Drawing Graphs with Circular Arcs and Right-Angle Crossings

Steven Chaplick ${ }^{1}$, Henry Förster ${ }^{2}$, Myroslav Kryven ${ }^{3}$, Alexander Wolff ${ }^{3}$
${ }^{1}$ University of Maastricht, the Netherlands
${ }^{2}$ University of Tübingen, Germany
${ }^{3}$ Julius Maximilian University of Würzburg, Germany SWAT 2020

Crossings in Graph Drawing

The goal of Graph Drawing is to produce nice drawings of graphs.

Crossings in Graph Drawing

The goal of Graph Drawing is to produce nice drawings of graphs.

Crossings in Graph Drawing

The goal of Graph Drawing is to produce nice drawings of graphs.

Crossings in Graph Drawing

The goal of Graph Drawing is to produce nice drawings of graphs.

Crossings in Graph Drawing

The goal of Graph Drawing is to produce nice drawings of graphs.

If crossings are unavoidable, minimize the number of crossings.

Crossings in Graph Drawing

The goal of Graph Drawing is to produce nice drawings of graphs.

If crossings are unavoidable, minimize the number of crossings. That's a fundamental problem in GD.

Topological Graphs

Graph with a topological drawing, i.e.,

Topological Graphs

Graph with a topological drawing, i.e.,

- no edge is self-intersecting,

Topological Graphs

Graph with a topological drawing, i.e.,

- no edge is self-intersecting,
- edges with common endpoints do not intersect,

Topological Graphs

Graph with a topological drawing, i.e.,

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once.

Topological Graphs

Graph with a topological drawing, i.e.,

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once.

Topological Graphs

Graph with a topological drawing, i.e.,

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once.

For a (topolog.) graph G, the crossing number of G is:
$\operatorname{cr}(G)=$ minimum number of crossings over all (topological) drawings of G.

Topological Graphs

Graph with a topological drawing, i.e.,

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once.

For a (topolog.) graph G, the crossing number of G is: $\operatorname{cr}(G)=$ minimum number of crossings over all (topological) drawings of G.

$$
\text { E.g. } \operatorname{cr}\left(K_{3,3}\right)=\text { ? }
$$

Topological Graphs

Graph with a topological drawing, i.e.,

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once.

For a (topolog.) graph G, the crossing number of G is:
$\operatorname{cr}(G)=$ minimum number of crossings over all (topological) drawings of G.

$$
\text { E.g. } \operatorname{cr}\left(K_{3,3}\right)=1
$$

Crossing Lemma

A dense n-vertex m-edge graph G requires many crossings.
Thm. [Ajtai, Chvátal, Newborn, Szemerédi '82, Leighton '84]

$$
m \geq 4 n \Rightarrow \operatorname{cr}(G) \geq \frac{1}{64} \cdot \frac{m^{3}}{n^{2}} .[\text { Chazelle, Sharir, Welzl...] }
$$

Crossing Lemma

A dense n-vertex m-edge graph G requires many crossings.
Thm. [Ajtai, Chvátal, Newborn, Szemerédi '82, Leighton '84]

$$
m>4 n \Rightarrow \operatorname{cr}(G)>\frac{1}{} \cdot \frac{m^{3}}{2} . \text { [Chazelle, Sharir, Welzl...] }
$$

If $m \in \Omega\left(n^{2}\right)$, then $\operatorname{cr}(G) \in \Omega\left(n^{4}\right)$.

Crossing Lemma

A dense n-vertex m-edge graph G requires many crossings.
Thm. [Ajtai, Chvátal, Newborn, Szemerédi '82, Leighton '84]

$$
m \geq 4 n \Rightarrow \operatorname{cr}(G) \geq \frac{1}{64} \cdot \frac{m^{3}}{n^{2}}
$$

If $m \in \Omega\left(n^{2}\right)$, then $\operatorname{cr}(G) \in \Omega\left(n^{4}\right)$.
For a complete graph K_{n} : [Guy, '60]
$\operatorname{cr}\left(K_{n}\right) \leq \frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor$.

cylindrical drawing
[Balko et al., '14]

Crossing Lemma

A dense n-vertex m-edge graph G requires many crossings.
Thm. [Ajtai, Chvátal, Newborn, Szemerédi '82, Leighton '84]

$$
m \geq 4 n \Rightarrow \operatorname{cr}(G) \geq \frac{1}{64} \cdot \frac{m^{3}}{n^{2}}
$$

If $m \in \Omega\left(n^{2}\right)$, then $\operatorname{cr}(G) \in \Omega\left(n^{4}\right)$.
For a complete graph K_{n} : [Guy, '60]
$\operatorname{cr}\left(K_{n}\right) \leq \frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor$.
Guy conjectured: Bound is tight.

cylindrical drawing
[Balko et al., '14]

Crossing Lemma

A dense n-vertex m-edge graph G requires many crossings.
Thm. [Ajtai, Chvátal, Newborn, Szemerédi '82, Leighton '84]

$$
m \geq 4 n \Rightarrow \operatorname{cr}(G) \geq \frac{1}{64} \cdot \frac{m^{3}}{n^{2}} .[\text { Chazelle, Sharir, Welzl...] }
$$

If $m \in \Omega\left(n^{2}\right)$, then $\operatorname{cr}(G) \in \Omega\left(n^{4}\right)$.
For a complete graph K_{n} : [Guy, '60]
$\operatorname{cr}\left(K_{n}\right) \leq \frac{1}{4}\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{n-2}{2}\right\rfloor\left\lfloor\frac{n-3}{2}\right\rfloor$.
Guy conjectured: Bound is tight.
$\Omega\left(n^{4}\right)$ is a lot of crossings:(

cylindrical drawing
[Balko et al., '14]

Beyond Planarity [Didimo et al., 19]

Study graphs with drawings with restrictions on crossings.

Beyond Planarity [Didimo et al., 19]

Study graphs with drawings with restrictions on crossings.

Restrictions on crossing patterns:

- k-planar: $\leq k$ crossings per edge

Beyond Planarity [Didimo et al., 19]

Study graphs with drawings with restrictions on crossings.

Restrictions on crossing patterns:

- k-planar: $\leq k$ crossings per edge
- k-quasi-planar: $\leq k$ pairwise crossing edges

Beyond Planarity [Didimo et al., 19]

Study graphs with drawings with restrictions on crossings.

Restrictions on crossing patterns:

- k-planar: $\leq k$ crossings per edge
- k-quasi-planar: $\leq k$ pairwise crossing edges

Restrictions on the crossing angle (edges in the drawing have small complexity):

Beyond Planarity [Didimo et al., 19]

Study graphs with drawings with restrictions on crossings.

Restrictions on crossing patterns:

- k-planar: $\leq k$ crossings per edge
- k-quasi-planar: $\leq k$ pairwise crossing edges

Restrictions on the crossing angle (edges in the drawing have small complexity):

- edges are poly-line with at most k bends and cross at 90° angle only ($R A C_{k}$ graphs).
[Didimo et al., '11]

Beyond Planarity [Didimo et al., 19]

Study graphs with drawings with restrictions on crossings.

Restrictions on crossing patterns:

- k-planar: $\leq k$ crossings per edge
- k-quasi-planar: $\leq k$ pairwise crossing edges

Restrictions on the crossing angle
[Huang et al., '14] (edges in the drawing have small complexity):

- edges are poly-line with at most k bends and cross at 90° angle only ($R A C_{k}$ graphs).
[Didimo et al., '11]

Beyond Planarity [Didimo et al., 19]

Study graphs with drawings with restrictions on crossings.

Restrictions on crossing patterns:

- k-planar: $\leq k$ crossings per edge
- k-quasi-planar: $\leq k$ pairwise crossing edges

Restrictions on the crossing angle (edges in the drawing have small complexity):

- edges are poly-line with at most k bends and cross at 90° angle only ($R A C_{k}$ graphs).

Beyond Planarity [Didimo et al., 19]

Study graphs with drawings with restrictions on crossings.

Restrictions on crossing patterns:

- k-planar: $\leq k$ crossings per edge
- k-quasi-planar: $\leq k$ pairwise crossing edges

Restrictions on the crossing angle (edges in the drawing have small complexity):

- edges are poly-line with at most k bends and cross at 90° angle only ($R A C_{k}$ graphs).
new! - edges are circular-arc and cross at 90° angle only (arc-RAC graphs).

Beyond Planarity [Didimo et al., 19]

Study graphs with drawings with restrictions on crossings.

Restrictions on crossing patterns:

- k-planar: $\leq k$ crossings per edge
- k-quasi-planar: $\leq k$ n immion n rossing edges

But why arcs?
Restrictions on the cl, (edges in the drawing have small -
exity):

- edges are poly-line with at most, ends and cross at 90° angle only ($R A C_{k}$ grap, i).
new! - edges are circular-arc and cross at 90° angle only (arc-RAC graphs).

Circular Arcs in Graph Drawing

Circular Arcs in Graph Drawing

[Lombardi, '99]

[Duncan et al., '10]

Circular Arcs in Graph Drawing

[Lombardi, '99]

[Duncan et al., '10]

For aestethics:

- users prefer edges with small complexity. [Xu et al., '12] [Purchase et al., '13]

Circular Arcs in Graph Drawing

[Lombardi, '99]

[Duncan et al., '10]

For aestethics:

- users prefer edges with small complexity. [Xu et al., '12] [Purchase et al., '13]

Improve other drawing criteria:

- area of the drawing [Schulz, '15]
- angular resolution. [Cheng et al., '01] [Duncan et al., '10]

RAC graphs

Maximum edge density (MED) is a classical property used to characterize graph classes.

RAC graphs

Maximum edge density (MED) is a classical property used to characterize graph classes.

Graph class	RAC_{0}	RAC_{1}	RAC_{2}	arc-RAC
Upper bound on MED				
Lower bound on MED				

RAC graphs

Maximum edge density (MED) is a classical property used to characterize graph classes.

$$
\left(\mathrm{RAC}_{3}=\text { all graphs }\right)
$$

Graph class	RAC_{0}	RAC_{1}	RAC_{2}	arc-RAC
Upper bound on MED	$4 n-10$	$O\left(n^{4 / 3}\right)$	$O\left(n^{7 / 4}\right)$	
Lower bound on MED	$4 n-10$			

RAC graphs

Maximum edge density (MED) is a classical property used to characterize graph classes.

$$
\left(\mathrm{RAC}_{3}=\text { all graphs }\right)
$$

Graph class	RAC_{0}	RAC_{1}	RAC_{2}	arc-RAC
Upper bound on MED	$4 n-10$	$O\left(n^{4 / 3}\right)$	$O\left(n^{7 / 4}\right)$	
Lower bound on MED	$4 n-10$	$4.5 n-O(\sqrt{n})$	$7.83 n-O(\sqrt{n})$	
[Didimo+ '11] \quad [Arikushi+ '12]				

RAC graphs

Maximum edge density (MED) is a classical property used to characterize graph classes.

$$
\left(\mathrm{RAC}_{3}=\text { all graphs }\right)
$$

Graph class	RAC_{0}	RAC_{1}	RAC_{2}	arc-RAC
Upper bound on MED	$4 n-10$	$O\left(n^{4 / 3}\right)$	$O\left(n^{7 / 4}\right)$	
Lower bound on MED	$4 n-10$	$4.5 n-O(\sqrt{n})$	$7.83 n-O(\sqrt{n})$	
[Didimo+ '11] \quad [Arikushi+ '12]	[Angelini+ '20]			

RAC graphs

Maximum edge density (MED) is a classical property used to characterize graph classes.

$$
\left(\mathrm{RAC}_{3}=\text { all graphs }\right)
$$

4-quasiplanar

Graph class	RAC_{0}	RAC_{1}	RAC_{2}	arc-RAC
Upper bound on MED	$4 n-10$	$O\left(n^{4 / 3}\right)$	$O\left(n^{7 / 4}\right)$	$72(n-2)$
Lower bound on MED	$4 n-10$	$4.5 n-O(\sqrt{n})$	$7.83 n-O(\sqrt{n})$	
[Didimo+ '11]	[Arikushi+ '12]			
[Angelini+ '20]	[Ackerman '09]			

RAC graphs

Maximum edge density (MED) is a classical property used to characterize graph classes.

$$
\left(\mathrm{RAC}_{3}=\text { all graphs }\right)
$$

4-quasiplanar

Graph class	RAC_{0}	RAC_{1}	RAC_{2}	arc-RAC
Upper bound on MED	$4 n-10$	$O\left(n^{4 / 3}\right)$	$O\left(n^{7 / 4}\right)$	$72(n-2)$
Lower bound on MED	$4 n-10$	$4.5 n-O(\sqrt{n})$	$7.83 n-O(\sqrt{n})$	
[Didimo+ '11]	[Arikushi+ '12] [D.5n-13	$74.2 n$	$14 n-12$	
[Angelini+ '20]	[Ackerman '09]			

RAC graphs

Maximum edge density (MED) is a classical property used to characterize graph classes.
Charging method $\left(\mathrm{RAC}_{3}=\right.$ all graphs $)$

4-quasiplanar

Graph class	RAC_{0}	RAC_{1}	RAC_{2}	arc-RAC
Upper bound on MED	$4 n-10$	$O\left(n^{4 / 3}\right)$	$O\left(n^{7 / 4}\right)$	$72(n-2)$
Lower bound on MED	$4 n-10$	$4.5 n-13$	$74.2 n$	$14 n-12$
$5.5 n-O(1)$				

[Didimo+ '11] [Arikushi+ '12] [Angelini+ '20] [Ackerman '09]

RAC graphs

Maximum edge density (MED) is a classical property used to characterize graph classes.
Charging method $\left(\mathrm{RAC}_{3}=\right.$ all graphs $)$

4-quasiplanar

Graph class	RAC_{0}	RAC_{1}	RAC_{2}	arc-RAC
Upper bound on MED	$4 n-10$	$O\left(n^{4 / 3}\right)$	$O\left(n^{7 / 4}\right)$	$72(n-2)$
[Dujmović et al. '10]	$6.5 n-13$ $5.5 n-O(1)$	$74.2 n$	$14 n-12$	
Lower bound on MED	$4 n-10$	$4.5 n-O(\sqrt{n})$	$7.83 n-O(\sqrt{n})$	

[Didimo+ '11] [Arikushi+ '12] [Angelini+ '20] [Ackerman '09]

Simplification

Consider an arc-RAC graph G and its drawing D.

Simplification

Consider an arc-RAC graph G and its drawing D.

Simplification

Consider an arc-RAC graph G and its drawing D.

Simplification

Consider an arc-RAC graph G and its drawing D.

Simplification

Consider an arc-RAC graph G and its drawing D.

Simplification of a smallest empty 0-lens:

Simplification

Consider an arc-RAC graph G and its drawing D.

Simplification of a smallest empty 0-lens:
During the simplification process:

- no new crossings are created and

- no new lenses are made.

Simplification

Consider an arc-RAC graph G and its drawing D.

Simplification of a smallest empty 0-lens:
During the simplification process:

- no new crossings are created and

- no new lenses are made.

We simplify smallest empty 0-lenses until none are left.

Simplification

Consider an arc-RAC graph G and its drawing D.

Simplification of a smallest empty 0-lens:
During the simplification process:

- no new crossings are created and

- no new lenses are made.

We simplify smallest empty 0-lenses until none are left. We call the resulting drawing D^{\prime} the simplification of D.

Main theorem
Thm. An arc-RAC graph with n vertices can have at most $14 n-12$ edges.

Main theorem

Thm. An arc-RAC graph with n vertices can have at most $14 n-12$ edges.

Proof.
Let G be an n-vertex arc-RAC graph,

Main theorem

Thm. An arc-RAC graph with n vertices can have at most $14 n-12$ edges.

Proof.
Let G be an n-vertex arc-RAC graph, with an arc-RAC drawing D,

Main theorem

Thm. An arc-RAC graph with n vertices can have at most $14 n-12$ edges.

Proof.
Let G be an n-vertex arc-RAC graph, with an arc-RAC drawing D, simplification D^{\prime} of D, and

Main theorem

Thm. An arc-RAC graph with n vertices can have at most $14 n-12$ edges.

Proof.
Let G be an n-vertex arc-RAC graph, with an arc-RAC drawing D, simplification D^{\prime} of D, and planarization G^{\prime} of D^{\prime}.

Main theorem proof overview

1. Assigning each face f of G^{\prime} a charge of: $\operatorname{ch}(f)=|f|+v(f)-4$, where
$|f|$ is the degree of f in the planarization G^{\prime} and $v(f)$ is the number of vertices of G on the boundary of f. And for each vertex v of $G: \operatorname{ch}(v)=16 / 3$.

Main theorem proof overview

1. Assigning each face f of G^{\prime} a charge of:
$\operatorname{ch}(f)=|f|+v(f)-4$, where
$|f|$ is the degree of f in the planarization G^{\prime} and $v(f)$ is the number of vertices of G on the boundary of f. And for each vertex v of $G: \operatorname{ch}(v)=16 / 3$.
2. Redistributing charge among faces and vertices so that:
a) $\operatorname{ch}(v) \geq 0 \quad$ for all v in G and
b) $\operatorname{ch}(f) \geq v(f) / 3$ for all f in G^{\prime}.

Main theorem proof overview

1. Assigning each face f of G^{\prime} a charge of: $\operatorname{ch}(f)=|f|+v(f)-4$, where
$|f|$ is the degree of f in the planarization G^{\prime} and $v(f)$ is the number of vertices of G on the boundary of f. And for each vertex v of $G: \operatorname{ch}(v)=16 / 3$.
2. Redistributing charge among faces and vertices so that:
a) $\operatorname{ch}(v) \geq 0 \quad$ for all v in G and
b) $\operatorname{ch}(f) \geq v(f) / 3$ for all f in G^{\prime}.
[Dujmović et al., '10]
3. Making sure that after Step 2 a) and b) still hold.

Main theorem proof overview

1. Assigning each face f of G^{\prime} a charge of:
$\operatorname{ch}(f)=|f|+v(f)-4$, where
$|f|$ is the degree of f in the planarization G^{\prime} and $v(f)$ is the number of vertices of G on the boundary of f. And for each vertex v of $G: \operatorname{ch}(v)=16 / 3$.
2. Redistributing charge among faces and vertices so that:
a) $\operatorname{ch}(v) \geq 0 \quad$ for all v in G and
b) $\operatorname{ch}(f) \geq v(f) / 3$ for all f in G^{\prime}.
[Dujmović et al., '10]
3. Making sure that after Step 2 a) and b) still hold.

$$
\sum_{f \in G^{\prime}} \operatorname{ch}(f)=4 n-8
$$

[Ackerman., '09]

Main theorem proof overview

1. Assigning each face f of G^{\prime} a charge of:
$\operatorname{ch}(f)=|f|+v(f)-4$, where
$|f|$ is the degree of f in the planarization G^{\prime} and
$v(f)$ is the number of vertices of G on the boundary of f.
And for each vertex v of $G: \operatorname{ch}(v)=16 / 3$.
2. Redistributing charge among faces and vertices so that:
a) $\operatorname{ch}(v) \geq 0 \quad$ for all v in G and
b) $\operatorname{ch}(f) \geq v(f) / 3$ for all f in G^{\prime}.
[Dujmović et al., '10]
3. Making sure that after Step 2 a) and b) still hold.

$$
\Sigma_{f \in G^{\prime}} \operatorname{ch}(f)=4 n-8
$$

[Ackerman., '09]
Hence the total charge of the system is

$$
4 n-8+16 n / 3=28 n / 3-8
$$

Main theorem proof overview

1. Assigning each face f of G^{\prime} a charge of:
$\operatorname{ch}(f)=|f|+v(f)-4$, where
$|f|$ is the degree of f in the planarization G^{\prime} and
$v(f)$ is the number of vertices of G on the boundary of f.
And for each vertex v of $G: \operatorname{ch}(v)=16 / 3$.
2. Redistributing charge among faces and vertices so that:
a) $\operatorname{ch}(v) \geq 0 \quad$ for all v in G and
b) $\operatorname{ch}(f) \geq v(f) / 3$ for all f in G^{\prime}.
[Dujmović et al., '10]
3. Making sure that after Step 2 a) and b) still hold.

$$
\sum_{f \in G^{\prime}} \operatorname{ch}(f)=4 n-8
$$

[Ackerman., '09]
Hence the total charge of the system is

$$
4 n-8+16 n / 3=28 n / 3-8
$$

And the bound follows: $28 n / 3-8 \geq \sum_{f \in G^{\prime}} \operatorname{ch}(f) \geq$

$$
\sum_{f \in G^{\prime}} v(f) / 3=\sum_{v \in G} \operatorname{deg}(v) / 3=2|E| / 3 .
$$

Step 1 (initial charge)

Initial charge:

- for each vertex v of G :
$\operatorname{ch}(v)=16 / 3$.

Step 1 (initial charge)

Initial charge:

- for each vertex v of G :
$\operatorname{ch}(v)=16 / 3$.
- for each face f of G^{\prime} : $\operatorname{ch}(f)=|f|+v(f)-4$,

Types of faces

We call a face f of G^{\prime} a k-triangle, k-quadrilateral, or k-pentagon if f has the corresponding shape and $v(f)=k$.

Types of faces

We call a face f of G^{\prime} a k-triangle, k-quadrilateral, or k-pentagon if f has the corresponding shape and $v(f)=k$.

0-triangle

1-triangle

2-triangle

Types of faces

We call a face f of G^{\prime} a k-triangle, k-quadrilateral, or k-pentagon if f has the corresponding shape and $v(f)=k$.

0-triangle

0-quadrangle

1-triangle

1-quadrangle

2-triangle

2-quadrangle

Types of faces

We call a face f of G^{\prime} a k-triangle, k-quadrilateral, or k-pentagon if f has the corresponding shape and $v(f)=k$.

0-triangle

0 -quadrangle

1-triangle

1-quadrangle

2-triangle

2-quadrangle

Initial charge at Step 1 is $\operatorname{ch}(f)=|f|+v(f)-4$.

Types of faces

We call a face f of G^{\prime} a k-triangle, k-quadrilateral, or k-pentagon if f has the corresponding shape and $v(f)=k$.

Initial charge at Step 1 is $c h(f)=|f|+v(f)-4$.

Step 2 (charging small faces)

After Step $1 \operatorname{ch}(f)=|f|+v(f)-4$, thus, the only faces with $\operatorname{ch}(f)<v(f) / 3$ are:

- $\operatorname{ch}(d)=-1$ for each digon d,

Step 2 (charging small faces)

After Step $1 \operatorname{ch}(f)=|f|+v(f)-4$, thus, the only faces with $\operatorname{ch}(f)<v(f) / 3$ are:

- $\operatorname{ch}(d)=-1$ for each digon d,
- $\operatorname{ch}\left(t_{0}\right)=-1$ for each 0 -triangle t_{0},

Step 2 (charging small faces)

After Step $1 \operatorname{ch}(f)=|f|+v(f)-4$, thus, the only faces with $\operatorname{ch}(f)<v(f) / 3$ are:

- $\operatorname{ch}(d)=-1$ for each digon d,
- $\operatorname{ch}\left(t_{0}\right)=-1$ for each 0 -triangle t_{0},
- $\operatorname{ch}\left(t_{1}\right)=0$ for each 1-triangle t_{1}.

Step 2 (charging small faces)

After Step $1 \operatorname{ch}(f)=|f|+v(f)-4$, thus, the only faces with $\operatorname{ch}(f)<v(f) / 3$ are:

- $\operatorname{ch}(d)=-1$ for each digon d,
- $\operatorname{ch}\left(t_{0}\right)=-1$ for each 0 -triangle t_{0},
- $\operatorname{ch}\left(t_{1}\right)=0$ for each 1-triangle t_{1}.

Each digon d is a 1-digon incident to some vertex v.

We say v contributes charge to d.

Step 2 (charging small faces)

After Step $1 \operatorname{ch}(f)=|f|+v(f)-4$, thus, the only faces with $\operatorname{ch}(f)<v(f) / 3$ are:

- $\operatorname{ch}(d)=-1$ for each digon d,
- $\operatorname{ch}\left(t_{0}\right)=-1$ for each 0 -triangle t_{0},
- $\operatorname{ch}\left(t_{1}\right)=0$ for each 1-triangle t_{1}.

Each digon d is a 1 -digon incident to some vertex v.

We say v contributes charge to d.

After the distribution $\operatorname{ch}(d)=1 / 3$, i.e., $\operatorname{ch}(d) \geq v(d) / 3$.

Step 2 (charging small faces)

After Step $1 \operatorname{ch}(f)=|f|+v(f)-4$, thus, the only faces with $\operatorname{ch}(f)<v(f) / 3$ are:

- $\operatorname{ch}(d)=-1$ for each digon d,
- $\operatorname{ch}\left(t_{0}\right)=-1$ for each 0 -triangle t_{0},
- $\operatorname{ch}\left(t_{1}\right)=0$ for each 1-triangle t_{1}.

Consider the 1-triangle t_{1}.

Step 2 (charging small faces)

After Step $1 \operatorname{ch}(f)=|f|+v(f)-4$, thus, the only faces with $\operatorname{ch}(f)<v(f) / 3$ are:

- $\operatorname{ch}(d)=-1$ for each digon d,
- $\operatorname{ch}\left(t_{0}\right)=-1$ for each 0 -triangle t_{0},
- $\operatorname{ch}\left(t_{1}\right)=0$ for each 1-triangle t_{1}.

Consider the 1-triangle t_{1}.

f_{k} is not a
0 -quadrangle

Step 2 (charging small faces)

After Step $1 \operatorname{ch}(f)=|f|+v(f)-4$, thus, the only faces with $\operatorname{ch}(f)<v(f) / 3$ are:

- $\operatorname{ch}(d)=-1$ for each digon d,
- $\operatorname{ch}\left(t_{0}\right)=-1$ for each 0 -triangle t_{0},
- $\operatorname{ch}\left(t_{1}\right)=0$ for each 1-triangle t_{1}.

Consider the 1-triangle t_{1}.

$$
\begin{aligned}
& f_{k} \text { is not a } \\
& 0 \text {-quadrangle } \\
& \left|f_{k}\right| \geq 4
\end{aligned}
$$

Step 2 (charging small faces)

After Step $1 \operatorname{ch}(f)=|f|+v(f)-4$, thus, the only faces with $\operatorname{ch}(f)<v(f) / 3$ are:

- $\operatorname{ch}(d)=-1$ for each digon d,
- $\operatorname{ch}\left(t_{0}\right)=-1$ for each 0 -triangle t_{0},
- $\operatorname{ch}\left(t_{1}\right)=0$ for each 1-triangle t_{1}.

Consider the 1-triangle t_{1}.

f_{k} is not a
0 -quadrangle
$\left|f_{k}\right|=3$

Step 2 (charging small faces)

After Step $1 \operatorname{ch}(f)=|f|+v(f)-4$, thus, the only faces with $\operatorname{ch}(f)<v(f) / 3$ are:

- $\operatorname{ch}(d)=-1$ for each digon d,
- $\operatorname{ch}\left(t_{0}\right)=-1$ for each 0 -triangle t_{0},
- $\operatorname{ch}\left(t_{1}\right)=0$ for each 1-triangle t_{1}.

Consider the 1-triangle t_{1}.

$$
\begin{aligned}
& f_{k} \text { is not a } \\
& 0 \text {-quadrangle } \\
& \left|f_{k}\right|=3
\end{aligned}
$$

After the distribution $\operatorname{ch}\left(t_{1}\right)=1 / 3$, i.e., $\operatorname{ch}\left(t_{1}\right) \geq v\left(t_{1}\right) / 3$.

Step 2 (charging small faces)

After Step $1 \operatorname{ch}(f)=|f|+v(f)-4$, thus, the only faces with $\operatorname{ch}(f)<v(f) / 3$ are:

- $\operatorname{ch}(d)=-1$ for each digon d,
- $\operatorname{ch}\left(t_{0}\right)=-1$ for each 0 -triangle t_{0},
- $\operatorname{ch}\left(t_{1}\right)=0$ for each 1-triangle t_{1}.

Consider the 0 -triangle t_{0}.

Step 2 (charging small faces)

After Step $1 \operatorname{ch}(f)=|f|+v(f)-4$, thus, the only faces with $\operatorname{ch}(f)<v(f) / 3$ are:

- $\operatorname{ch}(d)=-1$ for each digon d,
- $\operatorname{ch}\left(t_{0}\right)=-1$ for each 0 -triangle t_{0},
- $\operatorname{ch}\left(t_{1}\right)=0$ for each 1-triangle t_{1}.

Consider the 0 -triangle t_{0}.

After the distribution $\operatorname{ch}\left(t_{0}\right)=0$, i.e., $\operatorname{ch}\left(t_{0}\right) \geq v\left(t_{0}\right) / 3$.

Step 3 (verification)

We need to show that:
a) $\operatorname{ch}(v) \geq 0 \quad$ for all v in G and b) $\operatorname{ch}(f) \geq v(f) / 3$ for all f in G^{\prime}.

Step 3 (verification)

We need to show that: a) $\operatorname{ch}(v) \geq 0 \quad$ for all v in G and b) $\operatorname{ch}(f) \geq v(f) / 3$ for all f in G^{\prime}.

Step 3 (verification)

We need to show that:
a) $\operatorname{ch}(v) \geq 0 \quad$ for all v in G and b) $\operatorname{ch}(f) \geq v(f) / 3$ for all f in G^{\prime}.

Step 3 (verification)

We need to show that:
a) $\operatorname{ch}(v) \geq 0 \quad$ for all v in G and b) $\operatorname{ch}(f) \geq v(f) / 3$ for all f in G^{\prime}.

Step 3 (verification)

We need to show that:
a) $\operatorname{ch}(v) \geq 0 \quad$ for all v in G and
b) $\operatorname{ch}(f) \geq v(f) / 3$ for all f in G^{\prime}.

Lem Each vertex is incident to at most four non-overlapping empty 1-lenses.

Step 3 (verification)

We need to show that:
a) $\operatorname{ch}(v) \geq 0 \quad$ for all v in G and
b) $\operatorname{ch}(f) \geq v(f) / 3$ for all f in G^{\prime}.

Lem Each vertex is incident to at most four non-overlapping empty 1 -lenses.

Step 3 (verification)

We need to show that:
a) $\operatorname{ch}(v) \geq 0 \quad$ for all v in G and
b) $\operatorname{ch}(f) \geq v(f) / 3$ for all f in G^{\prime}.

Lem Each vertex is incident to at most four non-overlapping empty 1-lenses.

Worst case: v contributes charge to at most 4 digons.

Step 3 (verification)

We need to show that:
a) $\operatorname{ch}(v) \geq 0 \quad$ for all v in G and
b) $\operatorname{ch}(f) \geq v(f) / 3$ for all f in G^{\prime}.

Lem Each vertex is incident to at most four non-overlapping empty 1-lenses.

Worst case: v contributes charge to at most 4 digons.
But aster Step $1 c h(v)=16 / 3$, thus, after Step $2 \operatorname{ch}(v) \geq 0$.

Step 3 (verification)

We need to show that:
a) $\operatorname{ch}(v) \geq 0 \quad$ for all v in G and b) $\operatorname{ch}(f) \geq v(f) / 3$ for all f in G^{\prime}.

Step 3 (verification)

We need to show that:
a) $\operatorname{ch}(v) \geq 0 \quad$ for all v in G and b) $\operatorname{ch}(f) \geq v(f) / 3$ for all f in G^{\prime}.

After Step 2 Invariant b) holds for a face f if

- $|f| \leq 3$ or

Step 3 (verification)

We need to show that:
a) $\operatorname{ch}(v) \geq 0 \quad$ for all v in G and b) $\operatorname{ch}(f) \geq v(f) / 3$ for all f in G^{\prime}.

After Step 2 Invariant b) holds for a face f if

- $|f| \leq 3$ or
- $|f|+v(f) \geq 6$, then f still has a charge of at least $|f|+v(f)-4-|f| / 3 \geq v(f) / 3$.

Step 3 (verification)

We need to show that:
a) $\operatorname{ch}(v) \geq 0 \quad$ for all v in G and b) $\operatorname{ch}(f) \geq v(f) / 3$ for all f in G^{\prime}.

After Step 2 Invariant b) holds for a face f if

- $|f| \leq 3$ or
- $|f|+v(f) \geq 6$, then f still has a charge of at least $|f|+v(f)-4-|f| / 3 \geq v(f) / 3$.
Thus, we only need to check b) for
- 1-quadrilaterals and
- 0-pentagons.

Step 3 (verification)

We need to show that:
a) $\operatorname{ch}(v) \geq 0 \quad$ for all v in G and b) $\operatorname{ch}(f) \geq v(f) / 3$ for all f in G^{\prime}.

After Step 2 Invariant b) holds for a face f if

- $|f| \leq 3$ or
- $|f|+v(f) \geq 6$, then f still has a charge of at least $|f|+v(f)-4-|f| / 3 \geq v(f) / 3$.
Thus, we only need to check b) for
- 1-quadrilaterals and
- 0-pentagons.

Step 3 (verification)

We need to show that:
a) $\operatorname{ch}(v) \geq 0 \quad$ for all v in G and b) $\operatorname{ch}(f) \geq v(f) / 3$ for all f in G^{\prime}.

After Step 2 Invariant b) holds for a face f if

- $|f| \leq 3$ or
- $|f|+v(f) \geq 6$, then f still has a charge of at least $|f|+v(f)-4-|f| / 3 \geq v(f) / 3$.
Thus, we only need to check b) for
- 1-quadrilaterals and
- 0-pentagons.

Step 3 (verification)

We need to show that:
a) $\operatorname{ch}(v) \geq 0 \quad$ for all v in G and b) $\operatorname{ch}(f) \geq v(f) / 3$ for all f in G^{\prime}.

After Step 2 Invariant b) holds for a face f if

- $|f| \leq 3$ or
- $|f|+v(f) \geq 6$, then f still has a charge of at least $|f|+v(f)-4-|f| / 3 \geq v(f) / 3$.
Thus, we only need to check b) for
- 1-quadrilaterals and
- 0-pentagons.

Lem. ${ }^{\star}$ A 0-pentagon cannot contribute charge to four or more triangles.

Lemma*

Lem. A 0-pentagon cannot contribute charge to four or more triangles.

Lemma^

Lem. ${ }^{\star}$ A 0-pentagon cannot contribute charge to four or more triangles.
Proof (idea).

Lemma^

Lem. ${ }^{\star}$ A 0-pentagon cannot contribute charge

 to four or more triangles.Proof (idea).
in D^{\prime} :

Lemma^

Lem. ${ }^{\star}$ A 0-pentagon cannot contribute charge

 to four or more triangles.Proof (idea).
in D^{\prime} :

$$
\text { in } D:
$$

Lemma*

Lem. ${ }^{\star}$ A 0-pentagon cannot contribute charge to four or more triangles.
Proof (idea).
in D^{\prime} :

$$
\text { in } D:
$$

1. Property of simplification: if e_{i} and e_{j} cross e_{k} with different order in D than in D^{\prime}, then e_{i} and e_{j} form an empty 0-lens in D.

Lemma*

Lem. ${ }^{\star}$ A 0-pentagon cannot contribute charge to four or more triangles.
Proof (idea).
in D^{\prime} :

$$
\text { in } D:
$$

1. Property of simplification: if e_{i} and e_{j} cross e_{k} with different order in D than in D^{\prime}, then e_{i} and e_{j} form an empty 0-lens in D.

Lemma*

Lem. ${ }^{\star}$ A 0-pentagon cannot contribute charge to four or more triangles.
Proof (idea).
in D^{\prime} :

1. Property of simplification: if e_{i} and e_{j} cross e_{k} with different order in D than in D^{\prime}, then e_{i} and e_{j} form an empty 0-lens in D.

Lemma*

Lem. ${ }^{\star}$ A 0-pentagon cannot contribute charge to four or more triangles.
empty 0-lens
Proof (idea).
in D^{\prime} :

1. Property of simplification: if e_{i} and e_{j} cross e_{k} with different order in D than in D^{\prime}, then e_{i} and e_{j} form an empty 0-lens in D.

Lemma*

Lem. ${ }^{\star}$ A 0-pentagon cannot contribute charge to four or more triangles.
empty 0-lens
Proof (idea).
in D^{\prime} :

1. Property of simplification: if e_{i} and e_{j} cross e_{k} with different order in D than in D^{\prime}, then e_{i} and e_{j} form an empty 0-lens in D.
2. No two edges e_{i} and e_{j} can form an empty 0-lens in D.

Lemma*

Lem. ${ }^{\star}$ A 0-pentagon cannot contribute charge to four or more triangles.
Proof (idea).
in D^{\prime} :

1. Property of simplification: if e_{i} and e_{j} cross e_{k} with different order in D than in D^{\prime}, then e_{i} and e_{j} form an empty 0 -lens in D.
2. No two edges e_{i} and e_{j} can form an empty 0-lens in D.

Lemma^

Lem. ${ }^{\star}$ A 0-pentagon cannot contribute charge to four or more triangles.
Proof (idea).
in D^{\prime} :

circular arcs \&

 right-angle crossings

1. Property of simplification: if e_{i} and e_{j} cross e_{k} with different order in D than in D^{\prime}, then e_{i} and e_{j} form an empty 0-lens in D.
2. No two edges e_{i} and e_{j} can form an empty 0-lens in D.

Lemma^

Lem. ${ }^{\star}$ A 0-pentagon cannot contribute charge to four or more triangles.
Proof (idea).
in D^{\prime} :

circular arcs \&

 right-angle crossings

1. Property of simplification: if e_{i} and e_{j} cross e_{k} with different order in D than in D^{\prime}, then e_{i} and e_{j} form an empty 0-lens in D.
2. No two edges e_{i} and e_{j} can form an empty 0-lens in D.

Maximum Edge Density Lower Bound

Maximum Edge Density Lower Bound
Thm. For infinitely many values of n, there exists an n-vertex arc-RAC graph with $4.5 n-O(\sqrt{n})$ edges.

Maximum Edge Density Lower Bound

Thm. For infinitely many values of n, there exists an n-vertex arc-RAC graph with $4.5 n-O(\sqrt{n})$ edges.

Proof (idea).

[Arikushi+ '12]

Maximum Edge Density Lower Bound

Thm. For infinitely many values of n, there exists an n-vertex arc-RAC graph with $4.5 n-O(\sqrt{n})$ edges.

Proof (idea).

[Arikushi+ '12]

Maximum Edge Density Lower Bound

Thm. For infinitely many values of n, there exists an n-vertex arc-RAC graph with $4.5 n-O(\sqrt{n})$ edges.

Proof (idea).

[Arikushi+ '12]
All (but $O(\sqrt{n})$) vertices of the lattice have degree 9 .

Maximum Edge Density Lower Bound

Thm. For infinitely many values of n, there exists an n-vertex arc-RAC graph with $4.5 n-O(\sqrt{n})$ edges. Proof (idea).

[Arikushi+ '12]

All (but $O(\sqrt{n})$) vertices of the lattice have degree 9 .
$\Rightarrow G$ has $4.5 n-O(\sqrt{n})$ edges.

Open Questions

We've bounded the maximum edge density (MED) of arc-RAC graphs: $\quad 4.5 n-O(\sqrt{n}) \leq M E D \leq 14 n-12$.

Open Questions

We've bounded the maximum edge density (MED) of arc-RAC graphs: $\quad 4.5 n-O(\sqrt{n}) \leq M E D \leq 14 n-12$.

Q1 Improve these bounds!

Open Questions

We've bounded the maximum edge density (MED) of arc-RAC graphs: $\quad 4.5 n-O(\sqrt{n}) \leq M E D \leq 14 n-12$.

Q1 Improve these bounds!
Q2 Are there arc-RAC graphs that require exponential area to be drawn?

Open Questions

We've bounded the maximum edge density (MED) of arc-RAC graphs: $\quad 4.5 n-O(\sqrt{n}) \leq M E D \leq 14 n-12$.

Q1 Improve these bounds!
Q2 Are there arc-RAC graphs that require exponential area to be drawn?

Open Questions

We've bounded the maximum edge density (MED) of arc-RAC graphs: $\quad 4.5 n-O(\sqrt{n}) \leq M E D \leq 14 n-12$.

Q1 Improve these bounds!
Q2 Are there arc-RAC graphs that require exponential area to be drawn?

Open Questions

We've bounded the maximum edge density (MED) of arc-RAC graphs: $\quad 4.5 n-O(\sqrt{n}) \leq M E D \leq 14 n-12$.
Q1 Improve these bounds!
Q2 Are there arc-RAC graphs that require exponential area to be drawn?

1-planar graphs

Open Questions

We've bounded the maximum edge density (MED) of arc-RAC graphs: $\quad 4.5 n-O(\sqrt{n}) \leq M E D \leq 14 n-12$.
Q1 Improve these bounds!
Q2 Are there arc-RAC graphs that require exponential area to be drawn?

Open Questions

We've bounded the maximum edge density (MED) of arc-RAC graphs: $\quad 4.5 n-O(\sqrt{n}) \leq M E D \leq 14 n-12$.
Q1 Improve these bounds!
Q2 Are there arc-RAC graphs that require exponential area to be drawn?

