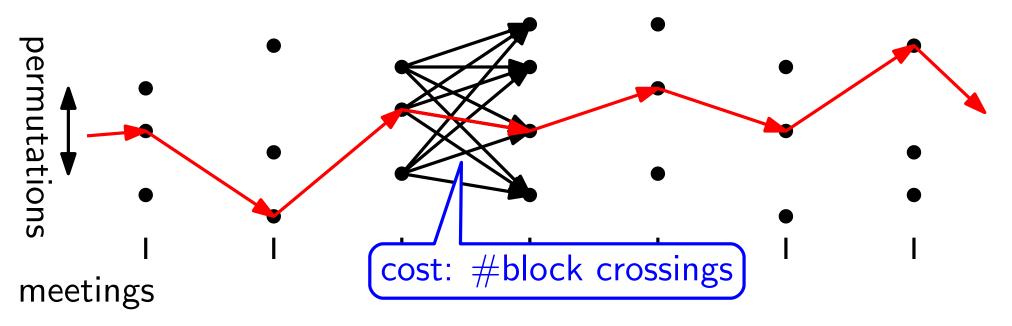








 first idea: modify FPT of Kostitsyna et al. for block crossings

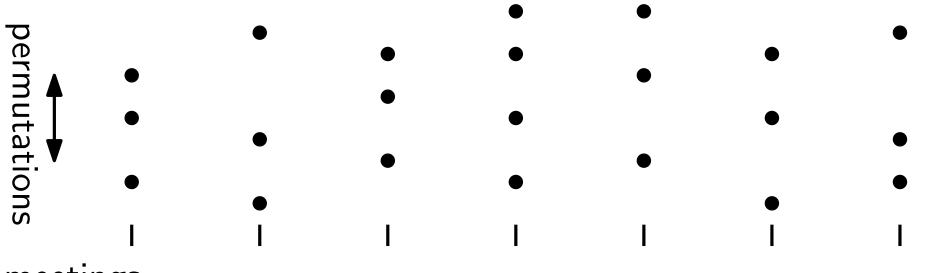


• find minimum-cost path



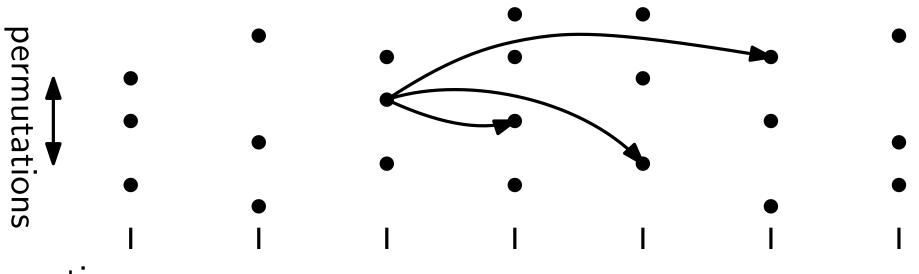
- find minimum-cost path
- runtime: $O(k!^2n)$

 first idea: modify FPT of Kostitsyna et al. for block crossings



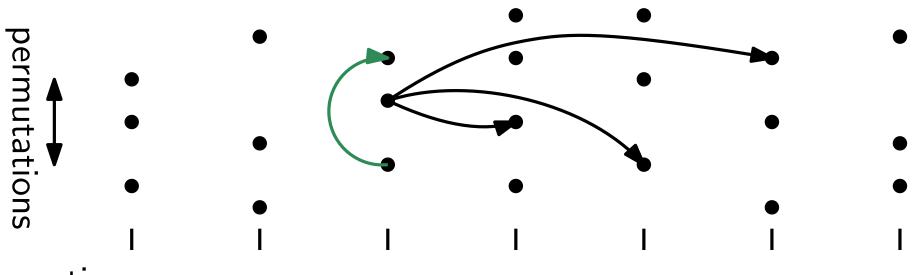
- find minimum-cost path
- runtime: $O(k!^2n)$
- new idea: 1 edge \leftrightarrow block crossing

 first idea: modify FPT of Kostitsyna et al. for block crossings



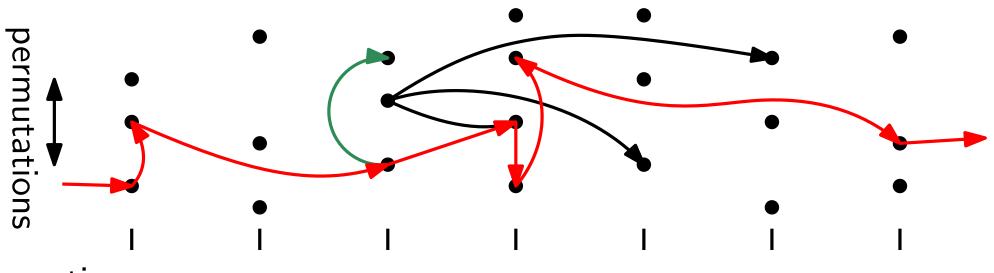
- find minimum-cost path
- runtime: $O(k!^2n)$
- new idea: 1 edge \leftrightarrow block crossing

 first idea: modify FPT of Kostitsyna et al. for block crossings



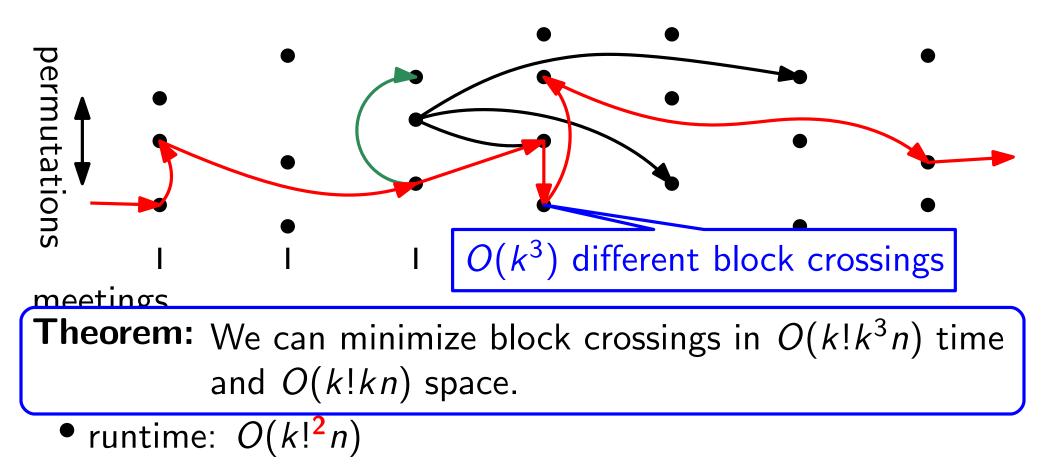
- find minimum-cost path
- runtime: $O(k!^2n)$
- new idea: 1 edge \leftrightarrow block crossing

 first idea: modify FPT of Kostitsyna et al. for block crossings



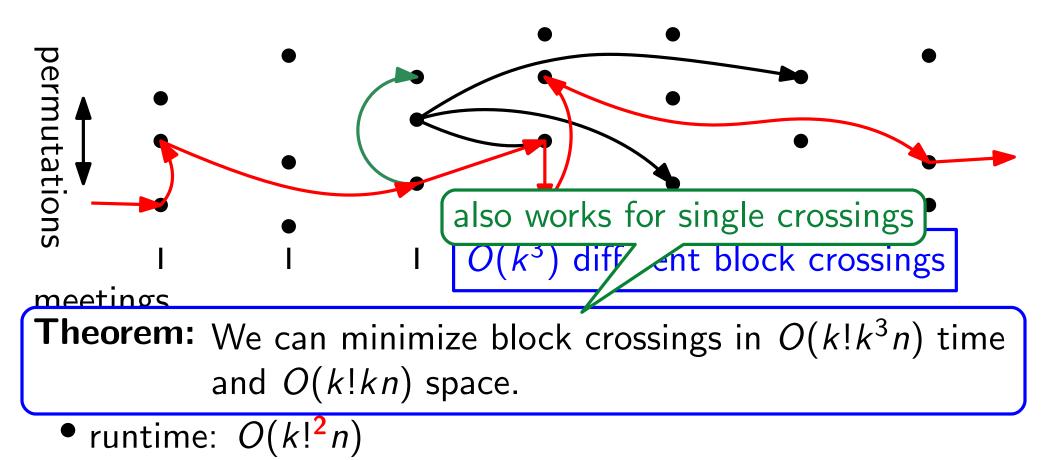
- find minimum-cost path
- runtime: $O(k!^2n)$
- new idea: 1 edge \leftrightarrow block crossing

 first idea: modify FPT of Kostitsyna et al. for block crossings

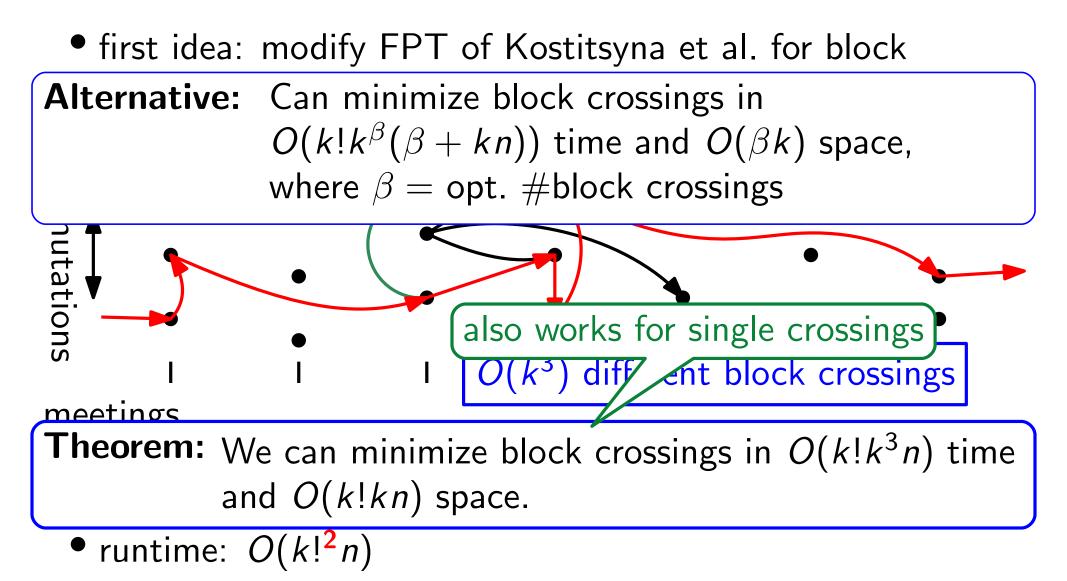


• new idea: 1 edge \leftrightarrow block crossing

 first idea: modify FPT of Kostitsyna et al. for block crossings



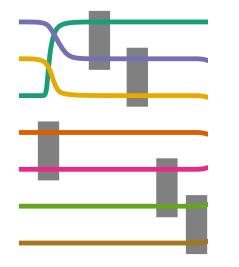
• new idea: 1 edge \leftrightarrow block crossing



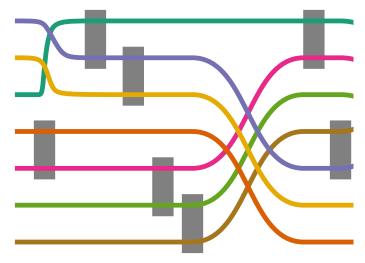
• new idea: 1 edge \leftrightarrow block crossing

- only pairwise meetings
- single block crossing suffices to bring pair together

- only pairwise meetings
- single block crossing suffices to bring pair together

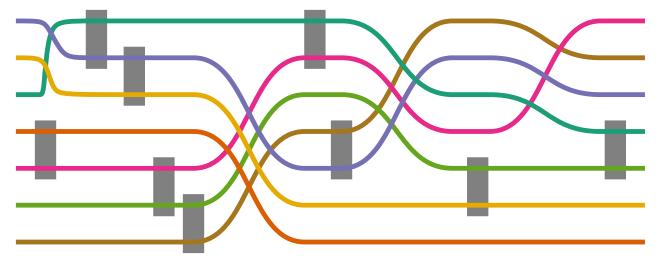


- only pairwise meetings
- single block crossing suffices to bring pair together



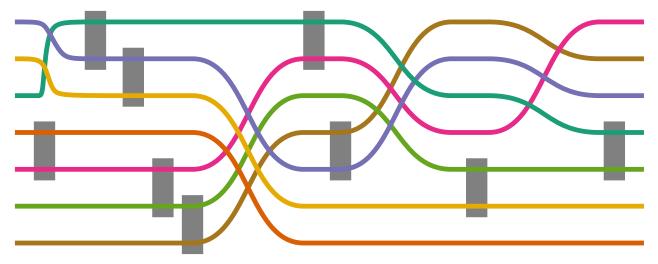
• single block crossing can support several new meetings

- only pairwise meetings
- single block crossing suffices to bring pair together



- single block crossing can support several new meetings
- greedily try to support largest prefix of future meetings with single block crossing

- only pairwise meetings
- single block crossing suffices to bring pair together



- single block crossing can support several new meetings
- greedily try to support largest prefix of future meetings with single block crossing
- O(kn)-time algorithm
- use random or best start permutation

- only pairwise meetings
- single block crossing suffices to bring pair together

• single block crossir for k = 5, n = 12:

- greedily try to sup 56% opt., 38% + 1bc, 5% + 2bc, with single block c 1% + 3bc
- O(kn)-time algorithm
- use random or best start permutation

Conclusion

- can identify crossing-free solution
- new exact algorithms
- minimizing block crossings is hard
- approximation algorithm
- greedy heuristic for pairwise meetings

Conclusion

- can identify crossing-free solution
- new exact algorithms
- minimizing block crossings is hard
- approximation algorithm
- greedy heuristic for pairwise meetings

Open questions:

- generalize approximation / approximation for simple crossings?
- can greedy algorithm be generalized?

Conclusion

- can identify crossing-free solution
- new exact algorithms
- minimizing block crossings is hard
- approximation algorithm
- greedy heuristic for pairwise meetings

Open questions:

- generalize approximation / approximation for simple crossings?
- can greedy algorithm be generalized?

Thank you!