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Obstacle Number of a Graph

e Qutside obstacle:
drawn in the unbounded face

e Inside obstacle:
drawn in the complement of the unbounded face

e 0bs,u:(G) = Obstacle number using an outside obstacle
obsi, (G) = Obstacle number only using inside obstacles
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Some Known Results
obs(G) < # of non-edges of G = O(n?)

obs(G) < O(nlgn)

There are graphs that require Q(n/(loglogn)?) obstacles.

For each m, there exists a graph G s.t. obs(G)

m
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Questions

Graphs of obstacle number 0 are complete graphs.

What are the graphs of obstacle number 17

The smallest graph of obstacle number 1 consists of
2 vertices and 1 non-edge.

What is the smallest graph of obstacle number 27
obs(K3 5) = 2

Can an outside obstacle and an inside obstacle do different
jobs?
i.e. {G:obsout(G) =1} vs. {G:obs;,(G) =1}
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Our Results

Graphs whose longest cycle has length < 6 have obstacle
number 1.

Graphs with at most 7 vertices have obstacle number 1.

Smallest graph of obstacle number 2 has 8 vertices.

{G : obsout(G) = 1} and {G : obs;, (G) = 1} are
Incomparable.

The single-obstacle graph sandwich problem is NP-hard.

ne following problems are all NP-hard:

ne outside-obstacle graph sandwich problem

ne inside-obstacle graph sandwich problem

ne simple-polygon visibility graph sandwich problem
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Graphs of Obstacle Number 1

Every outerplanar graph has an outside-obstacle
representation.

Graphs represented by 1 convex polygon are non-double
covering circular arc graphs.

Any graph whose longest cycle has length < 6 has an
outside-obstacle representation.

Any graph with at most 7 vertices has an
outside-obstacle representation.



Co-bipartite Graphs

Let G be a co-bipartite graph with a co-bipartition Z, Z’
with obsgu(G) = 1.
(A co-bipartite graph is the complement of a bipartite graph)

Obs. CH(Z) and CH(Z’) cannot be pierced by the outside
obstacle.
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Proof. 1) obs(G) < 2.
2) Every graph with at most 7 vertices has obstacle number 1.
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Smallest Graph of Obstacle Number 2

Thm. The smallest graph of obstacle number 2 has 8 vertices.

U U

Us
Ue

Proof. 3) obsyu(G) > 1

CH(A) and CH(B) are 1-crossing.
Cannot add wvy4, vs.

Induced 4-cycles viv4v8v7,
U104U8V5, U2V4U8Vg, V2U4V8VT g




Smallest Graph of Obstacle Number 2

Thm. The smallest graph of obstacle number 2 has 8 vertices.

U2 U3
U1 /7%@4
\\‘i.
(v (v
5) Vg V- 8

Proof. 4) obs;,(G) > 1
The convex hull of V(G) forms a cycle.

Case analysis on vertices on CH
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1}

obsi, (G)

Thm. There is a graph G such that obs;,(G) = 1 but

1} 241G

obsout (G)
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obsout(G) > 1.
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Thm. There is a graph G such that obs;,(G) = 1 but
obsout (G) > 1.
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CH(A) and CH(B) are
at least 1-crossing.
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Thm. There is a graph G such that obs;,(G) = 1 but
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CH(A) and CH(B) are o U
exactly 1-crossing.
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Thm. There is a graph G such that obs;,(G) = 1 but
obsout(G) > 1.
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Thm. There is a graph G such that obs;,(G) = 1 but
obsout (G) > 1.
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NP-hardness

Def. In a graph sandwich problem for a property 11, given
two graphs G C H with the same vertex set, we ask for
a graph K s.t. G € K C H and K has the property II.

Thm. The outside-obstacle graph sandwich problem is
NP-hard.

11



NP-hardness

Def. In a graph sandwich problem for a property 11, given
two graphs G C H with the same vertex set, we ask for
a graph K s.t. G € K C H and K has the property II.

Thm. The outside-obstacle graph sandwich problem is
NP-hard.

Thm. The inside-obstacle graph sandwich problem and the
single-obstacle graph sandwich problem are NP-hard.

Def. The simple-polygon visibility graph problem asks to
recognize the visibility graph of a simple polygon where
the obstacle is the complement of the polygon.

Thm. The simple-polygon visibility graph sandwich problem is
NP-hard.

11
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Summary and Open Problems

Graphs of circumference at most 6 and graphs with at
most 7 vertices have obstacle number 1.

Smallest graph of obstacle number 2 has 8 vertices.

{G : obsout(G) = 1} and {G : obs;, (G) = 1} are
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Summary and Open Problems

Graphs of circumference at most 6 and graphs with at
most 7 vertices have obstacle number 1.

Smallest graph of obstacle number 2 has 8 vertices.

{G : obsout(G) = 1} and {G : obs;, (G) = 1} are
iIncomparable.

All of outside-, inside-, and single-obstacle graph sandwich

problems are NP-hard. The simple-polygon visibility graph
sandwich problem is also NP-hard.

Is it NP-hard to decide the graphs of obstacle number 1 or
can we give a characterization of such graphs?

What is the smallest graph of obstacle number o for o > 27

An upper bound for obs;, (G) in terms of obsyu (G)?
Shown to be tight: obs(G) < obseut(G) < obs(G) + 1
obsin (G) > obseut(G) — 1
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