Obstructing Visibilities with One Obstacle

Ji-won Park (KAIST)

Steven Chaplick, Fabian Lipp, Alexander Wolff (Universität Würzburg)

Obstacle Number of a Graph

- G : a simple graph

Obstacle Number of a Graph

- G : a simple graph
- Place vertices freely in the plane

Obstacle Number of a Graph

- G : a simple graph
- Place vertices freely in the plane
- Obstacles: (open) non-self-intersecting polygons

Obstacle Number of a Graph

- G : a simple graph
- Place vertices freely in the plane
- Obstacles: (open) non-self-intersecting polygons

- $u \sim v$ iff $\overline{u v}$ doesn't intersect any obstacles

Obstacle Number of a Graph

- G : a simple graph
- Place vertices freely in the plane
- Obstacles: (open) non-self-intersecting polygons

- $u \sim v$ iff $\overline{u v}$ doesn't intersect any obstacles
- obs $(G)=$ smallest number of obstacles to represent G

Obstacle Number of a Graph

- G : a simple graph
- Place vertices freely in the plane
- Obstacles: (open) non-self-intersecting polygons

- $u \sim v$ iff $\overline{u v}$ doesn't intersect any obstacles
- obs $(G)=$ smallest number of obstacles to represent G

Obstacle Number of a Graph

- G : a simple graph
- Place vertices freely in the plane
- Obstacles: (open) non-self-intersecting polygons

- $u \sim v$ iff $\overline{u v}$ doesn't intersect any obstacles
- obs $(G)=$ smallest number of obstacles to represent G

Obstacle Number of a Graph

- G : a simple graph
- Place vertices freely in the plane
- Obstacles: (open) non-self-intersecting polygons

- $u \sim v$ iff $\overline{u v}$ doesn't intersect any obstacles
- obs $(G)=$ smallest number of obstacles to represent G

Obstacle Number of a Graph

- G : a simple graph
- Place vertices freely in the plane
- Obstacles: (open) non-self-intersecting polygons

- $u \sim v$ iff $\overline{u v}$ doesn't intersect any obstacles
- obs $(G)=$ smallest number of obstacles to represent G

Obstacle Number of a Graph

- Outside obstacle: drawn in the unbounded face

Obstacle Number of a Graph

- Outside obstacle: drawn in the unbounded face
- Inside obstacle: drawn in the complement of the unbounded face

Obstacle Number of a Graph

- Outside obstacle: drawn in the unbounded face
- Inside obstacle:
drawn in the complement of the unbounded face
- obs ${ }_{\text {out }}(G)=$ Obstacle number using an outside obstacle obsin $_{\text {in }}(G)=$ Obstacle number only using inside obstacles

Some Known Results

- $\operatorname{obs}(G) \leq \#$ of non-edges of $G=O\left(n^{2}\right)$

Some Known Results

- obs $(G) \leq \#$ of non-edges of $G=O\left(n^{2}\right)$
- obs $(G) \leq O(n \lg n) \quad$ [Balko, Chibulka and Valtr, GD'15]

Some Known Results

- $\operatorname{obs}(G) \leq \#$ of non-edges of $G=O\left(n^{2}\right)$
- obs $(G) \leq O(n \lg n) \quad$ [Balko, Chibulka and Valtr, GD'15]
- There are graphs that require $\Omega\left(n /(\log \log n)^{2}\right)$ obstacles.

Some Known Results

- $\operatorname{obs}(G) \leq \#$ of non-edges of $G=O\left(n^{2}\right)$
- obs $(G) \leq O(n \lg n) \quad$ [Balko, Chibulka and Valtr, GD'15]
- There are graphs that require $\Omega\left(n /(\log \log n)^{2}\right)$ obstacles.
[Dujmović and Morin '15]
- For each m, there exists a graph G s.t. obs $(G)=m$

Questions

- Graphs of obstacle number 0 are complete graphs.

Questions

- Graphs of obstacle number 0 are complete graphs.
- What are the graphs of obstacle number 1 ?

Questions

- Graphs of obstacle number 0 are complete graphs.
- What are the graphs of obstacle number 1 ?
- The smallest graph of obstacle number 1 consists of 2 vertices and 1 non-edge.

Questions

- Graphs of obstacle number 0 are complete graphs.
- What are the graphs of obstacle number 1 ?
- The smallest graph of obstacle number 1 consists of 2 vertices and 1 non-edge.
- What is the smallest graph of obstacle number 2 ?

Questions

- Graphs of obstacle number 0 are complete graphs.
- What are the graphs of obstacle number 1 ?
- The smallest graph of obstacle number 1 consists of 2 vertices and 1 non-edge.
- What is the smallest graph of obstacle number 2 ?
- $\operatorname{obs}\left(K_{5,5}^{*}\right)=2$

Questions

- Graphs of obstacle number 0 are complete graphs.
- What are the graphs of obstacle number 1 ?
- The smallest graph of obstacle number 1 consists of 2 vertices and 1 non-edge.
- What is the smallest graph of obstacle number 2 ?
- $\operatorname{obs}\left(K_{5,5}^{*}\right)=2$
- Can an outside obstacle and an inside obstacle do different jobs?
i.e. $\left\{G: \operatorname{obs}_{\mathrm{out}}(G)=1\right\}$ vs. $\left\{G: \mathrm{obs}_{\mathrm{in}}(G)=1\right\}$

Our Results

- Graphs whose longest cycle has length ≤ 6 have obstacle number 1.

Our Results

- Graphs whose longest cycle has length ≤ 6 have obstacle number 1.
- Graphs with at most 7 vertices have obstacle number 1 .

Our Results

- Graphs whose longest cycle has length ≤ 6 have obstacle number 1.
- Graphs with at most 7 vertices have obstacle number 1.
- Smallest graph of obstacle number 2 has 8 vertices.

Our Results

- Graphs whose longest cycle has length ≤ 6 have obstacle number 1.
- Graphs with at most 7 vertices have obstacle number 1.
- Smallest graph of obstacle number 2 has 8 vertices.
- $\left\{G: \operatorname{obs}_{\text {out }}(G)=1\right\}$ and $\left\{G: \operatorname{obs}_{\text {in }}(G)=1\right\}$ are incomparable.

Our Results

- Graphs whose longest cycle has length ≤ 6 have obstacle number 1.
- Graphs with at most 7 vertices have obstacle number 1 .
- Smallest graph of obstacle number 2 has 8 vertices.
- $\left\{G: \operatorname{obs}_{\text {out }}(G)=1\right\}$ and $\left\{G: \operatorname{obs}_{\text {in }}(G)=1\right\}$ are incomparable.
- The single-obstacle graph sandwich problem is NP-hard. Given two graphs G and H, it is NP-hard to decide the existence of a graph K s.t. $G \subset K \subset H$ and obs $(K)=1$.

Our Results

- Graphs whose longest cycle has length ≤ 6 have obstacle number 1.
- Graphs with at most 7 vertices have obstacle number 1.
- Smallest graph of obstacle number 2 has 8 vertices.
- $\left\{G: \operatorname{obs}_{\text {out }}(G)=1\right\}$ and $\left\{G: \operatorname{obs}_{\text {in }}(G)=1\right\}$ are incomparable.
- The single-obstacle graph sandwich problem is NP-hard. Given two graphs G and H, it is NP-hard to decide the existence of a graph K s.t. $G \subset K \subset H$ and $o b s(K)=1$.
- The following problems are all NP-hard:

The outside-obstacle graph sandwich problem
The inside-obstacle graph sandwich problem
The simple-polygon visibility graph sandwich problem

Graphs of Obstacle Number 1

Thm. Every outerplanar graph has an outside-obstacle representation.

Thm. Graphs represented by 1 convex polygon are non-double covering circular arc graphs. [Alpert, Koch, Laison, '09]

- Circular arc graphs: intersection graphs for arcs in a circle
- Non-double covering: No two arcs cover the whole circle.

Graphs of Obstacle Number 1

Thm. Every outerplanar graph has an outside-obstacle representation.

Thm. Graphs represented by 1 convex polygon are non-double covering circular arc graphs. [Alpert, Koch, Laison, '09]

- Circular arc graphs: intersection graphs for arcs in a circle
- Non-double covering: No two arcs cover the whole circle.

Thm. Any graph whose longest cycle has length ≤ 6 has an outside-obstacle representation.

Thm. Any graph with at most 7 vertices has an outside-obstacle representation.

Co-bipartite Graphs

Let G be a co-bipartite graph with a co-bipartition Z, Z^{\prime} with obs ${ }_{\text {out }}(G)=1$.
(A co-bipartite graph is the complement of a bipartite graph)
Obs. $\mathrm{CH}(Z)$ and $\mathrm{CH}\left(Z^{\prime}\right)$ cannot be pierced by the outside obstacle.

Co-bipartite Graphs

Let G be a co-bipartite graph with a co-bipartition Z, Z^{\prime} with obs ${ }_{\text {out }}(G)=1$.
Def. $\mathrm{CH}(Z)$ and $\mathrm{CH}\left(Z^{\prime}\right)$ are k-crossing if $\mathrm{CH}(Z) \backslash \mathrm{CH}\left(Z^{\prime}\right)$ consists of $k+1$ disjoint regions.

3-crossing

1-crossing

Co-bipartite Graphs

Let G be a co-bipartite graph with a co-bipartition Z, Z^{\prime} with obs out $(G)=1$.
Def. $\mathrm{CH}(Z)$ and $\mathrm{CH}\left(Z^{\prime}\right)$ are k-crossing if $\mathrm{CH}(Z) \backslash \mathrm{CH}\left(Z^{\prime}\right)$ consists of $k+1$ disjoint regions.
Lemma. Suppose $\mathrm{CH}(Z)$ and $\mathrm{CH}\left(Z^{\prime}\right)$ are 1-crossing. If G contains an induced 4 -cycle $z_{1} z_{1}^{\prime} z_{2}^{\prime} z_{2}$ where $\left\{z_{1}, z_{2}\right\} \subseteq Z,\left\{z_{1}^{\prime}, z_{2}^{\prime}\right\} \subseteq Z^{\prime}$, then either z_{1} and z_{2} or z_{1}^{\prime} and z_{2}^{\prime} are in different petals.

Co-bipartite Graphs

Let G be a co-bipartite graph with a co-bipartition Z, Z^{\prime} with obs out $(G)=1$.
Def. $\mathrm{CH}(Z)$ and $\mathrm{CH}\left(Z^{\prime}\right)$ are k-crossing if $\mathrm{CH}(Z) \backslash \mathrm{CH}\left(Z^{\prime}\right)$ consists of $k+1$ disjoint regions.
Lemma. Let A, B be a co-bipartition of K_{6}^{*}.
Then $\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are at least 1-crossing in any outside-obstacle representation. Moreover, if G contains K_{6}^{*} as an induced subgraph, then $\mathrm{CH}(Z)$ and $\mathrm{CH}\left(Z^{\prime}\right)$ are at least 1-crossing.

A
 B

Co-bipartite Graphs

Let G be a co-bipartite graph with a co-bipartition Z, Z^{\prime} with obs out $(G)=1$.

Def. $\mathrm{CH}(Z)$ and $\mathrm{CH}\left(Z^{\prime}\right)$ are k-crossing if $\mathrm{CH}(Z) \backslash \mathrm{CH}\left(Z^{\prime}\right)$ consists of $k+1$ disjoint regions.
Lemma. Let A, B be a co-bipartition of K_{6}^{*}.
Then $\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are at least 1-crossing in any outside-obstacle representation. Moreover, if G contains K_{6}^{*} as an induced subgraph, then $\mathrm{CH}(Z)$ and $\mathrm{CH}\left(Z^{\prime}\right)$ are at least 1-crossing.

Co-bipartite Graphs

Let G be a co-bipartite graph with a co-bipartition Z, Z^{\prime} with obs out $(G)=1$.
Def. $\mathrm{CH}(Z)$ and $\mathrm{CH}\left(Z^{\prime}\right)$ are k-crossing if $\mathrm{CH}(Z) \backslash \mathrm{CH}\left(Z^{\prime}\right)$ consists of $k+1$ disjoint regions.

Lemma. Let A, B be a co-bipartition of K_{6}^{*}.
Then $\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are at least 1-crossing in any outside-obstacle representation. Moreover, if G contains K_{6}^{*} as an induced subgraph, then $\mathrm{CH}(Z)$ and $\mathrm{CH}\left(Z^{\prime}\right)$ are at least 1-crossing.

Smallest Graph of Obstacle Number 2

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Smallest Graph of Obstacle Number 2

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 1) obs $(G) \leq 2$.
2) Every graph with at most 7 vertices has obstacle number 1 .

Smallest Graph of Obstacle Number 2

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) obs out $^{(G)>1}$
$\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are at least 1-crossing.

Smallest Graph of Obstacle Number 2

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) obs $_{\text {out }}(G)>1$
$\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are 1-crossing.

- v_{4}

Smallest Graph of Obstacle Number 2

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) obs $_{\text {out }}(G)>1$
$\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are 1-crossing.

Smallest Graph of Obstacle Number 2

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) obs $_{\text {out }}(G)>1$
$\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are 1-crossing.

- v_{8}

Smallest Graph of Obstacle Number 2

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) obs $_{\text {out }}(G)>1$
$\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are 1-crossing.
Consider $G-\left\{v_{4}, v_{8}\right\}$.

Smallest Graph of Obstacle Number 2

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) obs $_{\text {out }}(G)>1$
$\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are 1-crossing.

Smallest Graph of Obstacle Number 2

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) obs out $^{(G)>1}$
$\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are 1-crossing.
Cannot add v_{4}, v_{8}.

Smallest Graph of Obstacle Number 2

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) obs out $^{(G)>1}$
$\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are 1-crossing.
Cannot add v_{4}, v_{8}.
Induced 4-cycle $v_{1} v_{4} v_{8} v_{7}$

Smallest Graph of Obstacle Number 2

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) obs $_{\text {out }}(G)>1$
$\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are 1-crossing.
Cannot add v_{4}, v_{8}.
Induced 4-cycle $v_{1} v_{4} v_{8} v_{7}$

Smallest Graph of Obstacle Number 2

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) obs out $^{(G)>1}$
$\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are 1-crossing.
Cannot add v_{4}, v_{8}.
Induced 4-cycles $v_{1} v_{4} v_{8} v_{7}$, $v_{1} v_{4} v_{8} v_{5}, v_{2} v_{4} v_{8} v_{6}, v_{2} v_{4} v_{8} v_{7}$

Smallest Graph of Obstacle Number 2

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 4) obsin $(G)>1$
The convex hull of $V(G)$ forms a cycle.
Case analysis on vertices on CH

$$
\left\{G: \operatorname{obs}_{\text {out }}(G)=1\right\} \not \subset\left\{G: \operatorname{obs}_{\mathrm{in}}(G)=1\right\}
$$

$$
\left\{G: \operatorname{obs}_{\text {out }}(G)=1\right\} \not \supset\left\{G: \operatorname{obs}_{\mathrm{in}}(G)=1\right\}
$$

Thm. There is a graph G such that obs $_{\text {in }}(G)=1$ but obs $_{\text {out }}(G)>1$.

$\left\{G: \operatorname{obs}_{\text {out }}(G)=1\right\} \not \supset\left\{G: \operatorname{obs}_{\text {in }}(G)=1\right\}$
Thm. There is a graph G such that obsin $(G)=1$ but obs $_{\text {out }}(G)>1$.

$$
\left\{G: \operatorname{obs}_{\text {out }}(G)=1\right\} \not \supset\left\{G: \operatorname{obs}_{\mathrm{in}}(G)=1\right\}
$$

Thm. There is a graph G such that obs $_{\text {in }}(G)=1$ but obs $_{\text {out }}(G)>1$.

$\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are at least 1-crossing.

$$
\left\{G: \operatorname{obs}_{\text {out }}(G)=1\right\} \not \supset\left\{G: \operatorname{obs}_{\mathrm{in}}(G)=1\right\}
$$

Thm. There is a graph G such that obs $_{\text {in }}(G)=1$ but obs $_{\text {out }}(G)>1$.

$\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are exactly 1-crossing.

$$
\left\{G: \operatorname{obs}_{\text {out }}(G)=1\right\} \not \supset\left\{G: \operatorname{obs}_{\mathrm{in}}(G)=1\right\}
$$

Thm. There is a graph G such that $\operatorname{obs}_{\text {in }}(G)=1$ but obs $_{\text {out }}(G)>1$.

$$
\left\{G: \operatorname{obs}_{\text {out }}(G)=1\right\} \not \supset\left\{G: \operatorname{obs}_{\mathrm{in}}(G)=1\right\}
$$

Thm. There is a graph G such that obs $_{\text {in }}(G)=1$ but obs $_{\text {out }}(G)>1$.

NP-hardness

Def. In a graph sandwich problem for a property Π, given two graphs $G \subseteq H$ with the same vertex set, we ask for a graph K s.t. $G \subseteq K \subseteq H$ and K has the property Π.
Thm. The outside-obstacle graph sandwich problem is NP-hard. In other words, given two graphs $G \subseteq H$ with the same vertex set, it is NP-hard to decide if there is a graph K s.t. $G \subseteq K \subseteq H$ and obs out $(K)=1$.

NP-hardness

Def. In a graph sandwich problem for a property Π, given two graphs $G \subseteq H$ with the same vertex set, we ask for a graph K s.t. $G \subseteq K \subseteq H$ and K has the property Π.
Thm. The outside-obstacle graph sandwich problem is NP-hard. In other words, given two graphs $G \subseteq H$ with the same vertex set, it is NP-hard to decide if there is a graph K s.t. $G \subseteq K \subseteq H$ and $\operatorname{obs}_{\text {out }}(K)=1$.
Thm. The inside-obstacle graph sandwich problem and the single-obstacle graph sandwich problem are NP-hard.
Def. The simple-polygon visibility graph problem asks to recognize the visibility graph of a simple polygon where the obstacle is the complement of the polygon.
Thm. The simple-polygon visibility graph sandwich problem is NP-hard.

NP-hardness

Reduction from MonotoneNotAllEqual3Sat where each clause contains 3 variables, not all of which are equal.

NP-hardness

Reduction from MonotoneNotAllEqual3Sat where each clause contains 3 variables, not all of which are equal.

NP-hardness

Reduction from MonotoneNotAllEqual3Sat where each clause contains 3 variables, not all of which are equal.

NP-hardness

Reduction from MonotoneNotAllEqual3Sat where each clause contains 3 variables, not all of which are equal.

Summary and Open Problems

- Graphs of circumference at most 6 and graphs with at most 7 vertices have obstacle number 1 .
- Smallest graph of obstacle number 2 has 8 vertices.
- $\left\{G: \operatorname{obs}_{\text {out }}(G)=1\right\}$ and $\left\{G: \operatorname{obs}_{\text {in }}(G)=1\right\}$ are incomparable.
- All of outside-, inside-, and single-obstacle graph sandwich problems are NP-hard. The simple-polygon visibility graph sandwich problem is also NP-hard.

Summary and Open Problems

- Graphs of circumference at most 6 and graphs with at most 7 vertices have obstacle number 1 .
- Smallest graph of obstacle number 2 has 8 vertices.
- $\left\{G: \operatorname{obs}_{\text {out }}(G)=1\right\}$ and $\left\{G: \operatorname{obs}_{\text {in }}(G)=1\right\}$ are incomparable.
- All of outside-, inside-, and single-obstacle graph sandwich problems are NP-hard. The simple-polygon visibility graph sandwich problem is also NP-hard.
- Is it NP-hard to decide the graphs of obstacle number 1 or can we give a characterization of such graphs?

Summary and Open Problems

- Graphs of circumference at most 6 and graphs with at most 7 vertices have obstacle number 1 .
- Smallest graph of obstacle number 2 has 8 vertices.
- $\left\{G: \operatorname{obs}_{\text {out }}(G)=1\right\}$ and $\left\{G: \operatorname{obs}_{\text {in }}(G)=1\right\}$ are incomparable.
- All of outside-, inside-, and single-obstacle graph sandwich problems are NP-hard. The simple-polygon visibility graph sandwich problem is also NP-hard.
- Is it NP-hard to decide the graphs of obstacle number 1 or can we give a characterization of such graphs?
- What is the smallest graph of obstacle number o for $o>2$?

Summary and Open Problems

- Graphs of circumference at most 6 and graphs with at most 7 vertices have obstacle number 1 .
- Smallest graph of obstacle number 2 has 8 vertices.
- $\left\{G: \operatorname{obs}_{\text {out }}(G)=1\right\}$ and $\left\{G: \operatorname{obs}_{\text {in }}(G)=1\right\}$ are incomparable.
- All of outside-, inside-, and single-obstacle graph sandwich problems are NP-hard. The simple-polygon visibility graph sandwich problem is also NP-hard.
- Is it NP-hard to decide the graphs of obstacle number 1 or can we give a characterization of such graphs?
- What is the smallest graph of obstacle number o for $o>2$?
- An upper bound for obsin (G) in terms of obs out (G) ?

Summary and Open Problems

- Graphs of circumference at most 6 and graphs with at most 7 vertices have obstacle number 1 .
- Smallest graph of obstacle number 2 has 8 vertices.
- $\left\{G: \operatorname{obs}_{\text {out }}(G)=1\right\}$ and $\left\{G: \operatorname{obs}_{\text {in }}(G)=1\right\}$ are incomparable.
- All of outside-, inside-, and single-obstacle graph sandwich problems are NP-hard. The simple-polygon visibility graph sandwich problem is also NP-hard.
- Is it NP-hard to decide the graphs of obstacle number 1 or can we give a characterization of such graphs?
- What is the smallest graph of obstacle number o for $o>2$?
- An upper bound for obsin (G) in terms of obs out (G) ? Shown to be tight: obs $(G) \leq$ obs $_{\text {out }}(G) \leq \operatorname{obs}(G)+1$ $\operatorname{obs}_{\text {in }}(G) \geq \operatorname{obs}_{\text {out }}(G)-1$

