Obstructing Visibilities with One Obstacle

Ji-won Park (KAIST)

Steven Chaplick, Fabian Lipp, Alexander Wolff (Universität Würzburg)

• G: a simple graph

- G: a simple graph
- Place vertices freely in the plane

- G: a simple graph
- Place vertices freely in the plane
- Obstacles: (open) non-self-intersecting polygons

- G: a simple graph
- Place vertices freely in the plane
- Obstacles: (open) non-self-intersecting polygons

 \bullet $u \sim v$ iff \overline{uv} doesn't intersect any obstacles

- G: a simple graph
- Place vertices freely in the plane
- Obstacles: (open) non-self-intersecting polygons

- ullet $u \sim v$ iff \overline{uv} doesn't intersect any obstacles
- \bullet obs(G)= smallest number of obstacles to represent G

- G: a simple graph
- Place vertices freely in the plane
- Obstacles: (open) non-self-intersecting polygons

- ullet $u \sim v$ iff \overline{uv} doesn't intersect any obstacles
- \bullet obs(G) = smallest number of obstacles to represent G

- G: a simple graph
- Place vertices freely in the plane
- Obstacles: (open) non-self-intersecting polygons

- ullet $u \sim v$ iff \overline{uv} doesn't intersect any obstacles
- \bullet obs(G) = smallest number of obstacles to represent G

- G: a simple graph
- Place vertices freely in the plane
- Obstacles: (open) non-self-intersecting polygons

- ullet $u \sim v$ iff \overline{uv} doesn't intersect any obstacles
- \bullet obs(G) = smallest number of obstacles to represent G

- G: a simple graph
- Place vertices freely in the plane
- Obstacles: (open) non-self-intersecting polygons

- $u \sim v$ iff \overline{uv} doesn't intersect any obstacles
- obs(G) = smallest number of obstacles to represent G

 Outside obstacle: drawn in the unbounded face

- Outside obstacle: drawn in the unbounded face
- Inside obstacle:
 drawn in the *complement* of the unbounded face

- Outside obstacle: drawn in the unbounded face
- Inside obstacle: drawn in the complement of the unbounded face
- $obs_{out}(G) = Obstacle$ number using an outside obstacle $obs_{in}(G) = Obstacle$ number only using inside obstacles

• $obs(G) \le \#$ of non-edges of $G = O(n^2)$

- $obs(G) \le \#$ of non-edges of $G = O(n^2)$
- $obs(G) \le O(n \lg n)$ [Balko, Chibulka and Valtr, GD'15]

- $obs(G) \le \#$ of non-edges of $G = O(n^2)$
- $obs(G) \le O(n \lg n)$ [Balko, Chibulka and Valtr, GD'15]
- There are graphs that require $\Omega(n/(\log\log n)^2)$ obstacles. [Dujmović and Morin '15]

- $obs(G) \le \#$ of non-edges of $G = O(n^2)$
- $obs(G) \le O(n \lg n)$ [Balko, Chibulka and Valtr, GD'15]
- There are graphs that require $\Omega(n/(\log\log n)^2)$ obstacles. [Dujmović and Morin '15]
- For each m, there exists a graph G s.t. ${\rm obs}(G)=m$ [Mukkamala, Pach, Sariöz, WG'10]

• Graphs of obstacle number 0 are complete graphs.

- Graphs of obstacle number 0 are complete graphs.
- What are the graphs of obstacle number 1?

- Graphs of obstacle number 0 are complete graphs.
- What are the graphs of obstacle number 1?
- The smallest graph of obstacle number 1 consists of 2 vertices and 1 non-edge.

- Graphs of obstacle number 0 are complete graphs.
- What are the graphs of obstacle number 1?
- The smallest graph of obstacle number 1 consists of 2 vertices and 1 non-edge.
- What is the smallest graph of obstacle number 2?

- Graphs of obstacle number 0 are complete graphs.
- What are the graphs of obstacle number 1?
- The smallest graph of obstacle number 1 consists of 2 vertices and 1 non-edge.
- What is the smallest graph of obstacle number 2?
- $obs(K_{5,5}^*) = 2$

[Pach, Sariöz, '11]

- Graphs of obstacle number 0 are complete graphs.
- What are the graphs of obstacle number 1?
- The smallest graph of obstacle number 1 consists of 2 vertices and 1 non-edge.
- What is the smallest graph of obstacle number 2?
- $obs(K_{5,5}^*) = 2$

[Pach, Sariöz, '11]

 Can an outside obstacle and an inside obstacle do different jobs?

i.e.
$$\{G : obs_{out}(G) = 1\}$$
 vs. $\{G : obs_{in}(G) = 1\}$

• Graphs whose longest cycle has length ≤ 6 have obstacle number 1.

- Graphs whose longest cycle has length ≤ 6 have obstacle number 1.
- Graphs with at most 7 vertices have obstacle number 1.

- Graphs whose longest cycle has length ≤ 6 have obstacle number 1.
- Graphs with at most 7 vertices have obstacle number 1.
- Smallest graph of obstacle number 2 has 8 vertices.

- Graphs whose longest cycle has length ≤ 6 have obstacle number 1.
- Graphs with at most 7 vertices have obstacle number 1.
- Smallest graph of obstacle number 2 has 8 vertices.
- $\{G: \mathrm{obs_{out}}(G) = 1\}$ and $\{G: \mathrm{obs_{in}}(G) = 1\}$ are incomparable.

- Graphs whose longest cycle has length ≤ 6 have obstacle number 1.
- Graphs with at most 7 vertices have obstacle number 1.
- Smallest graph of obstacle number 2 has 8 vertices.
- $\{G: \mathrm{obs_{out}}(G) = 1\}$ and $\{G: \mathrm{obs_{in}}(G) = 1\}$ are incomparable.
- The single-obstacle graph sandwich problem is NP-hard. Given two graphs G and H, it is NP-hard to decide the existence of a graph K s.t. $G \subset K \subset H$ and $\mathrm{obs}(K) = 1$.

- Graphs whose longest cycle has length ≤ 6 have obstacle number 1.
- Graphs with at most 7 vertices have obstacle number 1.
- Smallest graph of obstacle number 2 has 8 vertices.
- $\{G: \mathrm{obs_{out}}(G) = 1\}$ and $\{G: \mathrm{obs_{in}}(G) = 1\}$ are incomparable.
- The single-obstacle graph sandwich problem is NP-hard. Given two graphs G and H, it is NP-hard to decide the existence of a graph K s.t. $G \subset K \subset H$ and $\mathrm{obs}(K) = 1$.
- The following problems are all NP-hard:
 The outside-obstacle graph sandwich problem
 The inside-obstacle graph sandwich problem
 The simple-polygon visibility graph sandwich problem

Graphs of Obstacle Number 1

- **Thm.** Every outerplanar graph has an outside-obstacle representation. [Alpert, Koch, Laison, '09]
- **Thm.** Graphs represented by 1 convex polygon are non-double covering circular arc graphs. [Alpert, Koch, Laison, '09]
 - Circular arc graphs: intersection graphs for arcs in a circle
 - Non-double covering: No two arcs cover the whole circle.

Graphs of Obstacle Number 1

- **Thm.** Every outerplanar graph has an outside-obstacle representation. [Alpert, Koch, Laison, '09]
- **Thm.** Graphs represented by 1 convex polygon are non-double covering circular arc graphs. [Alpert, Koch, Laison, '09]
 - Circular arc graphs: intersection graphs for arcs in a circle
 - Non-double covering: No two arcs cover the whole circle.
- **Thm.** Any graph whose longest cycle has length ≤ 6 has an outside-obstacle representation.
- **Thm.** Any graph with at most 7 vertices has an outside-obstacle representation.

Let G be a co-bipartite graph with a co-bipartition Z, Z' with $\operatorname{obs_{out}}(G) = 1$.

(A co-bipartite graph is the complement of a bipartite graph)

Obs. CH(Z) and CH(Z') cannot be pierced by the outside obstacle.

Let G be a co-bipartite graph with a co-bipartition Z, Z' with $\operatorname{obs_{out}}(G) = 1$.

Def. CH(Z) and CH(Z') are k-crossing if $CH(Z) \setminus CH(Z')$ consists of k+1 disjoint regions.

Let G be a co-bipartite graph with a co-bipartition Z, Z' with $\operatorname{obs_{out}}(G) = 1$.

Def. CH(Z) and CH(Z') are k-crossing if $CH(Z) \setminus CH(Z')$ consists of k+1 disjoint regions.

Lemma. Suppose $\operatorname{CH}(Z)$ and $\operatorname{CH}(Z')$ are 1-crossing. If G contains an induced 4-cycle $z_1z_1'z_2'z_2$ where $\{z_1,z_2\}\subseteq Z$, $\{z_1',z_2'\}\subseteq Z'$, then either z_1 and z_2 or z_1' and z_2' are in different petals.

Let G be a co-bipartite graph with a co-bipartition Z, Z' with $\operatorname{obs_{out}}(G) = 1$.

Def. CH(Z) and CH(Z') are k-crossing if $CH(Z) \setminus CH(Z')$ consists of k+1 disjoint regions.

Lemma. Let A, B be a co-bipartition of K_6^* .

Then $\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are at least 1-crossing in any outside-obstacle representation.

Moreover, if G contains K_6^* as an induced subgraph, then $\mathrm{CH}(Z)$ and $\mathrm{CH}(Z')$ are at least 1-crossing.

Let G be a co-bipartite graph with a co-bipartition Z, Z' with $\operatorname{obs_{out}}(G) = 1$.

Def. CH(Z) and CH(Z') are k-crossing if $CH(Z) \setminus CH(Z')$ consists of k+1 disjoint regions.

Lemma. Let A, B be a co-bipartition of K_6^* .

Then $\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are at least 1-crossing in any outside-obstacle representation.

Moreover, if G contains K_6^* as an induced subgraph, then $\mathrm{CH}(Z)$ and $\mathrm{CH}(Z')$ are at least 1-crossing.

Co-bipartite Graphs

Let G be a co-bipartite graph with a co-bipartition Z, Z' with $\operatorname{obs_{out}}(G) = 1$.

Def. CH(Z) and CH(Z') are k-crossing if $CH(Z) \setminus CH(Z')$ consists of k+1 disjoint regions.

Lemma. Let A, B be a co-bipartition of K_6^* .

Then $\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are at least 1-crossing in any outside-obstacle representation.

Moreover, if G contains K_6^* as an induced subgraph, then $\mathrm{CH}(Z)$ and $\mathrm{CH}(Z')$ are at least 1-crossing.

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 1) $obs(G) \leq 2$.

2) Every graph with at most 7 vertices has obstacle number 1.

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) $obs_{out}(G) > 1$

CH(A) and CH(B) are at least 1-crossing.

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) $obs_{out}(G) > 1$

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) $obs_{out}(G) > 1$

 $\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are 1-crossing.

 v_8

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) $obs_{out}(G) > 1$

 $\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are 1-crossing.

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) $obs_{out}(G) > 1$

 $\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are 1-crossing.

Consider $G - \{v_4, v_8\}$.

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) $obs_{out}(G) > 1$

 $\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are 1-crossing.

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) $obs_{out}(G) > 1$

CH(A) and CH(B) are 1-crossing.

Cannot add v_4, v_8 .

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) $obs_{out}(G) > 1$

 $\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are 1-crossing.

Cannot add v_4, v_8 .

Induced 4-cycle $v_1v_4v_8v_7$

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) $obs_{out}(G) > 1$

 $\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are 1-crossing.

Cannot add v_4, v_8 .

Induced 4-cycle $v_1v_4v_8v_7$

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 3) $obs_{out}(G) > 1$

 $\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are 1-crossing.

Cannot add v_4, v_8 .

Induced 4-cycles $v_1v_4v_8v_7$, $v_1v_4v_8v_5$, $v_2v_4v_8v_6$, $v_2v_4v_8v_7$

Thm. The smallest graph of obstacle number 2 has 8 vertices.

Proof. 4) $obs_{in}(G) > 1$

The convex hull of V(G) forms a cycle.

Case analysis on vertices on CH

$$\{G : \text{obs}_{\text{out}}(G) = 1\} \not\subset \{G : \text{obs}_{\text{in}}(G) = 1\}$$

•------

$$\{G : \operatorname{obs}_{\operatorname{out}}(G) = 1\} \not\supset \{G : \operatorname{obs}_{\operatorname{in}}(G) = 1\}$$

$$\{G : \operatorname{obs_{out}}(G) = 1\} \not\supset \{G : \operatorname{obs_{in}}(G) = 1\}$$

$$\{G : \operatorname{obs_{out}}(G) = 1\} \not\supset \{G : \operatorname{obs_{in}}(G) = 1\}$$

 $\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are at least 1-crossing.

$$\{G : \text{obs}_{\text{out}}(G) = 1\} \not\supset \{G : \text{obs}_{\text{in}}(G) = 1\}$$

 $\mathrm{CH}(A)$ and $\mathrm{CH}(B)$ are exactly 1-crossing.

$$\{G : \operatorname{obs_{out}}(G) = 1\} \not\supset \{G : \operatorname{obs_{in}}(G) = 1\}$$

$$\{G : \operatorname{obs_{out}}(G) = 1\} \not\supset \{G : \operatorname{obs_{in}}(G) = 1\}$$

- **Def.** In a graph sandwich problem for a property Π , given two graphs $G \subseteq H$ with the same vertex set, we ask for a graph K s.t. $G \subseteq K \subseteq H$ and K has the property Π .
- **Thm.** The outside-obstacle graph sandwich problem is NP-hard. In other words, given two graphs $G \subseteq H$ with the same vertex set, it is NP-hard to decide if there is a graph K s.t. $G \subseteq K \subseteq H$ and $\operatorname{obs_{out}}(K) = 1$.

- **Def.** In a graph sandwich problem for a property Π , given two graphs $G \subseteq H$ with the same vertex set, we ask for a graph K s.t. $G \subseteq K \subseteq H$ and K has the property Π .
- **Thm.** The outside-obstacle graph sandwich problem is NP-hard. In other words, given two graphs $G \subseteq H$ with the same vertex set, it is NP-hard to decide if there is a graph K s.t. $G \subseteq K \subseteq H$ and $\mathrm{obs}_{\mathrm{out}}(K) = 1$.
- **Thm.** The inside-obstacle graph sandwich problem and the single-obstacle graph sandwich problem are NP-hard.
- **Def.** The simple-polygon visibility graph problem asks to recognize the visibility graph of a simple polygon where the obstacle is the complement of the polygon.
- **Thm.** The simple-polygon visibility graph sandwich problem is NP-hard.

- Graphs of circumference at most 6 and graphs with at most 7 vertices have obstacle number 1.
- Smallest graph of obstacle number 2 has 8 vertices.
- $\{G: \mathrm{obs_{out}}(G) = 1\}$ and $\{G: \mathrm{obs_{in}}(G) = 1\}$ are incomparable.
- All of outside-, inside-, and single-obstacle graph sandwich problems are NP-hard. The simple-polygon visibility graph sandwich problem is also NP-hard.

- Graphs of circumference at most 6 and graphs with at most 7 vertices have obstacle number 1.
- Smallest graph of obstacle number 2 has 8 vertices.
- $\{G: \mathrm{obs_{out}}(G) = 1\}$ and $\{G: \mathrm{obs_{in}}(G) = 1\}$ are incomparable.
- All of outside-, inside-, and single-obstacle graph sandwich problems are NP-hard. The simple-polygon visibility graph sandwich problem is also NP-hard.
- Is it NP-hard to decide the graphs of obstacle number 1 or can we give a characterization of such graphs?

- Graphs of circumference at most 6 and graphs with at most 7 vertices have obstacle number 1.
- Smallest graph of obstacle number 2 has 8 vertices.
- $\{G: \mathrm{obs_{out}}(G) = 1\}$ and $\{G: \mathrm{obs_{in}}(G) = 1\}$ are incomparable.
- All of outside-, inside-, and single-obstacle graph sandwich problems are NP-hard. The simple-polygon visibility graph sandwich problem is also NP-hard.
- Is it NP-hard to decide the graphs of obstacle number 1 or can we give a characterization of such graphs?
- What is the smallest graph of obstacle number o for o > 2?

- Graphs of circumference at most 6 and graphs with at most 7 vertices have obstacle number 1.
- Smallest graph of obstacle number 2 has 8 vertices.
- $\{G: \mathrm{obs_{out}}(G) = 1\}$ and $\{G: \mathrm{obs_{in}}(G) = 1\}$ are incomparable.
- All of outside-, inside-, and single-obstacle graph sandwich problems are NP-hard. The simple-polygon visibility graph sandwich problem is also NP-hard.
- Is it NP-hard to decide the graphs of obstacle number 1 or can we give a characterization of such graphs?
- What is the smallest graph of obstacle number o for o > 2?
- An upper bound for $obs_{in}(G)$ in terms of $obs_{out}(G)$?

- Graphs of circumference at most 6 and graphs with at most 7 vertices have obstacle number 1.
- Smallest graph of obstacle number 2 has 8 vertices.
- $\{G: \mathrm{obs_{out}}(G) = 1\}$ and $\{G: \mathrm{obs_{in}}(G) = 1\}$ are incomparable.
- All of outside-, inside-, and single-obstacle graph sandwich problems are NP-hard. The simple-polygon visibility graph sandwich problem is also NP-hard.
- Is it NP-hard to decide the graphs of obstacle number 1 or can we give a characterization of such graphs?
- What is the smallest graph of obstacle number o for o > 2?
- An upper bound for $obs_{in}(G)$ in terms of $obs_{out}(G)$?

 Shown to be tight: $obs(G) \le obs_{out}(G) \le obs(G) + 1$ $obs_{in}(G) \ge obs_{out}(G) 1$