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Crossings in Graph Drawing

The goal of Graph Drawing is
to produce nice drawings of graphs.

n—2

If crossings are unavoidable,
minimize the number of crossings.

That’s a fundamental problem in GD.
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Topological Graphs

Graph with a topological drawing, i.e.,

® no edge is self-intersecting, :>©

® edges with common endpoints 'O<:
do not intersect,

® two edges intersect at most once. : :

For a (topolog.) graph G, the crossing number of G is:

cr(G) = minimum number of crossings over all
(topological) drawings of G.

Eg CI'(K3,3) = 1 @
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Crossing Lemma

A dense n-vertex m-edge graph G requires many crossings.

Thm.
3

1 m
> 4 > . .
m > nécr(G)_64 5

If m € Q(n?), then cr(G) € Q(n?).

For a complete graph Kj;:
cr(Kn) < g 15155 2] 152
Guy conjectured: Bound is tight.

Q(n*) is a lot of crossings:( cylindrical drawing
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Beyond Planarity
Study graphs with cj.lrawings with _:“j'r":_
restrictions on crossings. e
Restrictions on crossing patterns: ’e
® k-planar: < k crossings per edge o3< i N k=2
® k-quasi-planar: < k noiwirica crassing edges .>«:,::

S But why arcs?
Restrictions on the c1.

(edges in the drawing have simall « exity): 90°
® edges are poly-line with at most, 2nds and )
cross at 90° angle only (RACy grap. ).
edges are circular-arc and 90
cross at 90° angle only (arc-RAC graphs). ./7{\.
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For aestethics:
— users prefer edges with small complexity.

Improve other drawing criteria:

— area of the drawing
— angular resolution.
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Simplification

Consider an arc-RAC graph G and its drawing D.

LR

lens empty 1-lens empty 0-lens smallest empty 0-lens

Simplification of a smallest empty O-lens:

During the simplification process: /@_’ /@
® N0 new crossings are created and
® no new lenses are made.

We simplify smallest empty 0-lenses until none are left.

We call the resulting drawing D’ the simplification of D.
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Main theorem

Thm. An arc-RAC graph with n vertices
can have at most 14n — 12 edges.

Proof.
Let G be an n-vertex arc-RAC graph,
with an arc-RAC drawing D,

simplification D’ of D, and

planarization G’ of D’.
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Main theorem proof overview

1. Assigning each face f of G’ a charge of:
h(f) = If] + o(f) — 4, where
| f| is the degree of f in the planarization G’ and
v(f) is the number of vertices of G on the boundary of f.
And for each vertex v of G: ch(v) = 16/3.
2. Redistributing charge among faces and vertices so that:
a) ch(v) >0 for all v in G and
b) ch(f) > v(f)/3 for all f in G'.
3. Making sure that after Step 2 a) and b) still hold.
ZféG’ Ch(f) — 4n — 8.
Hence the total charge of the system is

4n —8+16n/3 =28n/3 — 8.
And the bound follows: 281n/3 —8 > Y ¢ ch(f) >

Y e v(f)/3 = Loec deg(v)/3 = 2|E|/3.
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Step 1 (initial charge)

Initial charge:
® for each vertex v of G:
ch(v) = 16/3.
e for each face f of G’
ch(f) = |fl+o(f) —4

ch(v) =16/3
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Types of faces

We call a face f of G’ a k-triangle, k-quadrilateral, or
k-pentagon if f has the Correspondmg shape and v( f

\/ ¢ /\
y 1nsuff1c1ent ><

charge
O-triangle ngle 2- tr1angle
O-quadrangle 1-quadrangle 2-quadrangle

Initial charge at Step 1is ch(f) = |f| +v(f) — 4.
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Step 2 (charging small faces)

After Step 1 ch(f) = |f| +v(f) — 4,

thus, the only faces with ch(f) < v(f)/3 are:

e ch(d) =
® ch(ty) =
®ch(t;) =

—1 for eac
—1 for eac

h digon d,
n O-triangle £,

0 for eac

n 1-triangle ¢4.

Consider the O-triangle t.

After the distribution ch(ty) = 0, i.e., ch(tg) = v(ty)/3.
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b) ch(f) > v(f)/3 for all f in G'.

14



Step 3 (verification)

We need to show that:
a) ch(v) >0 for all v in G and

b) ch(f) > v(f)/3 for all f in G'.

14



Step 3 (verification)

We need to show that:
a) ch(v) >0 for all v in G and

b) ch(f) > v(f)/3 for all f in G'.

40 4

14



Step 3 (verification)

We need to show that:
a) ch(v) >0 for all v in G and

b) ch(f) > v(f)/3 for all f in G'.

40 4

14



Step 3 (verification)

We need to show that:
a) ch(v) >0 for all v in G and

b) ch(f) > v(f)/3 for all f in G'.
A 4

Lem Each vertex is incident to at most four
non-overlapping empty 1-lenses.

14



Step 3 (verification)

We need to show that:
a) ch(v) >0 for all v in G and

b) ch(f) > v(f)/3 for all f in G'.

Lem Each vertex is incident to at most four
non-overlapping empty 1-lenses.

14



Step 3 (verification)

We need to show that:
a) ch(v) >0 for all v in G and

b) ch(f) > v(f)/3 for all f in G'.

Lem Each vertex is incident to at most four
non-overlapping empty 1-lenses.

Worst case: v contributes charge to at most 4 digons.

14



Step 3 (verification)

We need to show that:
a) ch(v) >0 for all v in G and

b) ch(f) > v(f)/3 for all f in G'.

Lem Each vertex is incident to at most four
non-overlapping empty 1-lenses.

Worst case: v contributes charge to at most 4 digons.

But aster Step 1 ch(v) = 16/3, thus,
after Step 2 ch(v) > 0.
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Maximum Edge Density Lower Bound

Thm. For infinitely many values of 7, there exists an
n-vertex arc-RAC graph with 4.51n — O(y/n) edges.

Proof (idea).

All (but O(4/n)) vertices of the lattice have degree 9.
= G has 4.5n — O(y/n) edges.
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