

Chair for **INFORMATICS I** Efficient Algorithms and Knowledge-Based Systems

Beyond Outerplanarity

Steven Chaplick^{*}, Myroslav Kryven^{*}, Giuseppe Liotta[†], Andre Löffler^{*}, Alexander Wolff^{*}.

* Julius-Maximilians-Universität Würzburg, Germany

† Dipartimento di Ingegneria, Università degli Studi di Perugia, Italy

Generalizing Planarity – "nice" crossings

k-planarity: each edge is crossed by $\leq k$ edges.

Generalizing Planarity – "nice" crossings

k-planarity: each edge is crossed by $\leq k$ edges.

These are quite general ... what about something simpler?

These are quite general ... what about something simpler? **Outerplanarity:** a planar drawing with all vertices on a face.

planarity = 0-planarity = 2-quasi-planarity

These are quite general ... what about something simpler? **Outerplanarity:** a planar drawing with all vertices on a face. \equiv straight-line planar drawing w/ vertices in convex position

planarity = 0-planarity = 2-quasi-planarity

These are quite general ... what about something simpler? **Outerplanarity:** a planar drawing with all vertices on a face. \equiv straight-line planar drawing w/ vertices in convex position

Degeneracy: a hereditary graph class is *d*-degenerate if every graph *G* in it has a vertex of degree $\leq d$.

Degeneracy: a hereditary graph class is *d*-degenerate if every graph *G* in it has a vertex of degree $\leq d$.

Obs: d-degenerate \rightarrow (d + 1)-colorable

planar : 5-degenerate; outerplanar : 2-degenerate.

Degeneracy: a hereditary graph class is *d*-degenerate if every graph *G* in it has a vertex of degree $\leq d$.

Obs: d-degenerate $\rightarrow (d + 1)$ -colorable

planar : 5-degenerate; outerplanar : 2-degenerate.

Separation Number (sn): a graph class has sn $\leq k$ when every graph G in it has a balanced separator of size $\leq k$.

planar : sn $\leq 2\sqrt{n}$; outerplanar : sn ≤ 2

(7

Degeneracy: a hereditary graph class is *d*-degenerate if every graph *G* in it has a vertex of degree $\leq d$.

Obs: d-degenerate \rightarrow (d + 1)-colorable

planar : 5-degenerate; outerplanar : 2-degenerate.

Separation Number (sn): a graph class has sn $\leq k$ when every graph G in it has a balanced separator of size $\leq k$.

planar : sn $\leq 2\sqrt{n}$; outerplanar : sn ≤ 2

Recognition: Testing for membership in a graph class. both planarity and outerplanarity can be tested in linear time.

Background : General Drawings

k-planar graphs – introduced by Ringel '65.

- Edge density: $4.108n\sqrt{k}$ [Pach, Tóth '97] $\rightarrow 8.216\sqrt{k}$ -degenerate (via avg. degree)
- $O(\sqrt{kn})$ treewidth [Dujmović, Eppstein, Wood '17] $\rightarrow sn \in O(\sqrt{kn})$
- 1-planarity testing is NP-hard [Grigoriev, Bodlaender '07]

k-quasi-planar graphs

• Edge density: $(n \log n) 2^{\alpha(n)^{c_k}}$ Conjectured to be $c_k n$

[Fox, Pach, Suk '13] [Pach et al '96]

Comparing Classes:

• k-planar $\subset (k + 1)$ -quasi-planar: k > 2 [Angelini et al '17], k = 2 [Hoffmann, Tóth '17]

Background : Outer Drawings

Outer k-crossing ($\leq k$ crossings in the whole drawing)

- $O(\sqrt{k})$ treewidth $\rightarrow \text{sn} \in O(\sqrt{k})$
- Ext. Monadic Second Order Logic (MSO₂) formula for outer k-crossing

[Bannister, Eppstein '14]

 \rightarrow testing outer k-crossing in time O(f(k)(n+m))

Background : Outer Drawings

Outer k-crossing ($\leq k$ crossings in the whole drawing)

- $O(\sqrt{k})$ treewidth $\rightarrow \text{sn} \in O(\sqrt{k})$
- [Bannister, • Ext. Monadic Second Order Logic Eppstein '14] (MSO_2) formula for outer k-crossing \rightarrow testing outer k-crossing in time O(f(k)(n+m))

Outer k-planarity

- treewidth $\leq 3k + 11 \rightarrow sn \leq 3k + 12$ [Wood, Telle '07]
- Recognition:

outer 1-planar in linear time [Auer et al '16, Hong et al '15] full outer 2-planar in linear time [Hong, Nagamochi '16]

Background : Outer Drawings

Outer k-crossing ($\leq k$ crossings in the whole drawing)

- $O(\sqrt{k})$ treewidth $\rightarrow \text{sn} \in O(\sqrt{k})$
- [Bannister, • Ext. Monadic Second Order Logic Eppstein '14] (MSO_2) formula for outer k-crossing \rightarrow testing outer k-crossing in time O(f(k)(n+m))

Outer k-planarity

- treewidth $\leq 3k + 11 \rightarrow sn \leq 3k + 12$ [Wood, Telle '07]
- Recognition:
 - outer 1-planar in linear time [Auer et al '16, Hong et al '15] full outer 2-planar in linear time [Hong, Nagamochi '16]

Outer k-quasi-planarity

• Edge density: $\leq 2(k-1)n - \binom{2k-1}{2}$ [Capoyleas, Pach '92] \rightarrow (4k – 5)-degenerate

Outer k-planar graphs

- $(\lfloor \sqrt{4k+1} \rfloor + 1)$ -degenerate $\rightarrow (\lfloor \sqrt{4k+1} \rfloor + 2)$ -colorable
- separation number $\leq 2k + 3 \rightarrow$ quasi-poly time recognition

Outer k-planar graphs

- $(\lfloor \sqrt{4k+1} \rfloor + 1)$ -degenerate $\rightarrow (\lfloor \sqrt{4k+1} \rfloor + 2)$ -colorable
- separation number $\leq 2k + 3 \rightarrow$ quasi-poly time recognition

Outer k-quasi-planar graphs

- Outer 3-quasi planarity is incomparable with planarity
- edge maximal drawings

Outer k-planar graphs

- $(\lfloor \sqrt{4k+1} \rfloor + 1)$ -degenerate $\rightarrow (\lfloor \sqrt{4k+1} \rfloor + 2)$ -colorable
- separation number $\leq 2k + 3 \rightarrow$ quasi-poly time recognition

Outer k-quasi-planar graphs

- Outer 3-quasi planarity is incomparable with planarity
- edge maximal drawings

Closed Drawings in MSO₂

 closed outer k-planarity and closed outer
 k-quasi-planarity can be expressed in MSO₂

Outline

Outer k-planar graphs

- $(\lfloor \sqrt{4k+1} \rfloor + 1)$ -degenerate $\rightarrow (\lfloor \sqrt{4k+1} \rfloor + 2)$ -colorable
- separation number $\leq 2k + 3 \rightarrow$ quasi-poly time recognition

Outer k-quasi-planar graphs

- Outer 3-quasi planarity is incomparable with planarity
- edge maximal drawings

Closed Drawings in MSO₂

 closed outer k-planarity and closed outer
 k-quasi-planarity can be expressed in MSO₂

Obs: An outer k-planar clique has $\leq \lfloor \sqrt{4k+1} \rfloor + 2$ vertices

Obs: An outer k-planar clique has $\leq \lfloor \sqrt{4k+1} \rfloor + 2$ vertices

• a complete bipartite graph crosses *ab*.

Obs: An outer k-planar clique has $\leq \lfloor \sqrt{4k+1} \rfloor + 2$ vertices

a complete bipartite graph crosses *ab*.
thus, for even *n*, *k* ≥ (ⁿ⁻²/₂)², and for odd *n*, *k* ≥ ¹/₄(*n*-3)(*n*-1)

$$\rightarrow n \leq \lfloor \sqrt{4k+1} \rfloor + 2$$

Obs: An outer k-planar clique has $\leq \lfloor \sqrt{4k+1} \rfloor + 2$ vertices **Thm:** outer k-planar graphs are $(\lfloor \sqrt{4k+1} \rfloor + 1)$ -degenerate.

Obs: An outer *k*-planar clique has $\leq \lfloor \sqrt{4k+1} \rfloor + 2$ vertices **Thm:** outer *k*-planar graphs are $(\lfloor \sqrt{4k+1} \rfloor + 1)$ -degenerate. Proof (idea): $\leq \ell$ Suppose, $\geq \ell$ vertices left of *ab*, w/ deg. $\geq \delta$. $\leq \delta$ $\leq \delta$ $\leq \delta$ $\leq \delta$ $\leq b$

Obs: An outer *k*-planar clique has $\leq \lfloor \sqrt{4k+1} \rfloor + 2$ vertices **Thm:** outer *k*-planar graphs are $(\lfloor \sqrt{4k+1} \rfloor + 1)$ -degenerate. Proof (idea): $\leq \checkmark \qquad a$ $\leq \land \land a$ $\geq \delta \ell$ vertices left of *ab*, w/ deg. $\geq \delta$. $\rightarrow \delta \ell - \ell(\ell + 1)$ edges cross *ab*

Obs: An outer *k*-planar clique has $\leq \lfloor \sqrt{4k+1} \rfloor + 2$ vertices **Thm:** outer *k*-planar graphs are $(\lfloor \sqrt{4k+1} \rfloor + 1)$ -degenerate. Proof (idea): $\leq \checkmark \qquad a$ $\leq \land \land a$ $\geq \delta \ell$ vertices left of *ab*, w/ deg. $\geq \delta$. $\rightarrow \delta \ell - \ell(\ell + 1)$ edges cross *ab* Note: $\delta > \lfloor \sqrt{4k+1} \rfloor + 1$, $\ell = \lfloor \frac{1}{2}\sqrt{4k+1} \rfloor + 1$ is not possible by the proof of Obs.

Obs: An outer k-planar clique has $\leq |\sqrt{4k+1}| + 2$ vertices **Thm:** outer k-planar graphs are $(|\sqrt{4k+1}|+1)$ -degenerate. Proof (idea): Suppose, $\geq \ell$ vertices left of *ab*, w/ deg. $\geq \delta$. $\rightarrow \delta \ell - \ell (\ell + 1)$ edges cross *ab* Note: $\delta > |\sqrt{4k+1}| + 1$, $\ell = |\frac{1}{2}\sqrt{4k+1}| + 1$ is not possible by the proof of Obs. Proceed by induction on the range $[\ell, \ell^*]$ where there can be no edge with any $x \in [\ell, \ell^*]$ vertices on it's left.

Obs: An outer k-planar clique has $\leq |\sqrt{4k+1}| + 2$ vertices **Thm:** outer k-planar graphs are $(|\sqrt{4k+1}|+1)$ -degenerate. Proof (idea): Suppose, $\geq \ell$ vertices left of *ab*, w/ deg. $\geq \delta$. $\rightarrow \delta \ell - \ell (\ell + 1)$ edges cross *ab* $\swarrow \geq \delta$ Note: $\delta > |\sqrt{4k+1}| + 1$, $\ell = |\frac{1}{2}\sqrt{4k+1}| + 1$ is not possible by the proof of Obs. Proceed by induction on the range $[\ell, \ell^*]$ where there can be no edge with any $x \in [\ell, \ell^*]$ vertices on it's left.

Cor: Outer k-planarity $\rightarrow (\lfloor \sqrt{4k+1} \rfloor + 2)$ -colorable (tight).

Thm: Outer k-planar graphs have sn $\leq 2k + 3$, and such separators imply quasi-polynomial time $(2^{\text{polylog}(n)})$ recognition. i.e., assuming ETH, recognition is not NP-hard.

Proof (sketch):

Thm: Outer *k*-planar graphs have sn $\leq 2k + 3$, and such separators imply quasi-polynomial time $(2^{\text{polylog}(n)})$ recognition. i.e., assuming ETH, recognition is not NP-hard.

Proof (sketch):

Easy case:

Thm: Outer k-planar graphs have sn $\leq 2k + 3$, and such separators imply quasi-polynomial time $(2^{\text{polylog}(n)})$ recognition. i.e., assuming ETH, recognition is not NP-hard.

Proof (sketch):

Thm: Outer k-planar graphs have sn $\leq 2k + 3$, and such separators imply quasi-polynomial time $(2^{\text{polylog}(n)})$ recognition. i.e., assuming ETH, recognition is not NP-hard.

Proof (sketch):

Thm: Outer k-planar graphs have sn $\leq 2k + 3$, and such separators imply quasi-polynomial time $(2^{\text{polylog}(n)})$ recognition. i.e., assuming ETH, recognition is not NP-hard.

Proof (sketch):

Case 1: edge a'b'a' first after ab' first after b.

Thm: Outer k-planar graphs have sn $\leq 2k + 3$, and such separators imply quasi-polynomial time $(2^{\text{polylog}(n)})$ recognition. i.e., assuming ETH, recognition is not NP-hard.

Proof (sketch):

Case 1: edge a'b'a' first after a b' first after b. а А $\operatorname{sn} \leq k+3$

Thm: Outer k-planar graphs have sn $\leq 2k + 3$, and such separators imply quasi-polynomial time $(2^{\text{polylog}(n)})$ recognition. i.e., assuming ETH, recognition is not NP-hard.

 $sn \leq k+3$

Thm: Outer k-planar graphs have sn $\leq 2k + 3$, and such separators imply quasi-polynomial time $(2^{\text{polylog}(n)})$ recognition. i.e., assuming ETH, recognition is not NP-hard.

Thm: Outer k-planar graphs have sn $\leq 2k + 3$, and such separators imply quasi-polynomial time $(2^{\text{polylog}(n)})$ recognition. i.e., assuming ETH, recognition is not NP-hard.

Outline

Outer k-planar graphs

- $(\lfloor \sqrt{4k+1} \rfloor + 1)$ -degenerate $\rightarrow (\lfloor \sqrt{4k+1} \rfloor + 2)$ -colorable
- separation number $\leq 2k + 3 \rightarrow$ quasi-poly time recognition

Outer k-quasi-planar graphs

- Outer 3-quasi planarity is incomparable with planarity
- edge maximal drawings

Closed Drawings in MSO₂

 closed outer k-planarity and closed outer
 k-quasi-planarity can be expressed in MSO₂

Thm: Planarity and outer 3-quasi-planarity are incomparable.

Thm: Planarity and outer 3-quasi-planarity are incomparable.

Obs 1: $K_{4,4}$ and K_5 are outer 3-quasi-planar.

Thm: Planarity and outer 3-quasi-planarity are incomparable.

Obs 1: $K_{4,4}$ and K_5 are outer 3-quasi-planar.

Obs 2: planar 3-trees with \geq 3 complete levels are not outer 3-quasi-planar.

Thm: Planarity and outer 3-quasi-planarity are incomparable.

Obs 1: $K_{4,4}$ and K_5 are outer 3-quasi-planar.

Obs 2: planar 3-trees with \geq 3 complete levels are not outer 3-quasi-planar.

(proof via SAT formulation)

Thm: Planarity and outer 3-quasi-planarity are incomparable.

Obs 1: $K_{4,4}$ and K_5 are outer 3-quasi-planar.

Obs 2: planar 3-trees with \geq 3 complete levels are not outer 3-quasi-planar.

(proof via SAT formulation)

vertex minimal example:

Thm: Planarity and outer 3-quasi-planarity are incomparable.

Obs 1: $K_{4,4}$ and K_5 are outer 3-quasi-planar.

(proof via SAT formulation)

vertex minimal example:

Thm: Planarity and outer 3-quasi-planarity are incomparable.

Obs 1: $K_{4,4}$ and K_5 are outer 3-quasi-planar.

(proof via SAT formulation)

vertex minimal example:

Thm: Each edge maximal outer k-quasi-planar drawing of G = (V, E) has

$$|E| = \begin{cases} \binom{|V|}{2} & \text{if } |V| \le 2k - 1, \\ 2(k-1)|V| - \binom{2k-1}{2} & \text{if } |V| \ge 2k - 1. \end{cases}$$

Thm: Each edge maximal outer k-quasi-planar drawing of G = (V, E) has

$$|E| = \begin{cases} \binom{|V|}{2} & \text{if } |V| \le 2k - 1, \\ 2(k-1)|V| - \binom{2k-1}{2} & \text{if } |V| \ge 2k - 1. \end{cases}$$

Some equivalent questions:

Thm: Each edge maximal outer *k*-quasi-planar drawing of G = (V, E) has

 $|E| = egin{cases} (|V| \ 2) & ext{if } |V| \leq 2k-1, \ 2(k-1)|V| - {2k-1 \choose 2} & ext{if } |V| \geq 2k-1. \end{cases}$

Some equivalent questions:

For a convex *n*-gon, how many chords can be inserted without making *k* pairwise crossings? [Nakamigawa '00]

Thm: Each edge maximal outer k-quasi-planar drawing of G = (V, E) has

 $|E| = \begin{cases} \binom{|V|}{2} & \text{if } |V| \le 2k - 1, \\ 2(k-1)|V| - \binom{2k-1}{2} & \text{if } |V| \ge 2k - 1. \end{cases}$

Some equivalent questions:

For a convex *n*-gon, how many chords can be inserted without making *k* pairwise crossings? [Nakamigawa '00]

What is the biggest line arrangment in the hyperbolic plane with $\leq n$ points at ∞ and without k mutually crossing lines (*Karzanov number* $\leq k - 1$)? [Dress et al. 2002]

Outer k-planar graphs

- $(\lfloor \sqrt{4k+1} \rfloor + 1)$ -degenerate $\rightarrow (\lfloor \sqrt{4k+1} \rfloor + 2)$ -colorable.
- separation number $\leq 2k + 3 \rightarrow$ quasi-poly time recognition.

Outer k-quasi-planar graphs

- Outer 3-quasi planarity is incomparable with planarity
- edge maximal drawings

Closed Drawings in MSO₂

 closed k-planarity and closed k-quasi-planarity can be expressed in MSO₂.

Thm (Courcelle): If a property P is expressed as $\varphi \in MSO_2$, then for every graph G with treewidth at most t, P can be tested in time $O(f(t, |\varphi|)(n+m))$ for a computable function f.

Thm (Courcelle): If a property P is expressed as $\varphi \in MSO_2$, then for every graph G with treewidth at most t, P can be tested in time $O(f(t, |\varphi|)(n+m))$ for a computable function f.

But, what is MSO₂ again?

Thm (Courcelle): If a property P is expressed as $\varphi \in MSO_2$, then for every graph G with treewidth at most t, P can be tested in time $O(f(t, |\varphi|)(n+m))$ for a computable function f.

But, what is MSO₂ again?

PARTITION(A, B, C)
$$\equiv (\forall u)[(u \in A \lor u \in B \lor u \in C) \land (u \in A \to (u \notin B \land u \notin C)) \land (u \in B \to (...)) \land (...)]$$

Thm (Courcelle): If a property P is expressed as $\varphi \in MSO_2$, then for every graph G with treewidth at most t, P can be tested in time $O(f(t, |\varphi|)(n+m))$ for a computable function f.

But, what is MSO₂ again?

PARTITION(A, B, C)
$$\equiv (\forall u)[(u \in A \lor u \in B \lor u \in C) \land (u \in A \to (u \notin B \land u \notin C)) \land (u \in B \to (...)) \land (...)]$$

Formally:

- variables: vertices, edges, sets of vertices, and sets of edges;
- binary relations: equality (=), set membership (∈), subset of a set (⊆), and edge–vertex incidence (I);
- standard propositional logic operators: \neg , \land , \lor , \rightarrow , \leftrightarrow .
- standard quantifiers (\forall, \exists) .

V-PARTITION(A, B, C) \equiv (A, B, C) is a partition of the vertex set.

V-PARTITION(A, B, C) \equiv (A, B, C) is a partition of the vertex set.

V-PARTITION(A, B, C) \equiv (A, B, C) is a partition of the vertex set.

CONN(V, E) \equiv the graph (V,E) is connected.

V-PARTITION(A, B, C) \equiv (A, B, C) is a partition of the vertex set.

CONN(V, E) \equiv the graph (V,E) is connected.

HAMILTONIAN $(E^*) \equiv$ The edge set E^* is a Hamiltonian cycle in the graph G.

V-PARTITION(A, B, C) \equiv (A, B, C) is a partition of the vertex set.

CONN(V, E) \equiv the graph (V,E) is connected.

HAMILTONIAN $(E^*) \equiv$ The edge set E^* is a Hamiltonian cycle in the graph G.

CROSSING $(E^*, e, e') \equiv (\forall A, B, C) [(V-PARTITION(A, B, C) \land (x \in C \leftrightarrow I(e, x)) \land CONN(A, E^*) \land CONN(B, E^*)) \rightarrow (\exists a \in A) (\exists b \in B) [I(e', a) \land I(e', b)]]$

Implications of our MSO₂ formulae

- *closed* drawings which are *k*-planar or *k*-quasi planar can be expressed in MSO₂.
- closed k-planarity can be tested in linear FPT-time (parameterized by k).
- closed k-quasi-planarity can be tested in linear FPT-time (parameterized by both k and treewidth).
- Note: edge maximal outer k-planarity ⊂ closed k-planarity.
 → efficient testing of edge maximal outer k-planarity.

Implications of our MSO₂ formulae

- closed drawings which are k-planar or k-quasi planar can be expressed in MSO₂.
- closed k-planarity can be tested in linear FPT-time (parameterized by k).
- closed k-quasi-planarity can be tested in linear FPT-time (parameterized by both k and treewidth).
- Note: edge maximal outer k-planarity ⊂ closed k-planarity.
 → efficient testing of edge maximal outer k-planarity.

Can these expressions be generalized to *full* drawings?

no crossing "visible" from "outside"

Implications of our MSO₂ formulae

- closed drawings which are k-planar or k-quasi planar can be expressed in MSO₂.
- closed k-planarity can be tested in linear FPT-time (parameterized by k).
- closed k-quasi-planarity can be tested in linear FPT-time (parameterized by both k and treewidth).
- Note: edge maximal outer k-planarity ⊂ closed k-planarity.
 → efficient testing of edge maximal outer k-planarity.

Can these expressions be generalized to *full* drawings?

no crossing "visible" from "outside"

full outer 2-planarity testing in linear time [Hong, Nagamochi '16]

Conclusion

Outer *k*-planar graphs:

- tight bounds on degeneracy, and chromatic number.
 Quasi-polynomial time recognition via balanced separators, closed drawings testable in linear time.
- **Open:** polytime recognition for all k > 1.

Conclusion

Outer *k*-planar graphs:

- tight bounds on degeneracy, and chromatic number.
 Quasi-polynomial time recognition via balanced separators, closed drawings testable in linear time.
- **Open:** polytime recognition for all k > 1.

Outer *k*-quasi-planar graphs:

- outer 3-quasi-planarity is incomparable with planarity.
 Open: planarity vs. outer 4-quasi-planarity.
- closed drawings are expressible in MSO₂.
 Open: recognition both in general and for closed drawings.
- **Open:** tight bounds on: degeneracy, chromatic number, page number.

Conclusion

Outer *k*-planar graphs:

- tight bounds on degeneracy, and chromatic number.
 Quasi-polynomial time recognition via balanced separators, closed drawings testable in linear time.
- **Open:** polytime recognition for all k > 1.

Outer *k*-quasi-planar graphs:

- outer 3-quasi-planarity is incomparable with planarity.
 Open: planarity vs. outer 4-quasi-planarity.
- closed drawings are expressible in MSO₂.
 Open: recognition both in general and for closed drawings.
- **Open:** tight bounds on: degeneracy, chromatic number, page number.

Thank you for your attention :-)