UNIVERSITÄT WÜRZBURG

Beyond Outerplanarity

Steven Chaplick*, Myroslav Kryven*, Giuseppe Liotta ${ }^{\dagger}$, Andre Löffler*, Alexander Wolff*.

* Julius-Maximilians-Universität Würzburg, Germany
\dagger Dipartimento di Ingegneria, Università degli Studi di Perugia, Italy

Generalizing Planarity - "nice" crossings

k-planarity: each edge is
crossed by $\leq k$ edges.

Generalizing Planarity - "nice" crossings

k-planarity: each edge is crossed by $\leq k$ edges.

Generalizing Planarity - "nice" crossings

k-planarity: each edge is crossed by $\leq k$ edges.

k-quasi-planarity : each k-tuple of edges has a non-crossing pair.

4-quasi-planar, but not 3-quasi-planar

Generalizing Planarity - "nice" crossings

k-planarity: each edge is crossed by $\leq k$ edges.

k-quasi-planarity : each k-tuple of edges has a non-crossing pair.

4-quasi-planar, but not 3-quasi-planar
planarity $=0$-planarity $=2$-quasi-planarity

Generalizing Planarity - "nice" crossings

k-planarity: each edge is crossed by $\leq k$ edges.

k-quasi-planarity : each k-tuple of edges has a non-crossing pair.

4-quasi-planar, but not 3-quasi-planar

$$
\text { planarity }=0 \text {-planarity }=2 \text {-quasi-planarity }
$$

These are quite general ... what about something simpler?

Generalizing Planarity - "nice" crossings

k-planarity: each edge is crossed by $\leq k$ edges.

k-quasi-planarity : each k-tuple of edges has a non-crossing pair.

4-quasi-planar, but not 3-quasi-planar

These are quite general ... what about something simpler?
Outerplanarity: a planar drawing with all vertices on a face.

Generalizing Planarity - "nice" crossings

k-planarity: each edge is crossed by $\leq k$ edges.

k-quasi-planarity : each k-tuple of edges has a non-crossing pair.

4-quasi-planar, but not 3-quasi-planar
planarity $=0$-planarity $=2$-quasi-planarity
These are quite general ... what about something simpler?
Outerplanarity: a planar drawing with all vertices on a face.
\equiv straight-line planar drawing w/ vertices in convex position

Generalizing Planarity - "nice" crossings

k-planarity: each edge is crossed by $\leq k$ edges.

k-quasi-planarity : each k-tuple of edges has a non-crossing pair.

4-quasi-planar, but not 3-quasi-planar

$$
\text { planarity }=0 \text {-planarity }=2 \text {-quasi-planarity }
$$

These are quite general ... what about something simpler?
Outerplanarity: a planar drawing with all vertices on a face.
\equiv straight-line planar drawing w/vertices in convex position

outer k-quasiplanarity

Concepts/Problems

Degeneracy: a hereditary graph class is d-degenerate if every graph G in it has a vertex of degree $\leq d$.

Concepts/Problems

Degeneracy: a hereditary graph class is d-degenerate if every graph G in it has a vertex of degree $\leq d$.
Obs: d-degenerate $\rightarrow(d+1)$-colorable

planar : 5-degenerate; outerplanar : 2-degenerate.

Concepts/Problems

Degeneracy: a hereditary graph class is d-degenerate if every graph G in it has a vertex of degree $\leq d$.
Obs: d-degenerate $\rightarrow(d+1)$-colorable
 planar : 5-degenerate; outerplanar : 2-degenerate.

Separation Number (sn): a graph class has sn $\leq k$ when every graph G in it has a balanced separator of size $\leq k$. planar : sn $\leq 2 \sqrt{n}$; outerplanar : sn ≤ 2

Concepts/Problems

Degeneracy: a hereditary graph class is d-degenerate if every graph G in it has a vertex of degree $\leq d$.
Obs: d-degenerate $\rightarrow(d+1)$-colorable
 planar : 5-degenerate; outerplanar : 2-degenerate.

Separation Number (sn): a graph class has sn $\leq k$ when every graph G in it has a balanced separator of size $\leq k$. planar : sn $\leq 2 \sqrt{n}$; outerplanar : $\mathrm{sn} \leq 2$

Recognition: Testing for membership in a graph class. both planarity and outerplanarity can be tested in linear time.

Background : General Drawings

k-planar graphs - introduced by Ringel '65.

- Edge density: $4.108 n \sqrt{k}$
[Pach, Tóth '97]
$\rightarrow 8.216 \sqrt{k}$-degenerate (via avg. degree)
- $O(\sqrt{k n})$ treewidth
[Dujmović, Eppstein, Wood '17] $\rightarrow \mathrm{sn} \in O(\sqrt{k n})$
- 1-planarity testing is NP-hard [Grigoriev, Bodlaender '07]
k-quasi-planar graphs
- Edge density: $(n \log n) 2^{\alpha(n)^{c k}}$ Conjectured to be $c_{k} n$

```
[Fox, Pach, Suk '13]
    [Pach et al '96]
```

Comparing Classes:

- k-planar $\subset(k+1)$-quasi-planar:
$k>2$ [Angelini et al '17], $\quad k=2$ [Hoffmann, Tóth '17]

Background: Outer Drawings

Outer k-crossing ($\leq k$ crossings in the whole drawing)

- $O(\sqrt{k})$ treewidth $\rightarrow \mathrm{sn} \in O(\sqrt{k})$
- Ext. Monadic Second Order Logic
[Bannister, $\left(\mathrm{MSO}_{2}\right)$ formula for outer k-crossing \rightarrow testing outer k-crossing in time $O(f(k)(n+m))$

Background: Outer Drawings

Outer k-crossing ($\leq k$ crossings in the whole drawing)

- $O(\sqrt{k})$ treewidth $\rightarrow \mathrm{sn} \in O(\sqrt{k})$
- Ext. Monadic Second Order Logic $\left(\mathrm{MSO}_{2}\right)$ formula for outer k-crossing \rightarrow testing outer k-crossing in time $O(f(k)(n+m))$
Outer k-planarity
- treewidth $\leq 3 k+11 \rightarrow \mathrm{sn} \leq 3 k+12 \quad$ [Wood, Telle '07]
- Recognition: outer 1-planar in linear time [Auer et al '16, Hong et al '15] full outer 2-planar in linear time [Hong, Nagamochi '16]

Background: Outer Drawings

Outer k-crossing ($\leq k$ crossings in the whole drawing)

- $O(\sqrt{k})$ treewidth $\rightarrow \mathrm{sn} \in O(\sqrt{k})$
- Ext. Monadic Second Order Logic
[Bannister,
Eppstein '14] $\left(\mathrm{MSO}_{2}\right)$ formula for outer k-crossing \rightarrow testing outer k-crossing in time $O(f(k)(n+m))$
Outer k-planarity
- treewidth $\leq 3 k+11 \rightarrow \mathrm{sn} \leq 3 k+12 \quad$ [Wood, Telle '07]
- Recognition:
outer 1-planar in linear time [Auer et al '16, Hong et al '15] full outer 2-planar in linear time [Hong, Nagamochi '16]
Outer k-quasi-planarity
- Edge density: $\leq 2(k-1) n-\binom{2 k-1}{2} \quad$ [Capoyleas, Pach '92] $\rightarrow(4 k-5)$-degenerate

Results

Outer k-planar graphs

- $(\lfloor\sqrt{4 k+1}\rfloor+1)$-degenerate $\rightarrow(\lfloor\sqrt{4 k+1}\rfloor+2)$-colorable
- separation number $\leq 2 k+3 \rightarrow$ quasi-poly time recognition

Results

Outer k-planar graphs

- $(\lfloor\sqrt{4 k+1}\rfloor+1)$-degenerate $\rightarrow(\lfloor\sqrt{4 k+1}\rfloor+2)$-colorable
- separation number $\leq 2 k+3 \rightarrow$ quasi-poly time recognition

Outer k-quasi-planar graphs

- Outer 3-quasi planarity is incomparable with planarity
- edge maximal drawings

Results

Outer k-planar graphs

- $(\lfloor\sqrt{4 k+1}\rfloor+1)$-degenerate $\rightarrow(\lfloor\sqrt{4 k+1}\rfloor+2)$-colorable
- separation number $\leq 2 k+3 \rightarrow$ quasi-poly time recognition

Outer k-quasi-planar graphs

- Outer 3-quasi planarity is incomparable with planarity
- edge maximal drawings

Closed Drawings in MSO_{2}

- closed outer k-planarity and closed outer k-quasi-planarity can be expressed in MSO_{2}

Outline

Outer k-planar graphs

- $(\lfloor\sqrt{4 k+1}\rfloor+1)$-degenerate $\rightarrow(\lfloor\sqrt{4 k+1}\rfloor+2)$-colorable
- separation number $\leq 2 k+3 \rightarrow$ quasi-poly time recognition

Outer k-quasi-planar graphs

- Outer 3-quasi planarity is incomparable with planarity
- edge maximal drawings

Closed Drawings in MSO_{2}

- closed outer k-planarity and closed outer k-quasi-planarity can be expressed in MSO_{2}

Outer k-planarity

Obs: An outer k-planar clique has $\leq\lfloor\sqrt{4 k+1}\rfloor+2$ vertices

Outer k-planarity

Obs: An outer k-planar clique has $\leq\lfloor\sqrt{4 k+1}\rfloor+2$ vertices
Proof:

- a complete bipartite graph crosses $a b$.

Outer k-planarity

Obs: An outer k-planar clique has $\leq\lfloor\sqrt{4 k+1}\rfloor+2$ vertices Proof:

- a complete bipartite graph crosses $a b$.
- thus, for even $n, k \geq\left(\frac{n-2}{2}\right)^{2}$, and for odd $n, k \geq \frac{1}{4}(n-3)(n-1)$

$$
\rightarrow n \leq\lfloor\sqrt{4 k+1}\rfloor+2
$$

Outer k-planarity

Obs: An outer k-planar clique has $\leq\lfloor\sqrt{4 k+1}\rfloor+2$ vertices
Thm: outer k-planar graphs are $(\lfloor\sqrt{4 k+1}\rfloor+1)$-degenerate.

Outer k-planarity

Obs: An outer k-planar clique has $\leq\lfloor\sqrt{4 k+1}\rfloor+2$ vertices
Thm: outer k-planar graphs are $(\lfloor\sqrt{4 k+1}\rfloor+1)$-degenerate.
Proof (idea):

Suppose, $\geq \ell$ vertices left of $a b, w /$ deg. $\geq \delta$.

Outer k-planarity

Obs: An outer k-planar clique has $\leq\lfloor\sqrt{4 k+1}\rfloor+2$ vertices
Thm: outer k-planar graphs are $(\lfloor\sqrt{4 k+1}\rfloor+1)$-degenerate.
Proof (idea):

Suppose, $\geq \ell$ vertices left of $a b, w /$ deg. $\geq \delta$. $\rightarrow \delta \ell-\ell(\ell+1)$ edges cross $a b$

Outer k-planarity

Obs: An outer k-planar clique has $\leq\lfloor\sqrt{4 k+1}\rfloor+2$ vertices
Thm: outer k-planar graphs are $(\lfloor\sqrt{4 k+1}\rfloor+1)$-degenerate.
Proof (idea):

Suppose, $\geq \ell$ vertices left of $a b, \mathrm{w} /$ deg. $\geq \delta$. $\rightarrow \delta \ell-\ell(\ell+1)$ edges cross $a b$
Note: $\delta>\lfloor\sqrt{4 k+1}\rfloor+1, \ell=\left\lfloor\frac{1}{2} \sqrt{4 k+1}\right\rfloor+1$ is not possible by the proof of Obs.

Outer k-planarity

Obs: An outer k-planar clique has $\leq\lfloor\sqrt{4 k+1}\rfloor+2$ vertices
Thm: outer k-planar graphs are $(\lfloor\sqrt{4 k+1}\rfloor+1)$-degenerate.
Proof (idea):

Suppose, $\geq \ell$ vertices left of $a b, \mathrm{w} /$ deg. $\geq \delta$.

$$
\rightarrow \delta \ell-\ell(\ell+1) \text { edges cross } a b
$$

Note: $\delta>\lfloor\sqrt{4 k+1}\rfloor+1, \ell=\left\lfloor\frac{1}{2} \sqrt{4 k+1}\right\rfloor+1$ is not possible by the proof of Obs.
Proceed by induction on the range [ℓ, ℓ^{*}] where there can be no edge with any $x \in\left[\ell, \ell^{*}\right]$ vertices on it's left.

Outer k-planarity

Obs: An outer k-planar clique has $\leq\lfloor\sqrt{4 k+1}\rfloor+2$ vertices
Thm: outer k-planar graphs are $(\lfloor\sqrt{4 k+1}\rfloor+1)$-degenerate.
Proof (idea):
Suppose, $\geq \ell$ vertices left of $a b, w /$ deg. $\geq \delta$.

$$
\rightarrow \delta \ell-\ell(\ell+1) \text { edges cross } a b
$$

Note: $\delta>\lfloor\sqrt{4 k+1}\rfloor+1, \ell=\left\lfloor\frac{1}{2} \sqrt{4 k+1}\right\rfloor+1$ is not possible by the proof of Obs.
Proceed by induction on the range [ℓ, ℓ^{*}] where there can be no edge with any $x \in\left[\ell, \ell^{*}\right]$ vertices on it's left.

Cor: Outer k-planarity $\rightarrow(\lfloor\sqrt{4 k+1}\rfloor+2)$-colorable (tight).

Outer k-planarity

Thm: Outer k-planar graphs have sn $\leq 2 k+3$, and such separators imply quasi-polynomial time $\left(2^{\text {polylog(n) }}\right)$ recognition. i.e., assuming ETH, recognition is not NP-hard. Proof (sketch):

Outer k-planarity

Thm: Outer k-planar graphs have sn $\leq 2 k+3$, and such separators imply quasi-polynomial time ($\left.2^{\text {polylog(n) }}\right)$ recognition. i.e., assuming ETH, recognition is not NP-hard.

Proof (sketch):

Easy case:

Outer k-planarity

Thm: Outer k-planar graphs have sn $\leq 2 k+3$, and such separators imply quasi-polynomial time $\left(2^{\text {polylog(n) }}\right)$ recognition. i.e., assuming ETH, recognition is not NP-hard. Proof (sketch):

Outer k-planarity

Thm: Outer k-planar graphs have sn $\leq 2 k+3$, and such separators imply quasi-polynomial time $\left(2^{\text {polylog(n) }}\right)$ recognition. i.e., assuming ETH, recognition is not NP-hard.

Proof (sketch):

> Case 1: edge $a^{\prime} b^{\prime}$
> a^{\prime} first after a
> b^{\prime} first after b.

Outer k-planarity

Thm: Outer k-planar graphs have sn $\leq 2 k+3$, and such separators imply quasi-polynomial time $\left(2^{\text {polylog(n) }}\right)$ recognition. i.e., assuming ETH, recognition is not NP-hard.

Proof (sketch):
Case 1: edge $a^{\prime} b^{\prime}$
a^{\prime} first after a

b^{\prime} first after b.

Outer k-planarity

Thm: Outer k-planar graphs have sn $\leq 2 k+3$, and such separators imply quasi-polynomial time $\left(2^{\text {polylog(n) }}\right)$ recognition. i.e., assuming ETH, recognition is not NP-hard.

Proof (sketch):

> Case 1: edge $a^{\prime} b^{\prime}$
> a^{\prime} first after a
> b^{\prime} first after b.

Outer k-planarity

Thm: Outer k-planar graphs have sn $\leq 2 k+3$, and such separators imply quasi-polynomial time (2 $\left.2^{\text {polylog(n) }}\right)$ recognition. i.e., assuming ETH, recognition is not NP-hard.

Proof (sketch):

> Case 1: edge $a^{\prime} b^{\prime}$
> a^{\prime} first after a

b^{\prime} first after b.

Case 2: parallel edges $a^{\prime} b^{\prime \prime}, a^{\prime \prime} b^{\prime}$

Outer k-planarity

Thm: Outer k-planar graphs have sn $\leq 2 k+3$, and such separators imply quasi-polynomial time (2 $\left.2^{\text {polylog(n) }}\right)$ recognition. i.e., assuming ETH, recognition is not NP-hard.

Proof (sketch):

> Case 1: edge $a^{\prime} b^{\prime}$
> a^{\prime} first after a

b^{\prime} first after b.

Case 2: parallel edges $a^{\prime} b^{\prime \prime}, a^{\prime \prime} b^{\prime}$

take close pair ...

Outer k-planarity

Thm: Outer k-planar graphs have sn $\leq 2 k+3$, and such separators imply quasi-polynomial time (2 $\left.2^{\text {polylog(n) }}\right)$ recognition. i.e., assuming ETH, recognition is not NP-hard.

Proof (sketch):

Case 1: edge $a^{\prime} b^{\prime}$
a^{\prime} first after a b^{\prime} first after b.

Case 2: parallel edges $a^{\prime} b^{\prime \prime}, a^{\prime \prime} b^{\prime}$

take close pair ...

$$
\text { sn } \leq 2 k+3
$$

Outline

Outer k-planar graphs

- $(\lfloor\sqrt{4 k+1}\rfloor+1)$-degenerate $\rightarrow(\lfloor\sqrt{4 k+1}\rfloor+2)$-colorable
- separation number $\leq 2 k+3 \rightarrow$ quasi-poly time recognition

Outer k-quasi-planar graphs

- Outer 3-quasi planarity is incomparable with planarity
- edge maximal drawings

Closed Drawings in MSO_{2}

- closed outer k-planarity and closed outer k-quasi-planarity can be expressed in MSO_{2}

Outer k-quasi-planarity

Thm: Planarity and outer 3-quasi-planarity are incomparable.

Outer k-quasi-planarity

Thm: Planarity and outer 3-quasi-planarity are incomparable.
Obs 1: $K_{4,4}$ and K_{5} are outer 3-quasi-planar.

Outer k-quasi-planarity

Thm: Planarity and outer 3-quasi-planarity are incomparable.

Obs 1: $K_{4,4}$ and K_{5} are outer 3-quasi-planar.

Obs 2: planar 3-trees with
≥ 3 complete levels are not outer 3-quasi-planar.

Outer k-quasi-planarity

Thm: Planarity and outer 3-quasi-planarity are incomparable.

Obs 1: $K_{4,4}$ and K_{5} are outer 3-quasi-planar.
 ≥ 3 complete levels are not outer 3-quasi-planar.
(proof via SAT formulation)

Outer k-quasi-planarity

Thm: Planarity and outer 3-quasi-planarity are incomparable.

Obs 1: $K_{4,4}$ and K_{5} are outer 3-quasi-planar.

Obs 2: planar 3-trees with ≥ 3 complete levels are not outer 3-quasi-planar.
(proof via SAT formulation)
vertex minimal example:

Outer k-quasi-planarity

Thm: Planarity and outer 3-quasi-planarity are incomparable.

Obs 1: $K_{4,4}$ and K_{5} are outer 3-quasi-planar.

Obs 2: planar 3-trees with
≥ 3 complete levels are not outer 3-quasi-planar.
(proof via SAT formulation)
vertex minimal example:

Outer k-quasi-planarity

Thm: Planarity and outer 3-quasi-planarity are incomparable.

Obs 1: $K_{4,4}$ and K_{5} are outer 3-quasi-planar.

Obs 2: planar 3-trees with
≥ 3 complete levels are not outer 3-quasi-planar.
(proof via SAT formulation)
vertex minimal example:

Edge maximal outer k-quasi-planar drawings

Thm: Each edge maximal outer k-quasi-planar drawing of $G=(V, E)$ has

$$
|E|= \begin{cases}\binom{|V|}{2} & \text { if }|V| \leq 2 k-1, \\ 2(k-1)|V|-\binom{2 k-1}{2} & \text { if }|V| \geq 2 k-1 .\end{cases}
$$

Edge maximal outer k-quasi-planar drawings

Thm: Each edge maximal outer k-quasi-planar drawing of $G=(V, E)$ has

$$
|E|= \begin{cases}\binom{|V|}{2} & \text { if }|V| \leq 2 k-1, \\ 2(k-1)|V|-\binom{2 k-1}{2} & \text { if }|V| \geq 2 k-1 .\end{cases}
$$

Some equivalent questions:

Edge maximal outer k-quasi-planar drawings

Thm: Each edge maximal outer k-quasi-planar drawing of $G=(V, E)$ has

$$
|E|= \begin{cases}\binom{|V|}{2} & \text { if }|V| \leq 2 k-1, \\ 2(k-1)|V|-\binom{2 k-1}{2} & \text { if }|V| \geq 2 k-1 .\end{cases}
$$

Some equivalent questions:
For a convex n-gon, how many chords can be inserted without making k pairwise crossings? [Nakamigawa '00]

Edge maximal outer k-quasi-planar drawings

Thm: Each edge maximal outer k-quasi-planar drawing of $G=(V, E)$ has

$$
|E|= \begin{cases}\binom{|V|}{2} & \text { if }|V| \leq 2 k-1, \\ 2(k-1)|V|-\binom{2 k-1}{2} & \text { if }|V| \geq 2 k-1 .\end{cases}
$$

Some equivalent questions:
For a convex n-gon, how many chords can be inserted without making k pairwise crossings? [Nakamigawa '00]

What is the biggest line arrangment in the hyperbolic plane with $\leq n$ points at ∞ and without k mutually crossing lines (Karzanov number $\leq k-1$) ? [Dress et al. 2002]

Results

Outer k-planar graphs

- $(\lfloor\sqrt{4 k+1}\rfloor+1)$-degenerate $\rightarrow(\lfloor\sqrt{4 k+1}\rfloor+2)$-colorable.
- separation number $\leq 2 k+3 \rightarrow$ quasi-poly time recognition.

Outer k-quasi-planar graphs

- Outer 3-quasi planarity is incomparable with planarity
- edge maximal drawings

Closed Drawings in MSO_{2}

- closed k-planarity and closed k-quasi-planarity can be expressed in MSO_{2}.

Monadic Second Order Logic $\left(\mathrm{MSO}_{2}\right)$

Thm (Courcelle): If a property P is expressed as $\varphi \in \mathrm{MSO}_{2}$, then for every graph G with treewidth at most t, P can be tested in time $O(f(t,|\varphi|)(n+m))$ for a computable function f.

Monadic Second Order Logic $\left(\mathrm{MSO}_{2}\right)$

Thm (Courcelle): If a property P is expressed as $\varphi \in \mathrm{MSO}_{2}$, then for every graph G with treewidth at most t, P can be tested in time $O(f(t,|\varphi|)(n+m))$ for a computable function f.

But, what is MSO_{2} again?

Monadic Second Order Logic $\left(\mathrm{MSO}_{2}\right)$

Thm (Courcelle): If a property P is expressed as $\varphi \in \mathrm{MSO}_{2}$, then for every graph G with treewidth at most t, P can be tested in time $O(f(t,|\varphi|)(n+m))$ for a computable function f.

But, what is MSO_{2} again?
$\operatorname{Partition}(A, B, C) \equiv(\forall u)[(u \in A \vee u \in B \vee u \in C)$

$$
\wedge(u \in A \rightarrow(u \notin B \wedge u \notin C)) \wedge(u \in B \rightarrow(\ldots)) \wedge(\ldots)]
$$

Monadic Second Order Logic $\left(\mathrm{MSO}_{2}\right)$

Thm (Courcelle): If a property P is expressed as $\varphi \in \mathrm{MSO}_{2}$, then for every graph G with treewidth at most t, P can be tested in time $O(f(t,|\varphi|)(n+m))$ for a computable function f.

But, what is MSO_{2} again?
$\operatorname{Partition}(A, B, C) \equiv(\forall u)[(u \in A \vee u \in B \vee u \in C)$

$$
\wedge(u \in A \rightarrow(u \notin B \wedge u \notin C)) \wedge(u \in B \rightarrow(\ldots)) \wedge(\ldots)]
$$

Formally:

- variables: vertices, edges, sets of vertices, and sets of edges;
- binary relations: equality $(=)$, set membership (\in), subset of a set (\subseteq), and edge-vertex incidence ($/$);
- standard propositional logic operators: $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$.
- standard quantifiers (\forall, \exists).

Encoding a Crossing in MSO_{2}

V-Partition($A, B, C) \equiv$ (A, B, C) is a partition of the vertex set.

Encoding a Crossing in MSO_{2}

V-Partition $(A, B, C) \equiv$ (A, B, C) is a partition of the vertex set.

Encoding a Crossing in MSO_{2}

V-Partition $(A, B, C) \equiv$ (A, B, C) is a partition of the vertex set.
$\operatorname{Conn}(V, E) \equiv$ the graph (V, E) is connected.

Encoding a Crossing in MSO_{2}

V-Partition($A, B, C) \equiv$ (A, B, C) is a partition of the vertex set.
$\operatorname{Conn}(V, E) \equiv$ the graph (V, E) is connected.
$\operatorname{Hamiltonian}\left(E^{*}\right) \equiv$ The edge set E^{*} is a Hamiltonian cycle in the graph G.

Encoding a Crossing in MSO_{2}

V-Partition $(A, B, C) \equiv$ (A, B, C) is a partition of the vertex set.
$\operatorname{Conn}(V, E) \equiv$ the graph (V, E) is connected.
$\operatorname{Hamiltonian}\left(E^{*}\right) \equiv$ The edge set E^{*} is a Hamiltonian cycle in the graph G.

$\operatorname{Crossing}\left(E^{*}, e, e^{\prime}\right) \equiv(\forall A, B, C)[(V-P a r t i t i o n(A, B, C)$

$$
\begin{aligned}
& \left.\wedge(x \in C \leftrightarrow I(e, x)) \wedge \operatorname{Cons}\left(A, E^{*}\right) \wedge \operatorname{Conv}\left(B, E^{*}\right)\right) \\
& \left.\rightarrow(\exists a \in A)(\exists b \in B)\left[I\left(e^{\prime}, a\right) \wedge I\left(e^{\prime}, b\right)\right]\right]
\end{aligned}
$$

Implications of our MSO_{2} formulae

- closed drawings which are k-planar or k-quasi planar can be expressed in MSO_{2}.
- closed k-planarity can be tested in linear FPT-time (parameterized by k).
- closed k-quasi-planarity can be tested in linear FPT-time (parameterized by both k and treewidth).
- Note: edge maximal outer k-planarity \subset closed k-planarity. \rightarrow efficient testing of edge maximal outer k-planarity.

Implications of our MSO_{2} formulae

- closed drawings which are k-planar or k-quasi planar can be expressed in MSO_{2}.
- closed k-planarity can be tested in linear FPT-time (parameterized by k).
- closed k-quasi-planarity can be tested in linear FPT-time (parameterized by both k and treewidth).
- Note: edge maximal outer k-planarity \subset closed k-planarity. \rightarrow efficient testing of edge maximal outer k-planarity.
Can these expressions be generalized to full drawings?
 no crossing "visible" from "outside"

Implications of our MSO_{2} formulae

- closed drawings which are k-planar or k-quasi planar can be expressed in MSO_{2}.
- closed k-planarity can be tested in linear FPT-time (parameterized by k).
- closed k-quasi-planarity can be tested in linear FPT-time (parameterized by both k and treewidth).
- Note: edge maximal outer k-planarity \subset closed k-planarity. \rightarrow efficient testing of edge maximal outer k-planarity.
Can these expressions be generalized to full drawings?
 no crossing "visible" from "outside" full outer 2-planarity testing in linear time [Hong, Nagamochi '16]

Conclusion

Outer k-planar graphs:

- tight bounds on degeneracy, and chromatic number.

Quasi-polynomial time recognition via balanced separators, closed drawings testable in linear time.

- Open: polytime recognition for all $k>1$.

Conclusion

Outer k-planar graphs:

- tight bounds on degeneracy, and chromatic number.

Quasi-polynomial time recognition via balanced separators, closed drawings testable in linear time.

- Open: polytime recognition for all $k>1$.

Outer k-quasi-planar graphs:

- outer 3-quasi-planarity is incomparable with planarity. Open: planarity vs. outer 4-quasi-planarity.
- closed drawings are expressible in MSO_{2}.

Open: recognition both in general and for closed drawings.

- Open: tight bounds on: degeneracy, chromatic number, page number.

Conclusion

Outer k-planar graphs:

- tight bounds on degeneracy, and chromatic number.

Quasi-polynomial time recognition via balanced separators, closed drawings testable in linear time.

- Open: polytime recognition for all $k>1$.

Outer k-quasi-planar graphs:

- outer 3-quasi-planarity is incomparable with planarity.

Open: planarity vs. outer 4-quasi-planarity.

- closed drawings are expressible in MSO_{2}.

Open: recognition both in general and for closed drawings.

- Open: tight bounds on: degeneracy, chromatic number, page number.

