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Crossings in Graph Drawing
The goal of Graph Drawing is
to produce nice drawings of graphs.

If crossings are unavoidable,
minimize the number of crossings.
That’s a fundamental problem in GD.
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[Schnyder, 90]
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Topological Graphs
Graph with a topological drawing, i.e.,

• no edge is self-intersecting,
• edges with common endpoints

do not intersect,
• two edges intersect at most once.

For a (topolog.) graph G, the crossing number of G is:
cr(G) = minimum number of crossings over all

(topological) drawings of G.

E.g. cr(K3,3) = 1
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[Chazelle, Sharir, Welzl...]

If m ∈ Ω(n2), then cr(G) ∈ Ω(n4).

For a complete graph Kn:
cr(Kn) ≤ 1

4b
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2 cb

n−3
2 c.

[Guy, ’60]

Guy conjectured: Bound is tight.

cylindrical drawing
[Balko et al., ’14]

Ω(n4) is a lot of crossings:(



5

Beyond Planarity

Study graphs with drawings with
restrictions on crossings.

[Didimo et al., 19]



5

Beyond Planarity

Study graphs with drawings with
restrictions on crossings.

• k-planar: ≤ k crossings per edge

Restrictions on crossing patterns:

[Didimo et al., 19]

k = 2



5

Beyond Planarity

Study graphs with drawings with
restrictions on crossings.

• k-planar: ≤ k crossings per edge

• k-quasi-planar: ≤ k pairwise crossing edges

Restrictions on crossing patterns:

[Didimo et al., 19]

k = 2



5

Beyond Planarity

Study graphs with drawings with
restrictions on crossings.

• k-planar: ≤ k crossings per edge

• k-quasi-planar: ≤ k pairwise crossing edges

Restrictions on crossing patterns:

Restrictions on the crossing angle
(edges in the drawing have small complexity):

[Didimo et al., 19]

k = 2



5

Beyond Planarity

[Didimo et al., ’11]

Study graphs with drawings with
restrictions on crossings.

• k-planar: ≤ k crossings per edge

• k-quasi-planar: ≤ k pairwise crossing edges

Restrictions on crossing patterns:

Restrictions on the crossing angle
(edges in the drawing have small complexity):
• edges are poly-line with at most k bends and

cross at 90◦ angle only (RACk graphs).

90◦

[Didimo et al., 19]

k = 2



5

Beyond Planarity

[Didimo et al., ’11]

Study graphs with drawings with
restrictions on crossings.

• k-planar: ≤ k crossings per edge

• k-quasi-planar: ≤ k pairwise crossing edges

Restrictions on crossing patterns:

Restrictions on the crossing angle
(edges in the drawing have small complexity):
• edges are poly-line with at most k bends and

cross at 90◦ angle only (RACk graphs).

90◦

[Didimo et al., 19]

k = 2

[Huang et al., ’14]



5

Beyond Planarity

[Didimo et al., ’11]

Study graphs with drawings with
restrictions on crossings.

• k-planar: ≤ k crossings per edge

• k-quasi-planar: ≤ k pairwise crossing edges

Restrictions on crossing patterns:

Restrictions on the crossing angle
(edges in the drawing have small complexity):
• edges are poly-line with at most k bends and

cross at 90◦ angle only (RACk graphs).

90◦

[Didimo et al., 19]

k = 2

[Huang et al., ’14]



5

Beyond Planarity

[Didimo et al., ’11]

Study graphs with drawings with
restrictions on crossings.

• k-planar: ≤ k crossings per edge

• k-quasi-planar: ≤ k pairwise crossing edges

Restrictions on crossing patterns:

Restrictions on the crossing angle
(edges in the drawing have small complexity):
• edges are poly-line with at most k bends and

cross at 90◦ angle only (RACk graphs).

• edges are circular-arc and
cross at 90◦ angle only (arc-RAC graphs).

90◦

90◦

[Didimo et al., 19]

k = 2

[Huang et al., ’14]

new!



5

Beyond Planarity

[Didimo et al., ’11]

Study graphs with drawings with
restrictions on crossings.

• k-planar: ≤ k crossings per edge

• k-quasi-planar: ≤ k pairwise crossing edges

Restrictions on crossing patterns:

Restrictions on the crossing angle
(edges in the drawing have small complexity):
• edges are poly-line with at most k bends and

cross at 90◦ angle only (RACk graphs).

• edges are circular-arc and
cross at 90◦ angle only (arc-RAC graphs).

90◦

90◦

[Didimo et al., 19]

k = 2

[Huang et al., ’14]

new!

But why arcs?
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Circular Arcs in Graph Drawing

[Lombardi, ’99] [Duncan et al., ’10]

[Xu et al., ’12] [Purchase et al., ’13]

For aestethics:
– users prefer edges with small complexity.

Improve other drawing criteria:

[Cheng et al., ’01]
[Schulz, ’15]– area of the drawing

– angular resolution. [Duncan et al., ’10]
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Simplification
Consider an arc-RAC graph G and its drawing D.

empty 0-lensempty 1-lenslens smallest empty 0-lens

We simplify smallest empty 0-lenses until none are left.

Simplification of a smallest empty 0-lens:

During the simplification process:
• no new crossings are created and
• no new lenses are made.

We call the resulting drawing D′ the simplification of D.
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Main theorem
Thm. An arc-RAC graph with n vertices

can have at most 14n− 12 edges.

Proof.
Let G be an n-vertex arc-RAC graph,

with an arc-RAC drawing D,

simplification D′ of D, and

simplification D′ of D

planarization G′ of D′.
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[Dujmović et al., ’10]

Redistributing charge among faces and vertices so that:
a) ch(v) ≥ 0 for all v in G and
b) ch( f ) ≥ v( f )/3 for all f in G′.

2.

∑ f∈G′ ch( f ) = 4n− 8. [Ackerman., ’09]

Hence the total charge of the system is

Making sure that after Step 2 a) and b) still hold.3.

4n− 8 + 16n/3 = 28n/3− 8.

Assigning each face f of G′ a charge of:
ch( f ) = | f |+ v( f )− 4, where
| f | is the degree of f in the planarization G′ and
v( f ) is the number of vertices of G on the boundary of f .
And for each vertex v of G: ch(v) = 16/3.

1.



10

Main theorem proof overview

28n/3− 8 ≥ ∑ f∈G′ ch( f ) ≥

[Dujmović et al., ’10]

Redistributing charge among faces and vertices so that:
a) ch(v) ≥ 0 for all v in G and
b) ch( f ) ≥ v( f )/3 for all f in G′.

2.

∑ f∈G′ ch( f ) = 4n− 8. [Ackerman., ’09]

Hence the total charge of the system is

Making sure that after Step 2 a) and b) still hold.3.

4n− 8 + 16n/3 = 28n/3− 8.

Assigning each face f of G′ a charge of:
ch( f ) = | f |+ v( f )− 4, where
| f | is the degree of f in the planarization G′ and
v( f ) is the number of vertices of G on the boundary of f .
And for each vertex v of G: ch(v) = 16/3.

1.

∑ f∈G′ v( f )/3 = ∑v∈G deg(v)/3 = 2|E|/3.

And the bound follows:
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Step 1 (initial charge)

• for each face f of G′:
ch( f ) = | f |+ v( f )− 4,

• for each vertex v of G:
ch(v) = 16/3.

ch( f ) =
| f |+ v( f )− 4 = 2

ch(v) = 16/3
v

f

Initial charge:
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Types of faces

We call a face f of G′ a k-triangle, k-quadrilateral, or
k-pentagon if f has the corresponding shape and v( f ) = k.

1-triangle

0-quadrangle 1-quadrangle

2-triangle

2-quadrangle

Initial charge at Step 1 is ch( f ) = | f |+ v( f )− 4.

0 1

0
1 2

0-triangle

−1
insufficient
charge

ch( f ) < v( f )/3
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Step 3 (verification)
We need to show that:
a) ch(v) ≥ 0 for all v in G and
b) ch( f ) ≥ v( f )/3 for all f in G′.

1
3

4
3

1
3

v
90◦

Worst case: v contributes charge to at most 4 digons.

But aster Step 1 ch(v) = 16/3, thus,
after Step 2 ch(v) ≥ 0.

Lem Each vertex is incident to at most four
non-overlapping empty 1-lenses.
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Maximum Edge Density Lower Bound
Thm. For infinitely many values of n, there exists an

n-vertex arc-RAC graph with 4.5n−O(
√

n) edges.

Proof (idea).

[Arikushi+ ’12]

All (but O(
√

n)) vertices of the lattice have degree 9.
⇒ G has 4.5n−O(

√
n) edges.
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