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block crossing

We want to minimize block crossings!



Previous Results – Simple Crossings

[Kostitsyna et al, GD’15]

• FPT for #characters

• upper and lower bounds for some cases with pairwise
meetings

• NP-hardness
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Related Work

• Block crossings for metro lines [Fink, Pupyrev, Wolff; 2015]

• Bundled Crossings [Fink et al., 2016]

• Bundled Crossing Number [Alam, Fink, Pupyrev; next talk]
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Storylines & Block Crossings

• block crossing

permutations π π′

O(k3) possible
block crossings

• storyline visualization

(

π supports
meeting

Given n meetings
of k characters,
find permutations
transformed by
min. # block crossings.
(Must support all meetings.)

Problem definition:
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Our Results

• recognize crossing-free instances

• NP-hardness

• approximation

• FPT/exact algorithms

• greedy heuristic for pairwise meetings
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Crossing-Free Storylines Visualizations
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Crossing-Free Storylines Visualizations

π supports each meeting

• group hypergraph H = (C , Γ ) is interval hypergraph

groups that meet

• interval hypergraph property can be checked in O(k2) time

[Trotter, Moore, 1976]
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• Reduction from Sorting by Transpositions

v1
v2
v3
v4
v5

v4
v3
v1
v5
v2

9/15



Minimizing Block Crossings is NP-hard

• Reduction from Sorting by Transpositions

v1
v2
v3
v4
v5

v4
v3
v1
v5
v2

sort fixed permutations
with minimum number
of block crossings

9/15



Minimizing Block Crossings is NP-hard

• Reduction from Sorting by Transpositions

v1
v2
v3
v4
v5

v4
v3
v1
v5
v2

sort fixed permutations
with minimum number
of block crossings

9/15



Minimizing Block Crossings is NP-hard

• Reduction from Sorting by Transpositions

v1
v2
v3
v4
v5

v4
v3
v1
v5
v2

sort fixed permutations
with minimum number
of block crossings

• fix permutations by repeated meetings

9/15



Minimizing Block Crossings is NP-hard

• Reduction from Sorting by Transpositions

v1
v2
v3
v4
v5

v4
v3
v1
v5
v2 ︸ ︷︷ ︸

k=5 times

sort fixed permutations
with minimum number
of block crossings

• fix permutations by repeated meetings

︸ ︷︷ ︸
k=5 times

9/15



Minimizing Block Crossings is NP-hard

• Reduction from Sorting by Transpositions

v1
v2
v3
v4
v5

v4
v3
v1
v5
v2 ︸ ︷︷ ︸

k=5 times

• fix permutations by repeated meetings

︸ ︷︷ ︸
k=5 times

• add frame to prevent reversal

v1
v2
v3
v4
v5

9/15



Minimizing Block Crossings is NP-hard

• Reduction from Sorting by Transpositions

v1
v2
v3
v4
v5
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u5

v4
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v5
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u3
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Approximation Algorithm

• all meetings of size ≤ d (constant)
• no repeated meetings

idea:
1. choose starting order π that supports many meetings
2. temporarily change order for each unsupported meeting

≤ 2(d − 1) block crossings

meetings supported by π are free

Lemma: starting order π has α
unsupported meetings ⇒
at least 4α/(3d2) block
crossings necessary

approximate αOPT

⇒ approximate
block crossings
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Approximation Algorithm

find π minimizing #unsupported meetings

↔ remove minimum #meetings so that storyline crossing-free

↔ remove minimum #hyperedges so that H is interval
hypergraph

Theorem: Interval Hypergraph Edge Deletion
admits a (d + 1)-approximation (constant rank d).

Theorem: We can find a (3(d2 − 1)d2/2)-approximation for
the minimum number of block crossings in storyline
visualizations in O(kn) time.
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Interval Hypergraph Edge Deletion

• Remove minimum number of hyperedges so that
H = (V , E ) becomes interval hypergraph

NP-hard for graphs:
remove all but n − 1 edges →
Hamiltonian path
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• Remove minimum number of hyperedges so that
H = (V , E ) becomes interval hypergraph

• characterization of interval hypergraphs by forbidden
subhypergraphs

O1 O2F1

C3 C4

F2 Fd−2

M1 M2 Md−1

outline:
– iteratively: search for forbidden
subhypergraphs except Cd+2, . . . &
completely remove them

– result: cyclic generalization of interval
hypergraph; break optimally

≤ d + 1 hyperedges

Theorem: no forbidden subhypergraph except
Cd+2, . . . ⇒ structure

can cut optimally

proof skipped
(several lemmas &
case distinctions)

Theorem: Interval Hypergraph Edge Deletion
admits a (d + 1)-approximation (constant rank d).
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• first idea: modify FPT of Kostitsyna et al. for block
crossings

p
erm

u
tation

s

meetings

• find minimum-cost path

• runtime: O(k!2n)

• new idea: 1 edge ↔ block crossing

O(k3) different block crossings

Alternative: Can minimize block crossings in
O(k!kβ(β + kn)) time and O(βk) space,
where β = opt. #block crossings

Theorem: We can minimize block crossings in O(k!k3n) time
and O(k!kn) space.

also works for single crossings

13/15



2-Character Meetings – A Greedy Algorithm

• only pairwise meetings

• single block crossing suffices to bring pair together

14/15



2-Character Meetings – A Greedy Algorithm

• only pairwise meetings

• single block crossing suffices to bring pair together

14/15



2-Character Meetings – A Greedy Algorithm

• only pairwise meetings

• single block crossing suffices to bring pair together

• single block crossing can support several new meetings

14/15



2-Character Meetings – A Greedy Algorithm

• only pairwise meetings

• single block crossing suffices to bring pair together

• single block crossing can support several new meetings

• greedily try to support largest prefix of future meetings
with single block crossing

14/15



2-Character Meetings – A Greedy Algorithm

• only pairwise meetings

• single block crossing suffices to bring pair together

• single block crossing can support several new meetings

• greedily try to support largest prefix of future meetings
with single block crossing

• O(kn)-time algorithm
• use random or best start permutation

14/15



2-Character Meetings – A Greedy Algorithm

• only pairwise meetings

• single block crossing suffices to bring pair together

• single block crossing can support several new meetings

• greedily try to support largest prefix of future meetings
with single block crossing

• O(kn)-time algorithm
• use random or best start permutation

some preliminary experiments; e.g.:
greedy with best start permutation
for k = 5, n = 12:
56% opt., 38% + 1bc, 5% + 2bc,
1% + 3bc
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Conclusion

• can identify crossing-free solution
• new exact algorithms
• minimizing block crossings is hard
• approximation algorithm
• greedy heuristic for pairwise meetings

Open questions:
• generalize approximation / approximation for simple

crossings?
• can greedy algorithm be generalized?

Thank you!
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