Stick Graphs with Length Constraints

Steven Chaplick, Philipp Kindermann, Andre Löffler, Florian Thiele, Alexander Wolff, Alexander Zaft, and Johannes Zink

Introduction

- Given a collection \mathcal{S} of geometric objects

Introduction

- Given a collection \mathcal{S} of geometric objects
- The intersection graph G of \mathcal{S} has
- \mathcal{S} as its vertex set
- an edge for each two elements of \mathcal{S} that intersect or touch each other.

Introduction

- Given a collection \mathcal{S} of geometric objects
- The intersection graph G of \mathcal{S} has
- \mathcal{S} as its vertex set
- an edge for each two elements of \mathcal{S} that intersect or touch each other.
- \mathcal{S} : line segments

Introduction

- Given a collection \mathcal{S} of geometric objects
- The intersection graph G of \mathcal{S} has
- \mathcal{S} as its vertex set
- an edge for each two elements of \mathcal{S} that intersect or touch each other.
- \mathcal{S} : line segments $\Rightarrow G$: segment graph

Introduction

- Given a collection \mathcal{S} of geometric objects
- The intersection graph G of \mathcal{S} has
- \mathcal{S} as its vertex set
- an edge for each two elements of \mathcal{S} that intersect or touch each other.
- \mathcal{S} : line segments $\Rightarrow G$: segment graph
- \mathcal{S} : horizontal \& vertical segments

Introduction

- Given a collection \mathcal{S} of geometric objects
- The intersection graph G of \mathcal{S} has
- \mathcal{S} as its vertex set
- an edge for each two elements of \mathcal{S} that intersect or touch each other.
- \mathcal{S} : line segments $\Rightarrow G$: segment graph
- \mathcal{S} : horizontal \& vertical segments
\Rightarrow G: grid intersection graph

Introduction

- Given a collection \mathcal{S} of geometric objects
- The intersection graph G of \mathcal{S} has
- \mathcal{S} as its vertex set
- an edge for each two elements of \mathcal{S} that intersect or touch each other.
- \mathcal{S} : line segments $\Rightarrow G$: segment graph
- \mathcal{S} : horizontal \& vertical segments \Rightarrow G: grid intersection graph
- \mathcal{S} : horizontal \& vertical segments grounded on a line of slope -1

Introduction

- Given a collection \mathcal{S} of geometric objects
- The intersection graph G of \mathcal{S} has
- \mathcal{S} : line segments \Rightarrow G: segment graph
- \mathcal{S} : horizontal \& vertical segments \Rightarrow G: grid intersection graph
- \mathcal{S} : horizontal \& vertical segments grounded on a line of slope $-1 \Rightarrow G$: stick graph

Introduction

- Given a collection \mathcal{S} of geometric objects
- The intersection graph G of \mathcal{S} has
- \mathcal{S} as its vertex set
- an edge for each two elements of \mathcal{S} that intersect or touch each other.
- \mathcal{S} : line segments \Rightarrow G: segment graph
- \mathcal{S} : horizontal \& vertical segments \Rightarrow G: grid intersection graph
- \mathcal{S} : horizontal \& vertical segments grounded on a line of slope $-1 \Rightarrow G$: stick graph
- \mathcal{S} : horizontal \& vertical segments grounded on two parallel lines

Introduction

- Given a collection \mathcal{S} of geometric objects

grid intersec. graphs stick graphs
- The intersection graph G of \mathcal{S} has
- \mathcal{S} as its vertex set
- an edge for each two elements of \mathcal{S}
bip. that intersect or touch each other.
- \mathcal{S} : line segments \Rightarrow G: segment graph
- \mathcal{S} : horizontal \& vertical segments \Rightarrow G: grid intersection graph
- \mathcal{S} : horizontal \& vertical segments grounded on a line of slope $-1 \Rightarrow G$: stick graph
- \mathcal{S} : horizontal \& vertical segments grounded on two parallel lines $\Rightarrow G$: bipartite permutation graph

Computational Complexity

Recognition problem:
Decide whether a given graph is an intersection graph.

Computational Complexity

Recognition problem:
Decide whether a given graph is an intersection graph.
How hard for each class?

Computational Complexity

Recognition problem:
Decide whether a given graph is an intersection graph.

How hard for each class?

segment graphs: $\exists \mathbb{R}$-complete
[Kratochvíl, Matoušek '94; Matoušek '14]
segment graphs grid intersec. graphs stick graphs

bip.
 permu.
 graphs

Computational Complexity

Recognition problem:
Decide whether a given graph is an intersection graph.
How hard for each class?
segment graphs: $\exists \mathbb{R}$-complete
[Kratochvíl, Matoušek '94; Matoušek '14]
grid intersection graphs: NP-complete
segment graphs
[Kratochvíl '94]

bip.
 permu.
 graphs

Computational Complexity

Recognition problem:
Decide whether a given graph is an intersection graph.

How hard for each class?

segment graphs: $\exists \mathbb{R}$-complete
[Kratochvíl, Matoušek '94; Matoušek '14]
grid intersection graphs: NP-complete [Kratochvíl '94]
segment graphs grid intersec. graphs stick graphs
bip. permu.
(bipart.) permutation graphs: linear time [Spinrad et al. '87; Kratsch et al. '06]

Computational Complexity

Recognition problem:
Decide whether a given graph is an intersection graph.

How hard for each class?

segment graphs: $\exists \mathbb{R}$-complete
[Kratochvíl, Matoušek '94; Matoušek '14]
grid intersection graphs: NP-complete segment graphs [Kratochvíl '94]
stick graphs:

(bipart.) permutation graphs: linear time [Spinrad et al. '87; Kratsch et al. '06]

bip.
 permu. graphs

Computational Complexity

Recognition problem:
Decide whether a given graph is an intersection graph.

How hard for each class?

segment graphs: $\exists \mathbb{R}$-complete
[Kratochvíl, Matoušek '94; Matoušek '14]
grid intersection graphs: NP-complete [Kratochvíl '94]
segment graphs grid intersec. graphs
stick graphs: ??? stick graphs remains open. .
(bipart.) permutation graphs: linear time [Spinrad et al. '87; Kratsch et al. '06]

bip. permu. graphs

Versions of Stick Graph Recognition

Versions of Stick Graph Recognition

Given a bipartite Graph $G=(A \dot{\cup} B, E)$, does G admit a stick representation...

Versions of Stick Graph Recognition

Given a bipartite Graph $G=(A \dot{\cup} B, E)$, does G admit a stick representation...

- STICK: ...?

Versions of Stick Graph Recognition

Given a bipartite Graph $G=(A \dot{\cup} B, E)$, does G admit a stick representation...

- STICK: ...?

Versions of Stick Graph Recognition

Given a bipartite Graph $G=(A \cup \cup B, E)$, does G admit a stick representation...

- STICK: ...?

- STICK $_{A}$:
... if a permutation of the vertices in A is given?

Versions of Stick Graph Recognition

Given a bipartite Graph $G=(A \cup \cup B, E)$, does G admit a stick representation...

- STICK: ...?
- STICK $_{A}$:

... if a permutation of the vertices in A is given?

Versions of Stick Graph Recognition

Given a bipartite Graph $G=(A \cup \cup B, E)$, does G admit a stick representation...

- STICK: ...?
- STICK $_{A}$:

... if a permutation of the vertices in A is given?
- STICK $_{\text {AB }}$:
... if a permutation of the vertices in A and a permutation of the vertices in B is given?

Versions of Stick Graph Recognition

Given a bipartite Graph $G=(A \cup \cup B, E)$, does G admit a stick representation...

- STICK: ...?
- STICK $_{A}$:

... if a permutation of the vertices in A is given?
- STICK $_{\text {AB }}$:
... if a permutation of the vertices in A and a permutation of the vertices in B is given?

Versions of Stick Graph Recognition

Given a bipartite Graph $G=(A \cup \cup B, E)$, does G admit a stick representation...

- STICK: ...?
- STICK $_{A}$:

... if a permutation of the vertices in A is given?
- STICK $_{\text {AB }}$:

... if a permutation of the vertices in A and a permutation of the vertices in B is given?
- STICK $_{\star}^{\text {fix }}$:
... if a stick length for each vertex (and possibly permutations of A, or A and B) is given?

Versions of Stick Graph Recognition

Given a bipartite Graph $G=(A \cup \cup B, E)$, does G admit a stick representation...

- STICK: ...?
- STICK $_{A}$:

... if a permutation of the vertices in A is given?
- STICK $_{\text {AB }}$:
... if a permutation of the vertices in A and a permutation of the vertices in B is given?
- STICK $_{\star}^{\text {fix }}$:

... if a stick length for each vertex (and possibly permutations of A, or A and B) is given?

Versions of Stick Graph Recognition

Given a bipartite Graph $G=(A \cup \cup B, E)$, does G admit a stick representation...

- STICK: ...?
- STICK $_{A}$:

... if a permutation of the vertices in A is given?
- STICK $_{\text {AB }}$:
... if a permutation of the vertices in A and a permutation of the vertices in B is given?
- STICK $_{\star}^{\text {fix }}$:

... if a stick length for each vertex (and possibly permutations of A, or A and B) is given?

Versions of Stick Graph Recognition

Given a bipartite Graph $G=(A \cup \cup B, E)$, does G admit a stick representation...

- STICK: ...?
- STICK $_{A}$:

... if a permutation of the vertices in A is given?
- STICK $_{\text {AB }}$:
... if a permutation of the vertices in A and a permutation of the vertices in B is given?
- STICK ${ }_{\star}^{\text {fix }}$:

... if a stick length for each vertex (and possibly permutations of A, or A and B) is given?

Complexity of Recognition

for a bipartite graph $G=(A \cup B, E)$

\star	STICK $_{\star}$	STICK
\mathbf{A}		
$\mathbf{A B}$		

Complexity of Recognition

for a bipartite graph $G=(A \cup B, E)$

*	STICK	STICK ${ }_{\star}^{\text {fix }}$
	$?$	$?$
A	$?^{1}$	$?$
AB	$O(\|A\|\|B\|)$ [De Luca et al. GD'18]	$?$

${ }^{1}$ an $O\left(|A|^{3}|B|^{3}\right)$ time algorithm proposed by De Luca et al. turned out to be wrong

Complexity of Recognition for a bipartite graph $G=(A \cup B, E)$

\star	$\mathbf{S T I C K}_{\star}$	$\mathbf{S T I C K}_{\star}^{\mathrm{fix}}$
$\boldsymbol{?}$	$\boldsymbol{?}$	
\mathbf{A}	$\boldsymbol{?}^{1}$	$\boldsymbol{?}$
$\mathbf{O B}$	[De Luca et al. GD'18]	$\boldsymbol{?}$

${ }^{1}$ an $O\left(|A|^{3}|B|^{3}\right)$ time algorithm proposed by De Luca et al. turned out to be wrong

Complexity of Recognition for a bipartite graph $G=(A \cup B, E)$

\star	$\mathbf{S T I C K}_{\star}$	$\mathbf{S T I C K}_{\star}^{\mathrm{fix}}$
\mathbf{A}	$\boldsymbol{?}^{1} \quad O(\|A\|\|B\|)$	$\boldsymbol{?}$
$\mathbf{A B}$? [De Luca et al. GD'18]	$\boldsymbol{?}$

[^0]Complexity of Recognition for a bipartite graph $G=(A \cup B, E)$

*	STICK ${ }_{\text {* }}$	STICK ${ }_{\text {fix }}^{\text {fix }}$
	?	?
A	$?^{1} \quad O(\|A\|\|B\|)$?
AB	$O(\|A\|\|B\|) \quad O(\|E\|)$?

[^1]Complexity of Recognition for a bipartite graph $G=(A \cup B, E)$ our results

[^2]Complexity of Recognition for a bipartite graph $G=(A \cup B, E)$ our results

*	STICK ${ }_{\star}$	STICK ${ }_{\star}^{\text {fix }}$	
	$?$?	NP-com
A	$\boldsymbol{?}^{1} \quad O(\|A\|\|B\|)$	$?$	NP-com
AB	$O(\|A\|\|B\|) \quad O(\|E\|)$ [De Luca et al. GD'18]	$?$	

[^3]Complexity of Recognition for a bipartite graph $G=(A \cup B, E)$ our results

\star	$\mathbf{S T I C K}_{\star}$	STICK $_{\star}^{\text {fix }}$	
	$\boldsymbol{?}$		$\boldsymbol{?}$
\mathbf{A}	NP-complete $^{1} \quad O(\|A\|\|B\|)$	$\boldsymbol{?}$	NP-complete 1

[^4]Complexity of Recognition for a bipartite graph $G=(A \cup B, E)$ our results

\star	$\mathbf{S T I C K}_{\star}$	STICK $_{\star}^{\text {fix }}$	
\mathbf{A}	$\boldsymbol{?}^{1} \quad O(\|A\|\|B\|)$	$\boldsymbol{?}$	NP-complete

${ }^{1}$ an $O\left(|A|^{3}|B|^{3}\right)$ time algorithm proposed by De Luca et al. turned out to be wrong

Complexity of Recognition for a bipartite graph $G=(A \cup B, E)$ our results

*	STICK ${ }_{\star}$	STICK ${ }_{\star}^{\text {fix }}$
	next?	? NP-complete
A	$?^{1} \quad O(\|A\|\|B\|)$	NP-complete
AB	$\underset{\text { [De Luca etal. CD'18] }}{O(\|A\|\|B\|)} O$? NP-complete w/o isolated vtc.: $O\left((\|A\|+\|B\|)^{2}\right)$

${ }^{1}$ an $O\left(|A|^{3}|B|^{3}\right)$ time algorithm proposed by De Luca et al. turned out to be wrong

Complexity of Recognition for a bipartite graph $G=(A \cup B, E)$
our results

\star	STICK ${ }_{\star}$	STICK ${ }_{\star}^{\text {fix }}$
	next ${ }^{\text {? }}$? NP-complete
A	$?^{1} \quad O(\|A\|\|B\|)$? NP-complete
AB	$\begin{array}{\|cc} O(\|A\|\|B\|) & O(\|E\|) \\ \text { [De Luca et al. GD'18] } \\ \text { afterwa } \end{array}$	$\begin{gathered} ? \\ \text { rds } \left.\begin{array}{c} \text { NP-complete } \\ \text { w/o isolated vect.: } \\ O\left((\|A\|+\|B\|)^{2}\right) \end{array}\right) . \end{gathered}$

[^5]Algorithm for STICK $_{A}$

\star	STICK $_{\star}$	STICK fix
A	$?$	NP-complete
AB	$O(\|A\|\|B\|)$	NP-complete
in general: NP-complete w/o isolated vtc.: $O\left((\|A\|+\|B\|)^{2}\right)$		

Algorithm for STICK $_{A}$

- Sweep-line along the ordered vertical sticks in A : enter event (i) and exit event $(i \rightarrow)$ for each $a_{i} \in A$

Algorithm for STICK $_{A}$

- Sweep-line along the ordered vertical sticks in A : enter event (i) and exit event ($i \rightarrow$) for each $a_{i} \in A$
- Let $p \in\{i, i \rightarrow\}$,
$G^{i}:=$ subgraph induced by a_{1}, \ldots, a_{i} and their neighbors, $B^{p}:=$ vertices in B that intersect the sweep-line at event p

Algorithm for STICK $_{A}$

- Sweep-line along the ordered vertical sticks in A : enter event (i) and exit event ($i \rightarrow$) for each $a_{i} \in A$
- Let $p \in\{i, i \rightarrow\}$,
$G^{i}:=$ subgraph induced by a_{1}, \ldots, a_{i} and their neighbors, $B^{p}:=$ vertices in B that intersect the sweep-line at event p
- (Rooted) tree data structure \mathcal{T}^{p} :

Algorithm for STICK $_{\mathrm{A}}$

- Sweep-line along the ordered vertical sticks in A : enter event (i) and exit event $(i \rightarrow)$ for each $a_{i} \in A$
- Let $p \in\{i, i \rightarrow\}$,
$G^{i}:=$ subgraph induced by a_{1}, \ldots, a_{i} and their neighbors, $B^{p}:=$ vertices in B that intersect the sweep-line at event p
- (Rooted) tree data structure \mathcal{T}^{p} :
- contains two types of nodes: leaves and non-leaves

Algorithm for STICK $_{\mathrm{A}}$

- Sweep-line along the ordered vertical sticks in A : enter event (i) and exit event $(i \rightarrow)$ for each $a_{i} \in A$
- Let $p \in\{i, i \rightarrow\}$,
$G^{i}:=$ subgraph induced by a_{1}, \ldots, a_{i} and their neighbors, $B^{p}:=$ vertices in B that intersect the sweep-line at event p
- (Rooted) tree data structure \mathcal{T}^{p} :
- contains two types of nodes: leaves and non-leaves
- each leaf corresponds to a vertex in B^{p}

Algorithm for STICK ${ }_{A}$

- Sweep-line along the ordered vertical sticks in A : enter event (i) and exit event $(i \rightarrow)$ for each $a_{i} \in A$
- Let $p \in\{i, i \rightarrow\}$,
$G^{i}:=$ subgraph induced by a_{1}, \ldots, a_{i} and their neighbors, $B^{p}:=$ vertices in B that intersect the sweep-line at event p
- (Rooted) tree data structure \mathcal{T}^{p} :
- contains two types of nodes: leaves and non-leaves
- each leaf corresponds to a vertex in B^{p}
- the order of leaves is free; the order of non-leaves is fixed

Algorithm for STICK $_{A}$

- Sweep-line along the ordered vertical sticks in A : enter event (i) and exit event $(i \rightarrow)$ for each $a_{i} \in A$
- Let $p \in\{i, i \rightarrow\}$,
$G^{i}:=$ subgraph induced by a_{1}, \ldots, a_{i} and their neighbors, $B^{p}:=$ vertices in B that intersect the sweep-line at event p
- (Rooted) tree data structure \mathcal{T}^{p} :
- contains two types of nodes: leaves and non-leaves
- each leaf corresponds to a vertex in B^{p}
- the order of leaves is free; the order of non-leaves is fixed
- encodes all realizable permutations of B^{p}

Algorithm for STICK $_{\mathrm{A}}$

- Sweep-line along the ordered vertical sticks in A : enter event (i) and exit event $(i \rightarrow)$ for each $a_{i} \in A$
- Let $p \in\{i, i \rightarrow\}$,
$G^{i}:=$ subgraph induced by a_{1}, \ldots, a_{i} and their neighbors, $B^{p}:=$ vertices in B that intersect the sweep-line at event p
- (Rooted) tree data structure \mathcal{T}^{p} :
- contains two types of nodes: leaves and non-leaves
- each leaf corresponds to a vertex in B^{p}
- the order of leaves is free; the order of non-leaves is fixed
- encodes all realizable permutations of B^{p}

Algorithm for STICK $_{A}$

- Sweep-line along the ordered vertical sticks in A : enter event (i) and exit event ($i \rightarrow$) for each $a_{i} \in A$
- Let $p \in\{i, i \rightarrow\}$,
$G^{i}:=$ subgraph induced by a_{1}, \ldots, a_{i} and their neighbors, $B^{p}:=$ vertices in B that intersect the sweep-line at event p
- (Rooted) tree data structure \mathcal{T}^{p} :
- contains two types of nodes: leaves and non-leaves
- each leaf corresponds to a vertex in B^{p}
- the order of leaves is free; the order of non-leaves is fixed
- encodes all realizable permutations of B^{p}

Example for STICK $_{A}$

$i=0$
Event: Start
$B^{0}=\emptyset$

$G^{0}:$
$\mathcal{T}^{0}:$ free order

Example for STICK $_{A}$

Example for STICK $_{A}$

$i=1$
free order
$\mathcal{T}^{1 \rightarrow}$:

Event: 1 \rightarrow

$G^{1}:$

$$
B^{1 \rightarrow}=\left\{b_{1}, b_{2}, b_{4}\right\}
$$

Example for STICK $_{A}$

$i=2 \quad$ Event: 2

free order
$B^{2}=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}$

Example for STICK $_{A}$

Example for STICK $_{A}$

$i=3$
Event: 3
fixed order
$B^{3}=\left\{b_{2}, b_{4}, b_{5}, b_{6}\right\}$

free order

Example for STICK $_{A}$

$i=3$
Event: 3 \rightarrow fixed order
$B^{3 \rightarrow}=\left\{b_{2}, b_{4}, b_{5}, b_{6}\right\}$

free order

Example for STICK $_{A}$

$i=3$
Event: End

free order

Example for STICK $_{A}$

$i=3$
Event: End

Runtime in $O(|A| \cdot|B|)$

free order

STICK ${ }_{A B}^{f i x}$ with isolated vertices

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:
false

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:
true

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:
true

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:
false

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:
- Clause gadget:

false

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:
- Clause gadget:
false

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:
false
- Clause gadget:

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:
- Clause gadget:
false

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:
- Clause gadget:
false

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:
- Clause gadget:

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:
- Clause gadget:

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:
- Clause gadget:

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:
- Clause gadget:

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:
- Clause gadget:
false

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:
- Clause gadget:

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:
- Clause gadget:

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:
- Clause gadget:

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:
- Clause gadget:

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:
- Clause gadget:

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:
- Clause gadget:

Hardness of STICK

- NP-hardness by reduction from MONOTONE-3-SAT
- Variable gadget:
- Clause gadget:

Example

MONOTONE-3-SAT formula:
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge$
$\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge$
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right)$

Example

MONOTONE-3-SAT formula:
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge$
$\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge$
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right)$

Example

MONOTONE-3-SAT formula:
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge$
$\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge$
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right)$

Example

MONOTONE-3-SAT formula:
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge$
$\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge$
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right)$

Example

MONOTONE-3-SAT formula:
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge$
$\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge$
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right)$

Example

MONOTONE-3-SAT formula:
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge$
$\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge$
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right)$

Example

MONOTONE-3-SAT formula:
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge$
$\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge$
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right)$

Example

MONOTONE-3-SAT formula:
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge$
$\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge$
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right)$

Example

MONOTONE-3-SAT formula:
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge$
$\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge$
$\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right)$

STICK ${ }_{A B}^{f i x}$ without isolated vertices

Uniqueness Lemma

Lemma:

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICK ${ }_{A B}$, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time $O(|E|)$.

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICK $_{\mathrm{AB}}$, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time $O(|E|)$.
Proof (Sketch):

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICK ${ }_{A B}$, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time $O(|E|)$.
Proof (Sketch):

- Assume: stick representations Γ_{1}, Γ_{2} have different order

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICK ${ }_{A B}$, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time $O(|E|)$.
Proof (Sketch):

- Assume: stick representations Γ_{1}, Γ_{2} have different order

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICK $_{A B}$, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time $O(|E|)$.
Proof (Sketch):

- Assume: stick representations Γ_{1}, Γ_{2} have different order
- W.I.o.g. $a<b$ in Γ_{1} and $b<a$ in Γ_{2}

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICK $_{A B}$, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time $O(|E|)$.

Proof (Sketch):

- Assume: stick representations Γ_{1}, Γ_{2} have different order
- W.l.o.g. $a<b$ in Γ_{1} and $b<a$ in $\Gamma_{2} \Rightarrow a b \notin E$

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICK $_{\mathrm{AB}}$, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time $O(|E|)$.

Proof (Sketch):

- Assume: stick representations Γ_{1}, Γ_{2} have different order
- W.l.o.g. $a<b$ in Γ_{1} and $b<a$ in $\Gamma_{2} \Rightarrow a b \notin E$

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICK $_{\mathrm{AB}}$, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time $O(|E|)$.

Proof (Sketch):

- Assume: stick representations Γ_{1}, Γ_{2} have different order
- W.I.o.g. $a<b$ in Γ_{1} and $b<a$ in $\Gamma_{2} \Rightarrow a b \notin E$
- b^{\prime} is adjacent to $a \Rightarrow b^{\prime}<b$

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICK $_{\mathrm{AB}}$, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time $O(|E|)$.

Proof (Sketch):

- Assume: stick representations Γ_{1}, Γ_{2} have different order
- W.I.o.g. $a<b$ in Γ_{1} and $b<a$ in $\Gamma_{2} \Rightarrow a b \notin E$
- b^{\prime} is adjacent to $a \Rightarrow b^{\prime}<b$

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICK $_{\mathrm{AB}}$, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time $O(|E|)$.

Proof (Sketch):

- Assume: stick representations Γ_{1}, Γ_{2} have different order
- W.I.o.g. $a<b$ in Γ_{1} and $b<a$ in $\Gamma_{2} \Rightarrow a b \notin E$
- b^{\prime} is adjacent to $a \Rightarrow b^{\prime}<b$

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICK ${ }_{A B}$, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time $O(|E|)$.

Proof (Sketch):

- Assume: stick representations Γ_{1}, Γ_{2} have different order
- W.l.o.g. $a<b$ in Γ_{1} and $b<a$ in $\Gamma_{2} \Rightarrow a b \notin E$
- b^{\prime} is adjacent to $a \Rightarrow b^{\prime}<b$
- a^{\prime} is adjacent to $b \Rightarrow a<a^{\prime}$

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICK ${ }_{A B}$, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time $O(|E|)$.

Proof (Sketch):

- Assume: stick representations Γ_{1}, Γ_{2} have different order
- W.l.o.g. $a<b$ in Γ_{1} and $b<a$ in $\Gamma_{2} \Rightarrow a b \notin E$
- b^{\prime} is adjacent to $a \Rightarrow b^{\prime}<b$
- a^{\prime} is adjacent to $b \Rightarrow a<a^{\prime}$

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICK ${ }_{A B}$, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time $O(|E|)$.

Proof (Sketch):

- Assume: stick representations Γ_{1}, Γ_{2} have different order
- W.l.o.g. $a<b$ in Γ_{1} and $b<a$ in $\Gamma_{2} \Rightarrow a b \notin E$
- b^{\prime} is adjacent to $a \Rightarrow b^{\prime}<b$
- a^{\prime} is adjacent to $b \Rightarrow a<a^{\prime}$

Uniqueness Lemma

Lemma: In all stick representations of an instance of STICK ${ }_{A B}$, the order of vertices on the ground line is the same after removing all isolated vertices. This order can be found in time $O(|E|)$.

Proof (Sketch):

- Assume: stick representations Γ_{1}, Γ_{2} have different order
- W.l.o.g. $a<b$ in Γ_{1} and $b<a$ in $\Gamma_{2} \Rightarrow a b \notin E$
- b^{\prime} is adjacent to $a \Rightarrow b^{\prime}<b$
- a^{\prime} is adjacent to $b \Rightarrow a<a^{\prime}$

Linear Program for STICK ${ }_{A B}^{f i x}$

- No isolated vertices \Rightarrow Compute ordering v_{1}, \ldots, v_{n}

Linear Program for STICK ${ }_{A B}^{f i x}$

- No isolated vertices \Rightarrow Compute ordering v_{1}, \ldots, v_{n}
- Variable x_{i} for the x-coordinate of v_{i} 's footpoint

Linear Program for STICK ${ }_{A B}^{f i x}$

- No isolated vertices \Rightarrow Compute ordering v_{1}, \ldots, v_{n}
- Variable x_{i} for the x-coordinate of v_{i} 's footpoint
- Constraints: $x_{1}<\cdots<x_{n}$

Linear Program for STICK ${ }_{A B}^{f i x}$

- No isolated vertices \Rightarrow Compute ordering v_{1}, \ldots, v_{n}
- Variable x_{i} for the x-coordinate of v_{i} 's footpoint
- Constraints: $x_{1}<\cdots<x_{n}$
- For each vertex 2 more constraints incorporating the predefined stick-lengths:
- for intersecting its last neighbor
- for not intersecting its first non-neighbor

Linear Program for STICK ${ }_{A B}^{f i x}$

- No isolated vertices \Rightarrow Compute ordering v_{1}, \ldots, v_{n}
- Variable x_{i} for the x-coordinate of v_{i} 's footpoint
- Constraints: $x_{1}<\cdots<x_{n}$
- For each vertex 2 more constraints incorporating the predefined stick-lengths:
- for intersecting its last neighbor
- for not intersecting its first non-neighbor
- Is a system of difference constraints \Rightarrow can be modeled as a shortest-path problem in a directed weighted graph

Linear Program for STICK ${ }_{A B}^{f i x}$

- No isolated vertices \Rightarrow Compute ordering v_{1}, \ldots, v_{n}
- Variable x_{i} for the x-coordinate of v_{i} 's footpoint
- Constraints: $x_{1}<\cdots<x_{n}$
- For each vertex 2 more constraints incorporating the predefined stick-lengths:
- for intersecting its last neighbor
- for not intersecting its first non-neighbor
- Is a system of difference constraints \Rightarrow can be modeled as a shortest-path problem in a directed weighted graph \Rightarrow Solvable in $O\left((|A|+|B|)^{2}\right)$ time with Bellman-Ford

Linear Program for STICK ${ }_{A B}^{f i x}$

- No isolated vertices \Rightarrow Compute ordering v_{1}, \ldots, v_{n}
- Variable x_{i} for the x-coordinate of v_{i} 's footpoint
- Constraints: $x_{1}<\cdots<x_{n}$
- For each vertex 2 more constraints incorporating the predefined stick-lengths:
- for intersecting its last neighbor
- for not intersecting its first non-neighbor
- Is a system of difference constraints \Rightarrow can be modeled as a shortest-path problem in a directed weighted graph \Rightarrow Solvable in $O\left((|A|+|B|)^{2}\right)$ time with Bellman-Ford
\Rightarrow Isolated vertices make STICK ${ }_{\mathrm{AB}}^{\mathrm{fix}}$ NP-hard

Summary

\star	STICK $_{\star}$	STICK ${ }_{\star}^{\text {fix }}$
	still open	NP-complete
A	$O(\|A\|\|B\|)$	NP-complete
AB	$\underset{[D e}{ } O(\|A\|\|B\|) O(\|E\|)$	NP-complete w/o isolated vtc. $O\left((\|A\|+\|B\|)^{2}\right)$

Summary

\star	STICK ${ }_{\text {* }}$	STICK ${ }_{\star}^{\text {fix }}$
	still open	NP-complete (by reduction from 3-PARTITION)
A	$O(\|A\|\|B\|)$	NP-complete
AB		NP-complete w / o isolated vtc.: $O\left((\|A\|+\|B\|)^{2}\right)$

Summary

\star	STICK ${ }_{\star}$	STICK ${ }_{\star}^{\text {fix }}$
	still open	NP-complete (by reduction from 3-PARTITION)
A	$O(\|A\|\|B\|)$	NP-complete (by reduction from MONO-3-SAT)
AB	$\|\underset{\text { \|De Luce et al: GD:18] }}{O(\|A\| B \mid)} O(\|E\|)\|$	NP-complete w / o isolated vtc.: $O\left((\|A\|+\|B\|)^{2}\right)$

[^0]: ${ }^{1}$ an $O\left(|A|^{3}|B|^{3}\right)$ time algorithm proposed by De Luca et al. turned out to be wrong

[^1]: ${ }^{1}$ an $O\left(|A|^{3}|B|^{3}\right)$ time algorithm proposed by De Luca et al. turned out to be wrong

[^2]: ${ }^{1}$ an $O\left(|A|^{3}|B|^{3}\right)$ time algorithm proposed by De Luca et al. turned out to be wrong

[^3]: ${ }^{1}$ an $O\left(|A|^{3}|B|^{3}\right)$ time algorithm proposed by De Luca et al. turned out to be wrong

[^4]: ${ }^{1}$ an $O\left(|A|^{3}|B|^{3}\right)$ time algorithm proposed by De Luca et al. turned out to be wrong

[^5]: ${ }^{1}$ an $O\left(|A|^{3}|B|^{3}\right)$ time algorithm proposed by De Luca et al. turnad out to bewong

