

Drawing Graphs with Circular Arcs and Right-Angle Crossings

Steven Chaplick¹, Henry Förster², **Myroslav Kryven**³, Alexander Wolff³

¹University of Maastricht, the Netherlands

²University of Tübingen, Germany

³Julius Maximilian University of Würzburg, Germany

SWAT 2020

The goal of Graph Drawing is to produce *nice* drawings of graphs.

If crossings are unavoidable, minimize the number of crossings.

Graph with a *topological drawing*, i.e.,

• no edge is self-intersecting,

- no edge is self-intersecting,
- edges with common endpoints do not intersect,

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once.

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once.

Graph with a topological drawing, i.e.,

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once.

For a (topolog.) graph G, the crossing number of G is: cr(G) = minimum number of crossings over all (topological) drawings of G.

Graph with a topological drawing, i.e.,

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once.

For a (topolog.) graph G, the crossing number of G is: cr(G) = minimum number of crossings over all (topological) drawings of G.

E.g.
$$cr(K_{3,3}) = ?$$

Graph with a *topological drawing*, i.e.,

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once.

For a (topolog.) graph G, the crossing number of G is: cr(G) = minimum number of crossings over all (topological) drawings of G.

E.g.
$$cr(K_{3,3}) = 1$$

A dense *n*-vertex *m*-edge graph *G* requires many crossings.

Thm. [Ajtai, Chvátal, Newborn, Szemerédi '82, Leighton '84] $m \ge 4n \Rightarrow \operatorname{cr}(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$. [Chazelle, Sharir, Welzl...]

A dense *n*-vertex *m*-edge graph *G* requires many crossings.

Thm. [Ajtai, Chvátal, Newborn, Szemerédi '82, Leighton '84] $m \ge 4n \Rightarrow \operatorname{cr}(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$. [Chazelle, Sharir, Welzl...]

If $m \in \Omega(n^2)$, then $\operatorname{cr}(G) \in \Omega(n^4)$.

A dense *n*-vertex *m*-edge graph *G* requires many crossings.

Thm. [Ajtai, Chvátal, Newborn, Szemerédi '82, Leighton '84] $m \ge 4n \Rightarrow \operatorname{cr}(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$. [Chazelle, Sharir, Welzl...]

If $m \in \Omega(n^2)$, then $\operatorname{cr}(G) \in \Omega(n^4)$.

For a complete graph K_n : [Guy, '60] $\operatorname{cr}(K_n) \leq \frac{1}{4} \lfloor \frac{n}{2} \rfloor \lfloor \frac{n-1}{2} \rfloor \lfloor \frac{n-2}{2} \rfloor \lfloor \frac{n-3}{2} \rfloor$.

A dense *n*-vertex *m*-edge graph *G* requires many crossings.

Thm. [Ajtai, Chvátal, Newborn, Szemerédi '82, Leighton '84] $m \ge 4n \Rightarrow \operatorname{cr}(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$. [Chazelle, Sharir, Welzl...]

If $m \in \Omega(n^2)$, then $\operatorname{cr}(G) \in \Omega(n^4)$.

For a complete graph K_n : [Guy, '60] $\operatorname{cr}(K_n) \leq \frac{1}{4} \lfloor \frac{n}{2} \rfloor \lfloor \frac{n-1}{2} \rfloor \lfloor \frac{n-2}{2} \rfloor \lfloor \frac{n-3}{2} \rfloor$. Guy conjectured: Bound is tight.

A dense *n*-vertex *m*-edge graph *G* requires many crossings.

Thm. [Ajtai, Chvátal, Newborn, Szemerédi '82, Leighton '84] $m \ge 4n \Rightarrow \operatorname{cr}(G) \ge \frac{1}{64} \cdot \frac{m^3}{n^2}$. [Chazelle, Sharir, Welzl...]

If $m \in \Omega(n^2)$, then $\operatorname{cr}(G) \in \Omega(n^4)$.

For a complete graph K_n : [Guy, '60] $\operatorname{cr}(K_n) \leq \frac{1}{4} \lfloor \frac{n}{2} \rfloor \lfloor \frac{n-1}{2} \rfloor \lfloor \frac{n-2}{2} \rfloor \lfloor \frac{n-3}{2} \rfloor$. Guy conjectured: Bound is tight.

 $\Omega(n^4)$ is a lot of crossings:(

Study graphs with drawings with restrictions on crossings.

Study graphs with drawings with restrictions on crossings.

Restrictions on crossing patterns:

• *k*-*planar*: $\leq k$ crossings per edge

Study graphs with drawings with restrictions on crossings.

Restrictions on crossing patterns:

- *k*-planar: $\leq k$ crossings per edge
- *k*-quasi-planar: $\leq k$ pairwise crossing edges

Study graphs with drawings with restrictions on crossings.

Restrictions on crossing patterns:

- *k*-planar: $\leq k$ crossings per edge
- *k*-quasi-planar: $\leq k$ pairwise crossing edges

Restrictions on the crossing angle (edges in the drawing have small complexity):

Study graphs with drawings with restrictions on crossings.

Restrictions on crossing patterns:

- *k*-planar: $\leq k$ crossings per edge
- *k*-quasi-planar: $\leq k$ pairwise crossing edges

Restrictions on the crossing angle (edges in the drawing have small complexity):

• edges are poly-line with at most k bends and cross at 90° angle only (RAC_k graphs). [Didir

Study graphs with drawings with restrictions on crossings.

Restrictions on crossing patterns:

- *k*-planar: $\leq k$ crossings per edge
- *k*-quasi-planar: $\leq k$ pairwise crossing edges

Restrictions on the crossing angle [Huang et al., '14] (edges in the drawing have small complexity): 90°

• edges are poly-line with at most k bends and cross at 90° angle only (RAC_k graphs). [Didin

Study graphs with drawings with restrictions on crossings.

Restrictions on crossing patterns:

- *k*-planar: $\leq k$ crossings per edge
- *k*-quasi-planar: $\leq k$ pairwise crossing edges

Restrictions on the crossing angle [Huang et al., '14] (edges in the drawing have small complexity): 90°

• edges are poly-line with at most k bends and cross at 90° angle only (RAC_k graphs). [Didir

Study graphs with drawings with restrictions on crossings.

Restrictions on crossing patterns:

- *k*-planar: $\leq k$ crossings per edge
- *k*-quasi-planar: $\leq k$ pairwise crossing edges

Restrictions on the crossing angle [Huang et al., '14] (edges in the drawing have small complexity): 90°

• edges are poly-line with at most *k* bends and cross at 90° angle only (RAC_k graphs). [Didimo et al., '11]

new! • edges are circular-arc and cross at 90° angle only (arc-RAC graphs).

Study graphs with drawings with restrictions on crossings.

Restrictions on crossing patterns:

- *k*-planar: $\leq k$ crossings per edge
- *k-quasi-planar*: < *k* pairwise crossing edges

But why arcs? Restrictions on the cr (edges in the drawing have small c

• edges are poly-line with at most , cross at 90° angle only (RAC_k grap.

new!(• edges are circular-arc and cross at 90° angle only (arc-RAC graphs). 5

;).

[Lombardi, '99]

[Duncan et al., '10]

For aestethics:

– users prefer edges with small complexity. [Xu et al., '12] [Purchase et al., '13]

[Duncan et al., '10]

For aestethics:

users prefer edges with small complexity.
[Xu et al., '12] [Purchase et al., '13]

Improve other drawing criteria:

- area of the drawing [Schulz, '15]
- angular resolution.

[Cheng et al., '01] [Duncan et al., '10]

RAC graphs

Maximum edge density (MED) is a classical property used to characterize graph classes.

RAC graphs

Maximum edge density (MED) is a classical property used to characterize graph classes.

7

Graph <u>class</u>	RAC ₀	RAC ₁	RAC ₂	arc-RAC
Upper bound on MED				
Lower bound on MED				

RAC graphs

Maximum edge density (MED) is a classical property used to characterize graph classes.

 $(RAC_3 = all graphs)$

Graph <u>class</u>	RAC ₀	RAC ₁	RAC ₂	arc-RAC
Upper bound on MED	4 <i>n</i> – 10	O(n ^{4/3})	$O(n^{7/4})$	
Lower bound on MED	4 <i>n</i> – 10			
[Didimo+	'11]			
Maximum edge density (MED) is a classical property used to characterize graph classes.

 $(RAC_3 = all graphs)$

Graph class	RAC ₀	RAC ₁	RAC ₂	arc-RAC
Upper bound	4 <i>n</i> – 10	$O(n^{4/3})$	$O(n^{7/4})$	
on MED		6.5 <i>n</i> – 13	74.2 <i>n</i>	
Lower bound on MED	4 <i>n</i> – 10	$4.5n - O(\sqrt{n})$	7.83 $n - O(\sqrt{n})$	
[Didimo+	'11] [Arik	ushi+ '12]	•	1

Maximum edge density (MED) is a classical property used to characterize graph classes.

 $(RAC_3 = all graphs)$

Graph <u>class</u>	RAC ₀	RAC ₁	RAC ₂	arc-RAC
Upper bound	4 <i>n</i> – 10	$O(n^{4/3})$	$O(n^{7/4})$	
on MED		6.5n - 13	74.2 <i>n</i>	
		5.5 $n - O(1)$		
Lower bound on MED	4 <i>n</i> – 10	$4.5n - O(\sqrt{n})$	7.83 <i>n</i> $-O(\sqrt{n})$	
[Didimo+	'11] [Arik	5.5n - O(1) (ushi+ '12] [A	ngelini+ '20]	

Maximum edge density (MED) is a classical property used to characterize graph classes. 4-quasi- $(RAC_3 = all graphs)$ planar Graph RAC_1 RAC_2 RAC_0 arc-RAC class 72(n-2)Upper $O(n^{4/3})$ $O(n^{7/4})$ 4*n* – 10 bound 6.5n - 1374.2*n* on MED 5.5n - O(1)4n - 10Lower $4.5n - O(\sqrt{n})$ $7.83n - O(\sqrt{n})$ bound on MED 5.5n - O(1)[Ackerman '09]

[Didimo+'11] [Arikushi+'12] [Angelini+'20]

Maximum edge density (MED) is a classical property used to characterize graph classes. 4-quasi- $(RAC_3 = all graphs)$ planar Graph RAC₁ RAC₂ RAC_0 arc-RAC class $O(n^{4/3})$ $|O(n^{7/4})|$ Upper 4n - 1072(n-2)

bound			$\mathcal{O}(n^{\prime})$.)		(-)
on MED			6.5n - 13	74.2	<u>2</u> n		14n -	12
			5.5 <i>n</i> – <i>O</i> (1)					
Lower bound on MED	4 <i>n</i> – 1	.0	$4.5n - O(\sqrt{n})$ 5.5n - O(1)	ī) 7.8 3	3n –0(-	\sqrt{n})		
[Didimo+	'11] [<i>I</i>	Arik	ushi+ '12]	[Angel	ini+ '20]		Ackerma	an '09]

Maximum edge density (MED) is a classical property used to characterize graph classes. 4-quasi-

Charging	planar			
Graph class	RAC ₀	RAC ₁	RAC ₂	arc-RAC
Upper bound	4n - 10	$O(n^{4/3})$	$O(n^{7/4})$	72(n-2)
on MED		6.5n - 13	74.2 <i>n</i>	14 <i>n</i> – 12
		5.5 $n - O(1)$		
Lower bound	4 <i>n</i> – 10	4. 5 <i>n</i> $-O(\sqrt{n})$	7.83 <i>n</i> $-O(\sqrt{n})$	
on MED		5.5n - O(1)		
[D1d1m0+11] $[Ar1kush1+12]$ $[Angelini+20]$ $[Ackerman 20]$				

Maximum edge density (MED) is a classical property used to characterize graph classes. 4-quasi-

Charging	planar			
Graph <u>class</u>	RAC ₀	RAC ₁	RAC ₂	arc-RAC
Upper	4 <i>n</i> – 10	$O(n^{4/3})$	$O(n^{7/4})$	72(n-2)
on MED	[Dujmović et al. '10]	6.5n - 13	74.2 <i>n</i>	14 <i>n</i> – 12
		5.5 $n - O(1)$		
Lower	4n - 10	4. 5 <i>n</i> $-O(\sqrt{n})$	7.83 <i>n</i> $-O(\sqrt{n})$	
bound				
on MED		5. 5 <i>n</i> – <i>O</i> (1)		
[Didimo+'11] [Arikushi+'12] [Angelini+'20] [Ackerman'09				

Consider an arc-RAC graph *G* and its drawing *D*.

Simplification of a smallest empty 0-lens:

Consider an arc-RAC graph *G* and its drawing *D*.

Simplification of a smallest empty 0-lens:

During the simplification process:

- no new crossings are created and
- no new lenses are made.

Consider an arc-RAC graph *G* and its drawing *D*.

Simplification of a smallest empty 0-lens:

During the simplification process:

- no new crossings are created and
- no new lenses are made.

We *simplify* smallest empty 0-lenses until none are left.

Consider an arc-RAC graph *G* and its drawing *D*.

Simplification of a smallest empty 0-lens:

During the simplification process:

- no new crossings are created and
- no new lenses are made.

We *simplify* smallest empty 0-lenses until none are left. We call the resulting drawing D' the *simplification* of D.

Thm. An arc-RAC graph with *n* vertices can have at most 14n - 12 edges.

Thm. An arc-RAC graph with *n* vertices can have at most 14n - 12 edges.

Proof.

Let *G* be an *n*-vertex arc-RAC graph,

Thm. An arc-RAC graph with *n* vertices can have at most 14n - 12 edges.

Proof.

Let *G* be an *n*-vertex arc-RAC graph, with an arc-RAC drawing *D*,

Thm. An arc-RAC graph with *n* vertices can have at most 14n - 12 edges.

Proof.

Let *G* be an *n*-vertex arc-RAC graph, with an arc-RAC drawing *D*, simplification D' of *D*, and

Thm. An arc-RAC graph with *n* vertices can have at most 14n - 12 edges.

Proof.

Let *G* be an *n*-vertex arc-RAC graph, with an arc-RAC drawing *D*, simplification D' of *D*, and planarization *G'* of *D'*.

1. Assigning each face f of G' a charge of: ch(f) = |f| + v(f) - 4, where |f| is the degree of f in the planarization G' and v(f) is the number of vertices of G on the boundary of f. And for each vertex v of G: ch(v) = 16/3.

1. Assigning each face *f* of *G'* a charge of: ch(f) = |f| + v(f) - 4, where |f| is the degree of *f* in the planarization *G'* and v(f) is the number of vertices of *G* on the boundary of *f*. And for each vertex *v* of *G*: ch(v) = 16/3.

2. Redistributing charge among faces and vertices so that: a) $ch(v) \ge 0$ for all v in G and b) $ch(f) \ge v(f)/3$ for all f in G'. [Dujmović et al., '10]

 Assigning each face *f* of *G'* a charge of: *ch*(*f*) = |*f*| + *v*(*f*) − 4, where |*f*| is the degree of *f* in the planarization *G'* and *v*(*f*) is the number of vertices of *G* on the boundary of *f*. And for each vertex *v* of *G*: *ch*(*v*) = 16/3.

Redistributing charge among faces and vertices so that: a) *ch*(*v*) ≥ 0 for all *v* in *G* and b) *ch*(*f*) ≥ *v*(*f*)/3 for all *f* in *G'*. [Dujmović et al., '10]
Making sure that after Step 2 a) and b) still hold.

10

1. Assigning each face *f* of *G*′ a charge of: ch(f) = |f| + v(f) - 4, where |f| is the degree of f in the planarization G' and v(f) is the number of vertices of G on the boundary of f. And for each vertex *v* of *G*: ch(v) = 16/3. 2. Redistributing charge among faces and vertices so that: a) $ch(v) \ge 0$ for all v in G and b) $ch(f) \ge v(f)/3$ for all f in G'. [Dujmović et al., '10] 3. Making sure that after Step 2 a) and b) still hold. $\sum_{f \in G'} ch(f) = 4n - 8.$ [Ackerman., '09]

1. Assigning each face *f* of *G*′ a charge of: ch(f) = |f| + v(f) - 4, where |f| is the degree of f in the planarization G' and v(f) is the number of vertices of G on the boundary of f. And for each vertex *v* of *G*: ch(v) = 16/3. 2. Redistributing charge among faces and vertices so that: a) ch(v) > 0 for all v in G and b) $ch(f) \ge v(f)/3$ for all f in G'. [Dujmović et al., '10] 3. Making sure that after Step 2 a) and b) still hold. $\sum_{f \in G'} ch(f) = 4n - 8.$ [Ackerman., '09] Hence the total charge of the system is 4n - 8 + 16n/3 = 28n/3 - 8.

1. Assigning each face *f* of *G*′ a charge of: ch(f) = |f| + v(f) - 4, where |f| is the degree of f in the planarization G' and v(f) is the number of vertices of *G* on the boundary of *f*. And for each vertex *v* of *G*: ch(v) = 16/3. 2. Redistributing charge among faces and vertices so that: a) $ch(v) \ge 0$ for all v in G and b) $ch(f) \ge v(f)/3$ for all f in G'. [Dujmović et al., '10] 3. Making sure that after Step 2 a) and b) still hold. $\sum_{f \in G'} ch(f) = 4n - 8.$ [Ackerman., '09] Hence the total charge of the system is 4n - 8 + 16n/3 = 28n/3 - 8. And the bound follows: $28n/3 - 8 \ge \sum_{f \in G'} ch(f) \ge$ $\sum_{f \in G'} v(f)/3 = \sum_{v \in G} \deg(v)/3 = 2|E|/3.$

Step 1 (initial charge)

Initial charge:

• for each vertex *v* of *G*:

$$ch(v) = 16/3.$$

11

Step 1 (initial charge)

Initial charge:

- for each vertex v of G: ch(v) = 16/3.
- for each face f of G': ch(f) = |f| + v(f) - 4,

11

We call a face *f* of *G*′ a *k*-triangle, *k*-quadrilateral, or *k*-pentagon if *f* has the corresponding shape and v(f) = k.

We call a face *f* of *G*′ a *k*-triangle, *k*-quadrilateral, or *k*-pentagon if *f* has the corresponding shape and v(f) = k.

We call a face *f* of *G*′ a *k*-triangle, *k*-quadrilateral, or *k*-pentagon if *f* has the corresponding shape and v(f) = k.

12

We call a face *f* of *G*′ a *k*-triangle, *k*-quadrilateral, or *k*-pentagon if *f* has the corresponding shape and v(f) = k.

Initial charge at Step 1 is ch(f) = |f| + v(f) - 4.

We call a face *f* of *G*′ a *k*-triangle, *k*-quadrilateral, or *k*-pentagon if *f* has the corresponding shape and v(f) = k.

Initial charge at Step 1 is ch(f) = |f| + v(f) - 4.

After Step 1 ch(f) = |f| + v(f) - 4, thus, the only faces with ch(f) < v(f)/3 are:

• ch(d) = -1 for each digon d,

After Step 1 ch(f) = |f| + v(f) - 4, thus, the only faces with ch(f) < v(f)/3 are:

- ch(d) = -1 for each digon d,
- $ch(t_0) = -1$ for each 0-triangle t_0 ,

After Step 1 ch(f) = |f| + v(f) - 4, thus, the only faces with ch(f) < v(f)/3 are:

- ch(d) = -1 for each digon d,
- $ch(t_0) = -1$ for each 0-triangle t_0 ,
- $ch(t_1) = 0$ for each 1-triangle t_1 .

After Step 1 ch(f) = |f| + v(f) - 4, thus, the only faces with ch(f) < v(f)/3 are:

- ch(d) = -1 for each digon d,
- $ch(t_0) = -1$ for each 0-triangle t_0 ,
- $ch(t_1) = 0$ for each 1-triangle t_1 .

Each digon *d* is a 1-digon incident to some vertex *v*.

We say *v* contributes charge to *d*.
After Step 1 ch(f) = |f| + v(f) - 4, thus, the only faces with ch(f) < v(f)/3 are:

- ch(d) = -1 for each digon d,
- $ch(t_0) = -1$ for each 0-triangle t_0 ,
- $ch(t_1) = 0$ for each 1-triangle t_1 .

Each digon *d* is a 1-digon incident to some vertex *v*.

We say *v* contributes charge to *d*.

After the distribution ch(d) = 1/3, i.e., $ch(d) \ge v(d)/3$.

After Step 1 ch(f) = |f| + v(f) - 4, thus, the only faces with ch(f) < v(f)/3 are:

- ch(d) = -1 for each digon d,
- $ch(t_0) = -1$ for each 0-triangle t_0 ,
- $ch(t_1) = 0$ for each 1-triangle t_1 .

Consider the 1-triangle t_1 .

After Step 1 ch(f) = |f| + v(f) - 4, thus, the only faces with ch(f) < v(f)/3 are:

- ch(d) = -1 for each digon d,
- $ch(t_0) = -1$ for each 0-triangle t_0 ,
- $ch(t_1) = 0$ for each 1-triangle t_1 .

Consider the 1-triangle t_1 .

 f_k is not a 0-quadrangle

After Step 1 ch(f) = |f| + v(f) - 4, thus, the only faces with ch(f) < v(f)/3 are:

- ch(d) = -1 for each digon d,
- $ch(t_0) = -1$ for each 0-triangle t_0 ,
- $ch(t_1) = 0$ for each 1-triangle t_1 .

Consider the 1-triangle t_1 .

 f_k is not a 0-quadrangle $|f_k| \ge 4$

After Step 1 ch(f) = |f| + v(f) - 4, thus, the only faces with ch(f) < v(f)/3 are:

- ch(d) = -1 for each digon d,
- $ch(t_0) = -1$ for each 0-triangle t_0 ,
- $ch(t_1) = 0$ for each 1-triangle t_1 .

Consider the 1-triangle t_1 .

 f_k is not a 0-quadrangle $|f_k| = 3$

After Step 1 ch(f) = |f| + v(f) - 4, thus, the only faces with ch(f) < v(f)/3 are:

- ch(d) = -1 for each digon d,
- $ch(t_0) = -1$ for each 0-triangle t_0 ,
- $ch(t_1) = 0$ for each 1-triangle t_1 .

Consider the 1-triangle t_1 .

 f_k is not a 0-quadrangle $|f_k| = 3$

After the distribution $ch(t_1) = 1/3$, i.e., $ch(t_1) \ge v(t_1)/3$.

After Step 1 ch(f) = |f| + v(f) - 4, thus, the only faces with ch(f) < v(f)/3 are:

- ch(d) = -1 for each digon d,
- $ch(t_0) = -1$ for each 0-triangle t_0 ,
- $ch(t_1) = 0$ for each 1-triangle t_1 .

Consider the 0-triangle t_0 .

After Step 1 ch(f) = |f| + v(f) - 4, thus, the only faces with ch(f) < v(f)/3 are:

- ch(d) = -1 for each digon d,
- $ch(t_0) = -1$ for each 0-triangle t_0 ,
- $ch(t_1) = 0$ for each 1-triangle t_1 .

Consider the 0-triangle t_0 .

After the distribution $ch(t_0) = 0$, i.e., $ch(t_0) \ge v(t_0)/3$.

We need to show that: a) $ch(v) \ge 0$ for all v in G and b) $ch(f) \ge v(f)/3$ for all f in G'.

We need to show that: a) $ch(v) \ge 0$ for all v in G and b) $ch(f) \ge v(f)/3$ for all f in G'.

We need to show that:

a) $ch(v) \ge 0$ for all v in G and b) $ch(f) \ge v(f)/3$ for all f in G'.

We need to show that:

a) $ch(v) \ge 0$ for all v in G and b) $ch(f) \ge v(f)/3$ for all f in G'.

We need to show that:

a) $ch(v) \ge 0$ for all v in G and b) $ch(f) \ge v(f)/3$ for all f in G'.

Lem Each vertex is incident to at most four non-overlapping empty 1-lenses.

We need to show that:

a) $ch(v) \ge 0$ for all v in G and b) $ch(f) \ge v(f)/3$ for all f in G'.

Lem Each vertex is incident to at most four non-overlapping empty 1-lenses.

We need to show that:

a) $ch(v) \ge 0$ for all v in G and b) $ch(f) \ge v(f)/3$ for all f in G'.

Lem Each vertex is incident to at most four non-overlapping empty 1-lenses.

Worst case: *v* contributes charge to at most 4 digons.

We need to show that:

a) $ch(v) \ge 0$ for all v in G and b) $ch(f) \ge v(f)/3$ for all f in G'.

Lem Each vertex is incident to at most four non-overlapping empty 1-lenses.

Worst case: *v* contributes charge to at most 4 digons.

But aster Step 1
$$ch(v) = 16/3$$
, thus,
after Step 2 $ch(v) \ge 0$.

We need to show that: a) $ch(v) \ge 0$ for all v in G and b) $ch(f) \ge v(f)/3$ for all f in G'.

We need to show that: a) $ch(v) \ge 0$ for all v in G and b) $ch(f) \ge v(f)/3$ for all f in G'.

After Step 2 Invariant b) holds for a face f if

• $|f| \leq 3$ or

We need to show that: a) $ch(v) \ge 0$ for all v in G and b) $ch(f) \ge v(f)/3$ for all f in G'.

After Step 2 Invariant b) holds for a face *f* if

- $|f| \leq 3$ or
- $|f| + v(f) \ge 6$, then f still has a charge of at least $|f| + v(f) 4 |f|/3 \ge v(f)/3$.

We need to show that: a) $ch(v) \ge 0$ for all v in G and b) $ch(f) \ge v(f)/3$ for all f in G'.

After Step 2 Invariant b) holds for a face f if

- $|f| \leq 3$ or
- $|f| + v(f) \ge 6$, then f still has a charge of at least $|f| + v(f) 4 |f|/3 \ge v(f)/3$.

Thus, we only need to check b) for

- 1-quadrilaterals and
- 0-pentagons.

We need to show that: a) $ch(v) \ge 0$ for all v in G and b) $ch(f) \ge v(f)/3$ for all f in G'.

After Step 2 Invariant b) holds for a face *f* if

- $|f| \leq 3$ or
- $|f| + v(f) \ge 6$, then f still has a charge of at least $|f| + v(f) 4 |f|/3 \ge v(f)/3$.

Thus, we only need to check b) for

- 1-quadrilaterals and
- 0-pentagons.

We need to show that: a) $ch(v) \ge 0$ for all v in G and b) $ch(f) \ge v(f)/3$ for all f in G'.

After Step 2 Invariant b) holds for a face *f* if

- $|f| \leq 3$ or
- $|f| + v(f) \ge 6$, then f still has a charge of at least $|f| + v(f) 4 |f|/3 \ge v(f)/3$.

Thus, we only need to check b) for

• 1-quadrilaterals and

• 0-pentagons.

We need to show that: a) $ch(v) \ge 0$ for all v in G and b) $ch(f) \ge v(f)/3$ for all f in G'.

After Step 2 Invariant b) holds for a face f if

- $|f| \leq 3$ or
- $|f| + v(f) \ge 6$, then f still has a charge of at least $|f| + v(f) 4 |f|/3 \ge v(f)/3$.

Thus, we only need to check b) for

• 1-quadrilaterals and

• 0-pentagons.

Lem.* A 0-pentagon cannot contribute charge to four or more triangles.

Lem.* A 0-pentagon cannot contribute charge to four or more triangles.

Lem.* A 0-pentagon cannot contribute charge to four or more triangles.

Proof (idea).

Lem.* A 0-pentagon cannot contribute charge to four or more triangles.

Proof (idea).

Lem.* A 0-pentagon cannot contribute charge to four or more triangles.

Proof (idea).

in *D*:

?

Lem.* A 0-pentagon cannot contribute charge to four or more triangles.

Proof (idea).

Lem.* A 0-pentagon cannot contribute charge to four or more triangles.

Lem.* A 0-pentagon cannot contribute charge to four or more triangles.

Lem.* A 0-pentagon cannot contribute charge to four or more triangles.

Lem.* A 0-pentagon cannot contribute charge to four or more triangles.

- 1. Property of simplification: if e_i and e_j cross e_k with different order in D than in D', then e_i and e_j form an empty 0-lens in D.
- 2. No two edges e_i and e_j can form an empty 0-lens in *D*.

Lem.* A 0-pentagon cannot contribute charge to four or more triangles.

Proof (idea).

- 1. Property of simplification: if e_i and e_j cross e_k with different order in D than in D', then e_i and e_j form an empty 0-lens in D.
- 2. No two edges e_i and e_j can form an empty 0-lens in *D*.

Lem.* A 0-pentagon cannot contribute charge to four or more triangles. circular arcs

circular arcs & right-angle crossings in D: e_0 e_1 e_2 e_4 e_3

- 1. Property of simplification: if e_i and e_j cross e_k with different order in D than in D', then e_i and e_j form an empty 0-lens in D.
- 2. No two edges e_i and e_j can form an empty 0-lens in *D*.

Lem.* A 0-pentagon cannot contribute charge to four or more triangles. circular arcs

circular arcs & right-angle crossings in D: e_0 e_1 e_2 e_4 e_3 \leftarrow

- 1. Property of simplification: if e_i and e_j cross e_k with different order in D than in D', then e_i and e_j form an empty 0-lens in D.
- 2. No two edges e_i and e_j can form an empty 0-lens in *D*.

Maximum Edge Density Lower Bound
Thm. For infinitely many values of *n*, there exists an *n*-vertex arc-RAC graph with $4.5n - O(\sqrt{n})$ edges.

Thm. For infinitely many values of *n*, there exists an *n*-vertex arc-RAC graph with $4.5n - O(\sqrt{n})$ edges.

Proof (idea).

[Arikushi+ '12]

Thm. For infinitely many values of *n*, there exists an *n*-vertex arc-RAC graph with $4.5n - O(\sqrt{n})$ edges.

Proof (idea).

[Arikushi+ '12]

Thm. For infinitely many values of *n*, there exists an *n*-vertex arc-RAC graph with $4.5n - O(\sqrt{n})$ edges.

[Arikushi+ '12]

All (but $O(\sqrt{n})$) vertices of the lattice have degree 9.

Thm. For infinitely many values of *n*, there exists an *n*-vertex arc-RAC graph with $4.5n - O(\sqrt{n})$ edges.

[Arikushi+ '12]

All (but $O(\sqrt{n})$) vertices of the lattice have degree 9. \Rightarrow *G* has $4.5n - O(\sqrt{n})$ edges.

We've bounded the maximum edge density (MED) of arc-RAC graphs: $4.5n - O(\sqrt{n}) \le MED \le 14n - 12$.

We've bounded the maximum edge density (MED) of arc-RAC graphs: $4.5n - O(\sqrt{n}) \le MED \le 14n - 12$.

Q1 Improve these bounds!

We've bounded the maximum edge density (MED) of arc-RAC graphs: $4.5n - O(\sqrt{n}) \le MED \le 14n - 12$.

Q1 Improve these bounds!

We've bounded the maximum edge density (MED) of arc-RAC graphs: $4.5n - O(\sqrt{n}) \le MED \le 14n - 12$.

Q1 Improve these bounds!

We've bounded the maximum edge density (MED) of arc-RAC graphs: $4.5n - O(\sqrt{n}) \le MED \le 14n - 12$.

Q1 Improve these bounds!

We've bounded the maximum edge density (MED) of arc-RAC graphs: $4.5n - O(\sqrt{n}) \leq MED \leq 14n - 12$.

Q1 Improve these bounds!

We've bounded the maximum edge density (MED) of arc-RAC graphs: $4.5n - O(\sqrt{n}) \le MED \le 14n - 12$.

Q1 Improve these bounds!

1-planar graphs

Q2 Are there arc-RAC graphs that require exponential area to be drawn?

 RAC_0

We've bounded the maximum edge density (MED) of arc-RAC graphs: $4.5n - O(\sqrt{n}) \le MED \le 14n - 12$.

Q1 Improve these bounds!

