
Sabine Cornelsen
Konstanz, Germany

of the Segment Number
The Parametrized Complexity

Symposium on Graph Drawing and Network Visualization, GD 2023, Isola delle Femmine

Giordano Da Lozzo
Roma III, Italy

Luca Grilli
Perugia, Italy

Siddharth Gupta
Warwick, UK

Jan Kratochv́ıl
Prague, Czech Republic
Charles University

Alexander Wolff
Würzburg, Germany

4 segments

1 segment

segment number: 1

Basic Definitions

4 segments

1 segment

segment number: 1

segment = maximal set of edges forming a line segment

segment number seg(G) of a planar graph G:
minimum number of segments

in any planar straight-line drawing of G
Dujmović, Eppstein, Suderman, Wood (CGTA’07)

Basic Definitions

4 segments

1 segment

segment number: 1

segment = maximal set of edges forming a line segment

segment number seg(G) of a planar graph G:
minimum number of segments

in any planar straight-line drawing of G
Dujmović, Eppstein, Suderman, Wood (CGTA’07)

aligned

minimizing number of segments
=̂

maximizing number of alignments

Basic Definitions

4 segments

1 segment

segment number: 1

segment = maximal set of edges forming a line segment

segment number seg(G) of a planar graph G:
minimum number of segments

in any planar straight-line drawing of G
Dujmović, Eppstein, Suderman, Wood (CGTA’07)

aligned

minimizing number of segments
=̂

maximizing number of alignments

Basic Definitions

4 segments

1 segment

segment number: 1

8 segments

segment = maximal set of edges forming a line segment

segment number seg(G) of a planar graph G:
minimum number of segments

in any planar straight-line drawing of G
Dujmović, Eppstein, Suderman, Wood (CGTA’07)

aligned

minimizing number of segments
=̂

maximizing number of alignments

Basic Definitions

4 segments

1 segment

segment number: 1

8 segments

6 lines

segment = maximal set of edges forming a line segment

segment number seg(G) of a planar graph G:
minimum number of segments

in any planar straight-line drawing of G
Dujmović, Eppstein, Suderman, Wood (CGTA’07)

line cover number line(G) of a planar graph G:
minimum number lines supporting all the edges

in any planar straight-line drawing of G
Chaplick et al. (GD’16)

aligned

minimizing number of segments
=̂

maximizing number of alignments

Basic Definitions

4 segments

1 segment

segment number: 1

8 segments

6 lines

segment = maximal set of edges forming a line segment

segment number seg(G) of a planar graph G:
minimum number of segments

in any planar straight-line drawing of G
Dujmović, Eppstein, Suderman, Wood (CGTA’07)

line cover number line(G) of a planar graph G:
minimum number lines supporting all the edges

in any planar straight-line drawing of G
Chaplick et al. (GD’16)

aligned

minimizing number of segments
=̂

maximizing number of alignments

respective optimization problem: Segment Number

respective minimization problem: Line Cover Number

Warm-Up: Banana-Trees, and -Cycles

banana: (Scott/Seymour 2020)

union of internally disjoint paths
of length two with common endpoints

Warm-Up: Banana-Trees, and -Cycles

banana: (Scott/Seymour 2020)

union of internally disjoint paths
of length two with common endpoints

covering vertices

independent vertices

Warm-Up: Banana-Trees, and -Cycles

banana: (Scott/Seymour 2020)

union of internally disjoint paths
of length two with common endpoints

covering vertices

independent vertices

Observation: Dujmović, Eppstein, Suderman, Wood ’07

A banana with k parallel paths of length two
has segment number ⌊3k/2⌋.

Warm-Up: Banana-Trees, and -Cycles

banana: (Scott/Seymour 2020)

union of internally disjoint paths
of length two with common endpoints

covering vertices

independent vertices

Observation: Dujmović, Eppstein, Suderman, Wood ’07

A banana with k parallel paths of length two
has segment number ⌊3k/2⌋.

banana tree (Scott/Seymour 2020)

tree where each edge is replaced by a banana.

banana path

Warm-Up: Banana-Trees, and -Cycles

banana: (Scott/Seymour 2020)

union of internally disjoint paths
of length two with common endpoints

covering vertices

independent vertices

Observation: Dujmović, Eppstein, Suderman, Wood ’07

A banana with k parallel paths of length two
has segment number ⌊3k/2⌋.

Theorem:

The segment number of a banana tree
can be determined in linear time.

banana tree (Scott/Seymour 2020)

tree where each edge is replaced by a banana.

banana path

– align as many edges as possible with other bananas,
– the (larger) remainder with the same banana

Warm-Up: Banana-Trees, and -Cycles

banana: (Scott/Seymour 2020)

union of internally disjoint paths
of length two with common endpoints

covering vertices

independent vertices

Observation: Dujmović, Eppstein, Suderman, Wood ’07

A banana with k parallel paths of length two
has segment number ⌊3k/2⌋.

Theorem:

The segment number of a banana tree
can be determined in linear time.

banana tree (Scott/Seymour 2020)

tree where each edge is replaced by a banana.
(cycle)

(simple cycle)

banana path

– align as many edges as possible with other bananas,
– the (larger) remainder with the same banana

Warm-Up: Banana-Trees, and -Cycles

Theorem:

The segment number of a banana cycle
of length at least five and with at least two independent vertices per banana

can be determined in linear time.

banana: (Scott/Seymour 2020)

union of internally disjoint paths
of length two with common endpoints

covering vertices

independent vertices

Observation: Dujmović, Eppstein, Suderman, Wood ’07

A banana with k parallel paths of length two
has segment number ⌊3k/2⌋.

Theorem:

The segment number of a banana tree
can be determined in linear time.

banana tree (Scott/Seymour 2020)

tree where each edge is replaced by a banana.
(cycle)

(simple cycle)

banana path

– align as many edges as possible with other bananas,
– the (larger) remainder with the same banana

Related Work

The segment number was defined by Dujmović, Eppstein, Suderman, Wood (CGTA 2007)

Related Work

The segment number was defined by Dujmović, Eppstein, Suderman, Wood (CGTA 2007)

Segment Number is ∃R-complete [ORW-GD’19], NP-hard for fixed embedding [DMNW-JGAA’17]

Related Work

Segment Number is in P for

– trees [DESW-CGTA’07]

– series-parallel graphs with deg ≤ 3 [SAAR-GD’08]

– subdivisions of outerplanar paths [Adnan’08]

– 3-connected cubic planar graphs [DESW-CGTA’07,IMS-JGAA’17]

– cacti [G5KWZ-WG’22]

The segment number was defined by Dujmović, Eppstein, Suderman, Wood (CGTA 2007)

Segment Number is ∃R-complete [ORW-GD’19], NP-hard for fixed embedding [DMNW-JGAA’17]

Related Work

Segment Number is in P for

– trees [DESW-CGTA’07]

– series-parallel graphs with deg ≤ 3 [SAAR-GD’08]

– subdivisions of outerplanar paths [Adnan’08]

– 3-connected cubic planar graphs [DESW-CGTA’07,IMS-JGAA’17]

– cacti [G5KWZ-WG’22]

The segment number was defined by Dujmović, Eppstein, Suderman, Wood (CGTA 2007)

Bounds for various graph classes, e.g.,

– outerplanar graphs, 2-trees, planar 3-trees,
3-connected plane graphs [DESW-CGTA’07]

– (4-connected) triangulations [DM-CGTA’19]

– triconnected planar 4-regular graphs [G5KWZ-WG’22]

Segment Number is ∃R-complete [ORW-GD’19], NP-hard for fixed embedding [DMNW-JGAA’17]

Related Work

Segment Number is in P for

– trees [DESW-CGTA’07]

– series-parallel graphs with deg ≤ 3 [SAAR-GD’08]

– subdivisions of outerplanar paths [Adnan’08]

– 3-connected cubic planar graphs [DESW-CGTA’07,IMS-JGAA’17]

– cacti [G5KWZ-WG’22]

The segment number was defined by Dujmović, Eppstein, Suderman, Wood (CGTA 2007)

Bounds for various graph classes, e.g.,

– outerplanar graphs, 2-trees, planar 3-trees,
3-connected plane graphs [DESW-CGTA’07]

– (4-connected) triangulations [DM-CGTA’19]

– triconnected planar 4-regular graphs [G5KWZ-WG’22]

Segment Number is ∃R-complete [ORW-GD’19], NP-hard for fixed embedding [DMNW-JGAA’17]

grid drawings [Schulz-JGAA’15, HKMS-JGAA’18, KMSS-GD’19]

user studies [KMS-GD’17]

Related Work

Segment Number is in P for

– trees [DESW-CGTA’07]

– series-parallel graphs with deg ≤ 3 [SAAR-GD’08]

– subdivisions of outerplanar paths [Adnan’08]

– 3-connected cubic planar graphs [DESW-CGTA’07,IMS-JGAA’17]

– cacti [G5KWZ-WG’22]

The segment number was defined by Dujmović, Eppstein, Suderman, Wood (CGTA 2007)

Bounds for various graph classes, e.g.,

– outerplanar graphs, 2-trees, planar 3-trees,
3-connected plane graphs [DESW-CGTA’07]

– (4-connected) triangulations [DM-CGTA’19]

– triconnected planar 4-regular graphs [G5KWZ-WG’22]

Segment Number is ∃R-complete [ORW-GD’19], NP-hard for fixed embedding [DMNW-JGAA’17]

grid drawings [Schulz-JGAA’15, HKMS-JGAA’18, KMSS-GD’19]

Line Cover Number is in FPT
wrt. the natural parameter

[CFLRVW-JGAA’23]

user studies [KMS-GD’17]

Recall: decision problem with
input x, parameter k

is fixed-parameter tractable (FPT)
if solvable with run time
O(f(k)|x|c), c constant, f computable

Renegar’s Decision Algorithm

Given an existential first-order formula about the reals

∃x1 . . . xm Φ(x1, . . . , xm)

(Φ: Boolean combination of equalities and inequalities of polynomials over Q)
it can be decided in time exponentially in m whether the formula is realizable over the reals.

basis depends on size and degree of polynomials

(Renegar, 1992)

Renegar’s Decision Algorithm

Given an existential first-order formula about the reals

∃x1 . . . xm Φ(x1, . . . , xm)

(Φ: Boolean combination of equalities and inequalities of polynomials over Q)
it can be decided in time exponentially in m whether the formula is realizable over the reals.

basis depends on size and degree of polynomials∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ > 0

iff
(x1, y1)

(x3, y3)(x2, y2)

It can be expressed as an existential first-order formula about the reals
whether there is a set of points in the plane

– that is a straight-line planar drawing of a plane graph,

– given pairs of edges are aligned

– given quadrangles are not convex

ve1 e2

quadrangle
Q

diagonal not in Q (=0 iff collinear)

(CFLRVW-JGAA’23)

⇝ |V |O(|V |) algorithm for Segment Number

(Renegar, 1992)

Segment Number by Vertex Cover Number

vertex cover of a graph G = (V,E): set
V ′ ⊆ V s.t. e ∩ V ′ ̸= ∅ for each e ∈ E

vertex cover number of a graph:
size of its smallest vertex cover

vertex cover vertices V ′

independent vertices V \ V ′

vertex cover number: 5

Segment Number by Vertex Cover Number

vertex cover of a graph G = (V,E): set
V ′ ⊆ V s.t. e ∩ V ′ ̸= ∅ for each e ∈ E

vertex cover number of a graph:
size of its smallest vertex cover

vertex cover vertices V ′

Segment Number by Vertex Cover Number

Input: planar graph G = (V,E), integer s
Parameter: vertex cover number k of G
Question: Is segment number of G at most s?

independent vertices V \ V ′

vertex cover number: 5

Segment Number by Vertex Cover Number

vertex cover of a graph G = (V,E): set
V ′ ⊆ V s.t. e ∩ V ′ ̸= ∅ for each e ∈ E

vertex cover number of a graph:
size of its smallest vertex cover

vertex cover vertices V ′

Segment Number by Vertex Cover Number

Input: planar graph G = (V,E), integer s
Parameter: vertex cover number k of G
Question: Is segment number of G at most s?

independent vertices V \ V ′

Overview of the Approach for computing the segment number:

1. Remove some vertices of degree one and two

2. Iterate over all possible embeddings and alignments

3. Use Renegar to test for realizability

4. Reinsert the missing vertices optimally via an ILP

⇝ O(2k) vertices

⇝ 2O(k2k) time per choice

⇝ 2O(k2k) time per choice

⇝ number of choices is a function in k

vertex cover number: 5

Take the best

Segment Number by Vertex Cover Number

vertex cover vertices V ′

independent vertices V \ V ′

1. Remove some vertices of degree one and two

⇝ O(2k) vertices

vertex cover number: 5

Segment Number by Vertex Cover Number

vertex cover vertices V ′

independent vertices V \ V ′

1. Remove some vertices of degree one and two

⇝ O(2k) vertices

vertex cover number: 5

Two independent vertices v, v′ are equivalent
iff adjacent to the same vertices in V ′

j-class: equivalence class where each vertex is
adjacent to exactly j vertices.

Segment Number by Vertex Cover Number

vertex cover vertices V ′

independent vertices V \ V ′

1. Remove some vertices of degree one and two

⇝ O(2k) vertices

vertex cover number: 5

Two independent vertices v, v′ are equivalent
iff adjacent to the same vertices in V ′

j-class: equivalence class where each vertex is
adjacent to exactly j vertices.

a) Remove all vertices of degree 1 (1-classes)

Segment Number by Vertex Cover Number

vertex cover vertices V ′

independent vertices V \ V ′

1. Remove some vertices of degree one and two

⇝ O(2k) vertices

vertex cover number: 5

Two independent vertices v, v′ are equivalent
iff adjacent to the same vertices in V ′

j-class: equivalence class where each vertex is
adjacent to exactly j vertices.

a) Remove all vertices of degree 1 (1-classes)

Segment Number by Vertex Cover Number

vertex cover vertices V ′

independent vertices V \ V ′

1. Remove some vertices of degree one and two

⇝ O(2k) vertices

vertex cover number: 5

Two independent vertices v, v′ are equivalent
iff adjacent to the same vertices in V ′

j-class: equivalence class where each vertex is
adjacent to exactly j vertices.

a) Remove all vertices of degree 1 (1-classes)

b) For each 2-class, maintain at most k vertices
⇝ one per contiguous 2-class

Segment Number by Vertex Cover Number

vertex cover vertices V ′

independent vertices V \ V ′

1. Remove some vertices of degree one and two

⇝ O(2k) vertices

vertex cover number: 5

Two independent vertices v, v′ are equivalent
iff adjacent to the same vertices in V ′

j-class: equivalence class where each vertex is
adjacent to exactly j vertices.

a) Remove all vertices of degree 1 (1-classes)

b) For each 2-class, maintain at most k vertices
⇝ one per contiguous 2-class

k
(k
2

)

Segment Number by Vertex Cover Number

vertex cover vertices V ′

independent vertices V \ V ′

1. Remove some vertices of degree one and two

⇝ O(2k) vertices

vertex cover number: 5

Two independent vertices v, v′ are equivalent
iff adjacent to the same vertices in V ′

j-class: equivalence class where each vertex is
adjacent to exactly j vertices.

a) Remove all vertices of degree 1 (1-classes)

b) For each 2-class, maintain at most k vertices
⇝ one per contiguous 2-class

c) Each j-class, j > 2 contains at most two vertices
otherwise there would be a K3,3

k
(k
2

)
2 ·

∑k
j=3

(k
j

)
∈ O(2k)

Segment Number by Vertex Cover Number

vertex cover vertices V ′

independent vertices V \ V ′

1. Remove some vertices of degree one and two

⇝ O(2k) vertices

vertex cover number: 5

Two independent vertices v, v′ are equivalent
iff adjacent to the same vertices in V ′

j-class: equivalence class where each vertex is
adjacent to exactly j vertices.

a) Remove all vertices of degree 1 (1-classes)

b) For each 2-class, maintain at most k vertices
⇝ one per contiguous 2-class

c) Each j-class, j > 2 contains at most two vertices
otherwise there would be a K3,3

d) Vertex cover

k
(k
2

)
2 ·

∑k
j=3

(k
j

)
∈ O(2k)

k

Segment Number by Vertex Cover Number

a

b

c

h

g

d2

f

v

d1

uw

2. Iterate over all possible embeddings and alignments

a) each contiguous 2-class is represented by 4 paths
which must form a non-convex quadrangle (boomerang)

(alignments at independent vertices represented by edges)

Segment Number by Vertex Cover Number

a

b

c

h

g

d2

f

v

d1

uw

2. Iterate over all possible embeddings and alignments

a) each contiguous 2-class is represented by 4 paths
which must form a non-convex quadrangle (boomerang)

(alignments at independent vertices represented by edges)

b) further subdivide boomerangs,
according to the choice of the alignments

still O(2k) vertices

Segment Number by Vertex Cover Number

a

b

c

h

g

d2

f

v

d1

uw

2. Iterate over all possible embeddings and alignments

a) each contiguous 2-class is represented by 4 paths
which must form a non-convex quadrangle (boomerang)

(alignments at independent vertices represented by edges)

b) further subdivide boomerangs,
according to the choice of the alignments

still O(2k) vertices

3. Use Renegar to test in 2O(k2k) time for realizability

if the answer is yes then . . .

Segment Number by Vertex Cover Number

4. Reinsert the missing vertices optimally via an ILP

a

b

c

h

g

d2

f

v

d1

uw

Segment Number by Vertex Cover Number

4. Reinsert the missing vertices optimally via an ILP

a

b

c

h

g

d2

f

v

d1

uw

x(vertex v, boomerang b, boomerang d):
number of edges in b and d that should be aligned at v

Segment Number by Vertex Cover Number

4. Reinsert the missing vertices optimally via an ILP

a

b

c

h

g

d2

f

v

d1

uw

x(vertex v, boomerang b, boomerang d):
number of edges in b and d that should be aligned at v

y(vertex v, boomerang b):
number of edges in b that should be aligned

with leaves adjacent to v

Segment Number by Vertex Cover Number

4. Reinsert the missing vertices optimally via an ILP

a

b

c

h

g

d2

f

v

d1

uw

x(vertex v, boomerang b, boomerang d):
number of edges in b and d that should be aligned at v

y(vertex v, boomerang b):
number of edges in b that should be aligned

with leaves adjacent to v

make sure that total number of independent
vertices per 1- and 2-class is not exceeded

maximize
∑

x(v, b, d) +
∑

y(v, b)

O(2k) variables and constraints

⇝ can be solved in 2O(k2k) time

Segment Number by Vertex Cover Number

4. Reinsert the missing vertices optimally via an ILP

a

b

c

h

g

d2

f

v

d1

uw

x(vertex v, boomerang b, boomerang d):
number of edges in b and d that should be aligned at v

y(vertex v, boomerang b):
number of edges in b that should be aligned

with leaves adjacent to v

Observe:
Due to the non-convex
shape, any given slopes on
either sides can be
combined s.t. intersection
point lies inside
boomerang.

make sure that total number of independent
vertices per 1- and 2-class is not exceeded

maximize
∑

x(v, b, d) +
∑

y(v, b)

O(2k) variables and constraints

⇝ can be solved in 2O(k2k) time

Segment Number by Vertex Cover Number

4. Reinsert the missing vertices optimally via an ILP

a

b

c

h

g

d2

f

v

d1

uw

x(vertex v, boomerang b, boomerang d):
number of edges in b and d that should be aligned at v

y(vertex v, boomerang b):
number of edges in b that should be aligned

with leaves adjacent to v

Observe:
Due to the non-convex
shape, any given slopes on
either sides can be
combined s.t. intersection
point lies inside
boomerang.

make sure that total number of independent
vertices per 1- and 2-class is not exceeded

maximize
∑

x(v, b, d) +
∑

y(v, b)

O(2k) variables and constraints

⇝ can be solved in 2O(k2k) time

Segment Number by Vertex Cover Number

4. Reinsert the missing vertices optimally via an ILP

a

b

c

h

g

d2

f

v

d1

uw

x(vertex v, boomerang b, boomerang d):
number of edges in b and d that should be aligned at v

y(vertex v, boomerang b):
number of edges in b that should be aligned

with leaves adjacent to v

Observe:
Due to the non-convex
shape, any given slopes on
either sides can be
combined s.t. intersection
point lies inside
boomerang.

make sure that total number of independent
vertices per 1- and 2-class is not exceeded

maximize
∑

x(v, b, d) +
∑

y(v, b)

O(2k) variables and constraints

⇝ can be solved in 2O(k2k) time

Segment Number by Vertex Cover Number

4. Reinsert the missing vertices optimally via an ILP

a

b

c

h

g

d2

f

v

d1

uw

x(vertex v, boomerang b, boomerang d):
number of edges in b and d that should be aligned at v

y(vertex v, boomerang b):
number of edges in b that should be aligned

with leaves adjacent to v

Observe:
Due to the non-convex
shape, any given slopes on
either sides can be
combined s.t. intersection
point lies inside
boomerang.

make sure that total number of independent
vertices per 1- and 2-class is not exceeded

maximize
∑

x(v, b, d) +
∑

y(v, b)

O(2k) variables and constraints

⇝ can be solved in 2O(k2k) time

Segment Number by Vertex Cover Number

4. Reinsert the missing vertices optimally via an ILP

a

b

c

h

g

d2

f

v

d1

uw

x(vertex v, boomerang b, boomerang d):
number of edges in b and d that should be aligned at v

y(vertex v, boomerang b):
number of edges in b that should be aligned

with leaves adjacent to v

Observe:
Due to the non-convex
shape, any given slopes on
either sides can be
combined s.t. intersection
point lies inside
boomerang.

make sure that total number of independent
vertices per 1- and 2-class is not exceeded

✓

maximize
∑

x(v, b, d) +
∑

y(v, b)

O(2k) variables and constraints

⇝ can be solved in 2O(k2k) time

List-Coloring meets Segment Number

List-Incidence Segment Number

Input: planar graph G and, for each e ∈ E(G), a list L(e) ⊆ [k].
Parameter: An integer k.
Question: Does there exist

– a planar straight-line drawing of G with ≤ k segments and

– a labeling s1, s2, . . . of its segments, s.t.

– for every e ∈ E(G), e is drawn on a segment in {si : i ∈ L(e)}?

b

x

a

c d

r

s

3 segments
not feasible

1, 2
3, 4

1

2, 3

1, 2 12, 3, 4

List-Coloring meets Segment Number

List-Incidence Segment Number

Input: planar graph G and, for each e ∈ E(G), a list L(e) ⊆ [k].
Parameter: An integer k.
Question: Does there exist

– a planar straight-line drawing of G with ≤ k segments and

– a labeling s1, s2, . . . of its segments, s.t.

– for every e ∈ E(G), e is drawn on a segment in {si : i ∈ L(e)}?

b

x

a c

d

r

s

b

x

a

c d

r

s

3 segments
not feasible

1, 2
3, 4

1

2, 3

1, 2 12, 3, 4

1

2

3

4

4 segments
feasible

List-Incidence Segment Number is in FPT wrt. Segment Number

Input: planar graph G = (V,E), integer k, lists L(e) ⊆ [k], e ∈ E

List-Incidence Segment Number is in FPT wrt. Segment Number

Split G into

– graph G>2 = (V>2, E>2) induced by vertices of degree > 2

– light paths of degree 2. G>2

Input: planar graph G = (V,E), integer k, lists L(e) ⊆ [k], e ∈ E

List-Incidence Segment Number is in FPT wrt. Segment Number

Split G into

– graph G>2 = (V>2, E>2) induced by vertices of degree > 2

– light paths of degree 2. G>2

Input: planar graph G = (V,E), integer k, lists L(e) ⊆ [k], e ∈ E

List-Incidence Segment Number is in FPT wrt. Segment Number

Split G into

– graph G>2 = (V>2, E>2) induced by vertices of degree > 2

– light paths of degree 2. G>2

Input: planar graph G = (V,E), integer k, lists L(e) ⊆ [k], e ∈ E

List-Incidence Segment Number is in FPT wrt. Segment Number

Split G into

– graph G>2 = (V>2, E>2) induced by vertices of degree > 2

– light paths of degree 2. G>2

Input: planar graph G = (V,E), integer k, lists L(e) ⊆ [k], e ∈ E

List-Incidence Segment Number is in FPT wrt. Segment Number

Split G into

– graph G>2 = (V>2, E>2) induced by vertices of degree > 2

– light paths of degree 2. G>2

Input: planar graph G = (V,E), integer k, lists L(e) ⊆ [k], e ∈ E

List-Incidence Segment Number is in FPT wrt. Segment Number

Split G into

– graph G>2 = (V>2, E>2) induced by vertices of degree > 2

– light paths of degree 2. G>2

Input: planar graph G = (V,E), integer k, lists L(e) ⊆ [k], e ∈ E

|V>2| ≤
(k
2

)
at most 2k ·

(k
2

)
many

List-Incidence Segment Number is in FPT wrt. Segment Number

Split G into

– graph G>2 = (V>2, E>2) induced by vertices of degree > 2

– light paths of degree 2. G>2

Input: planar graph G = (V,E), integer k, lists L(e) ⊆ [k], e ∈ E

1. For each arrangement of k lines

|V>2| ≤
(k
2

)
at most 2k ·

(k
2

)
many

List-Incidence Segment Number is in FPT wrt. Segment Number

Split G into

– graph G>2 = (V>2, E>2) induced by vertices of degree > 2

– light paths of degree 2. G>2

Input: planar graph G = (V,E), integer k, lists L(e) ⊆ [k], e ∈ E

1. For each arrangement of k lines

Construct all plane graphs on ≤
(k
2

)
+ 2k vertices with 2k leaves,

and all coverings with k edge-disjoint paths.
Use Renegar to check wether they are stretchable.

|V>2| ≤
(k
2

)

O(2k
2
) arrangements

at most 2k ·
(k
2

)
many

List-Incidence Segment Number is in FPT wrt. Segment Number

Split G into

– graph G>2 = (V>2, E>2) induced by vertices of degree > 2

– light paths of degree 2. G>2

Input: planar graph G = (V,E), integer k, lists L(e) ⊆ [k], e ∈ E

1. For each arrangement of k lines

2. For each placement of V>2 on crossings of the lines

If this yields a planar drawing of G>2 with edges on the lines

Construct all plane graphs on ≤
(k
2

)
+ 2k vertices with 2k leaves,

and all coverings with k edge-disjoint paths.
Use Renegar to check wether they are stretchable.

|V>2| ≤
(k
2

)

O(2k
2
) arrangements

at most 2k ·
(k
2

)
many

List-Incidence Segment Number is in FPT wrt. Segment Number

Split G into

– graph G>2 = (V>2, E>2) induced by vertices of degree > 2

– light paths of degree 2. G>2

Input: planar graph G = (V,E), integer k, lists L(e) ⊆ [k], e ∈ E

1. For each arrangement of k lines

2. For each placement of V>2 on crossings of the lines

If this yields a planar drawing of G>2 with edges on the lines

Construct all plane graphs on ≤
(k
2

)
+ 2k vertices with 2k leaves,

and all coverings with k edge-disjoint paths.
Use Renegar to check wether they are stretchable.

|V>2| ≤
(k
2

)

O(2k
2
) arrangements

at most 2k ·
(k
2

)
many

List-Incidence Segment Number is in FPT wrt. Segment Number

Split G into

– graph G>2 = (V>2, E>2) induced by vertices of degree > 2

– light paths of degree 2. G>2

Input: planar graph G = (V,E), integer k, lists L(e) ⊆ [k], e ∈ E

1. For each arrangement of k lines

2. For each placement of V>2 on crossings of the lines

If this yields a planar drawing of G>2 with edges on the lines

Construct all plane graphs on ≤
(k
2

)
+ 2k vertices with 2k leaves,

and all coverings with k edge-disjoint paths.
Use Renegar to check wether they are stretchable.

|V>2| ≤
(k
2

)

O(2k
2
) arrangements

(k
2

)
! many

at most 2k ·
(k
2

)
many

List-Incidence Segment Number is in FPT wrt. Segment Number

Split G into

– graph G>2 = (V>2, E>2) induced by vertices of degree > 2

– light paths of degree 2. G>2

Input: planar graph G = (V,E), integer k, lists L(e) ⊆ [k], e ∈ E

1. For each arrangement of k lines

2. For each placement of V>2 on crossings of the lines

If this yields a planar drawing of G>2 with edges on the lines

3. for each routing of the degree-2-paths that yield a
planar drawing of G with ≤ k segments

Construct all plane graphs on ≤
(k
2

)
+ 2k vertices with 2k leaves,

and all coverings with k edge-disjoint paths.
Use Renegar to check wether they are stretchable.

|V>2| ≤
(k
2

)

O(2k
2
) arrangements

(k
2

)
! many

at most 2k ·
(k
2

)
many

List-Incidence Segment Number is in FPT wrt. Segment Number

Split G into

– graph G>2 = (V>2, E>2) induced by vertices of degree > 2

– light paths of degree 2. G>2

Input: planar graph G = (V,E), integer k, lists L(e) ⊆ [k], e ∈ E

1. For each arrangement of k lines

2. For each placement of V>2 on crossings of the lines

If this yields a planar drawing of G>2 with edges on the lines

3. for each routing of the degree-2-paths that yield a
planar drawing of G with ≤ k segments

Construct all plane graphs on ≤
(k
2

)
+ 2k vertices with 2k leaves,

and all coverings with k edge-disjoint paths.
Use Renegar to check wether they are stretchable.

|V>2| ≤
(k
2

)

O(2k
2
) arrangements

(k
2

)
! many

at most 2k ·
(k
2

)
many

(
(2k(k − 1))k

)k3

many

number of
light paths

number of segments
per light path

number of choices
per path and crossing

List-Incidence Segment Number is in FPT wrt. Segment Number

Split G into

– graph G>2 = (V>2, E>2) induced by vertices of degree > 2

– light paths of degree 2. G>2

Input: planar graph G = (V,E), integer k, lists L(e) ⊆ [k], e ∈ E

1. For each arrangement of k lines

2. For each placement of V>2 on crossings of the lines

If this yields a planar drawing of G>2 with edges on the lines

3. for each routing of the degree-2-paths that yield a
planar drawing of G with ≤ k segments

Construct all plane graphs on ≤
(k
2

)
+ 2k vertices with 2k leaves,

and all coverings with k edge-disjoint paths.
Use Renegar to check wether they are stretchable.

4. for each labeling s1, . . . , sk of the segments

|V>2| ≤
(k
2

)

O(2k
2
) arrangements

(k
2

)
! many

at most 2k ·
(k
2

)
many

(
(2k(k − 1))k

)k3

many

1

List-Incidence Segment Number is in FPT wrt. Segment Number

Split G into

– graph G>2 = (V>2, E>2) induced by vertices of degree > 2

– light paths of degree 2. G>2

Input: planar graph G = (V,E), integer k, lists L(e) ⊆ [k], e ∈ E

1. For each arrangement of k lines

2. For each placement of V>2 on crossings of the lines

If this yields a planar drawing of G>2 with edges on the lines

3. for each routing of the degree-2-paths that yield a
planar drawing of G with ≤ k segments

Construct all plane graphs on ≤
(k
2

)
+ 2k vertices with 2k leaves,

and all coverings with k edge-disjoint paths.
Use Renegar to check wether they are stretchable.

4. for each labeling s1, . . . , sk of the segments

|V>2| ≤
(k
2

)

O(2k
2
) arrangements

(k
2

)
! many

at most 2k ·
(k
2

)
many

(
(2k(k − 1))k

)k3

many

1

2

List-Incidence Segment Number is in FPT wrt. Segment Number

Split G into

– graph G>2 = (V>2, E>2) induced by vertices of degree > 2

– light paths of degree 2. G>2

Input: planar graph G = (V,E), integer k, lists L(e) ⊆ [k], e ∈ E

1. For each arrangement of k lines

2. For each placement of V>2 on crossings of the lines

If this yields a planar drawing of G>2 with edges on the lines

3. for each routing of the degree-2-paths that yield a
planar drawing of G with ≤ k segments

Construct all plane graphs on ≤
(k
2

)
+ 2k vertices with 2k leaves,

and all coverings with k edge-disjoint paths.
Use Renegar to check wether they are stretchable.

4. for each labeling s1, . . . , sk of the segments

|V>2| ≤
(k
2

)

k! many

O(2k
2
) arrangements

(k
2

)
! many

at most 2k ·
(k
2

)
many

(
(2k(k − 1))k

)k3

many

1

2
3

4

5

67

8

List-Incidence Segment Number is in FPT wrt. Segment Number

Split G into

– graph G>2 = (V>2, E>2) induced by vertices of degree > 2

– light paths of degree 2. G>2

Input: planar graph G = (V,E), integer k, lists L(e) ⊆ [k], e ∈ E

1. For each arrangement of k lines

2. For each placement of V>2 on crossings of the lines

If this yields a planar drawing of G>2 with edges on the lines

3. for each routing of the degree-2-paths that yield a
planar drawing of G with ≤ k segments

Construct all plane graphs on ≤
(k
2

)
+ 2k vertices with 2k leaves,

and all coverings with k edge-disjoint paths.
Use Renegar to check wether they are stretchable.

4. for each labeling s1, . . . , sk of the segments

|V>2| ≤
(k
2

)

k! many

O(2k
2
) arrangements

(k
2

)
! many

at most 2k ·
(k
2

)
many

(
(2k(k − 1))k

)k3

many

1

2
3

4

5

67

8

6
5, 6

1, 6

5, 3

1, 6

1

List-Incidence Segment Number is in FPT wrt. Segment Number

Split G into

– graph G>2 = (V>2, E>2) induced by vertices of degree > 2

– light paths of degree 2. G>2

Input: planar graph G = (V,E), integer k, lists L(e) ⊆ [k], e ∈ E

1. For each arrangement of k lines

2. For each placement of V>2 on crossings of the lines

If this yields a planar drawing of G>2 with edges on the lines

3. for each routing of the degree-2-paths that yield a
planar drawing of G with ≤ k segments

Construct all plane graphs on ≤
(k
2

)
+ 2k vertices with 2k leaves,

and all coverings with k edge-disjoint paths.
Use Renegar to check wether they are stretchable.

4. for each labeling s1, . . . , sk of the segments

use dynamic programming to test whether
each light path P can be realized on route S obeying L(e)

|V>2| ≤
(k
2

)

k! many

O(2k
2
) arrangements

(k
2

)
! many

at most 2k ·
(k
2

)
many

(
(2k(k − 1))k

)k3

many

1

2
3

4

5

67

8

6
5, 6

1, 6

5, 3

1, 6

1

List-Incidence Segment Number is in FPT wrt. Segment Number

Split G into

– graph G>2 = (V>2, E>2) induced by vertices of degree > 2

– light paths of degree 2. G>2

Input: planar graph G = (V,E), integer k, lists L(e) ⊆ [k], e ∈ E

1. For each arrangement of k lines

2. For each placement of V>2 on crossings of the lines

If this yields a planar drawing of G>2 with edges on the lines

3. for each routing of the degree-2-paths that yield a
planar drawing of G with ≤ k segments

Construct all plane graphs on ≤
(k
2

)
+ 2k vertices with 2k leaves,

and all coverings with k edge-disjoint paths.
Use Renegar to check wether they are stretchable.

4. for each labeling s1, . . . , sk of the segments

use dynamic programming to test whether
each light path P can be realized on route S obeying L(e)

|V>2| ≤
(k
2

)

k! many

O(|P | · |S| · log k) per path ⇝ O(n · k · log k) for all paths

O(2k
2
) arrangements

(k
2

)
! many

at most 2k ·
(k
2

)
many

(
(2k(k − 1))k

)k3

many

1

2
3

4

5

67

8

6
5, 6

1, 6

5, 3

1, 6

1

Summary and Open Problems

– The segment number can be determined in linear time for banana trees.

Summary and Open Problems

– Segment Number is in FPT parameterized by

– the vertex cover number

– the segment number

– the line cover number

– The segment number can be determined in linear time for banana trees.

Summary and Open Problems

– Segment Number is in FPT parameterized by

– the vertex cover number

– the segment number

– the line cover number

– The list-coloring versions of Segment Number and Line Cover Number
are in FPT parameterized by their natural parameters

– The segment number can be determined in linear time for banana trees.

Summary and Open Problems

– Segment Number is in FPT parameterized by

– the vertex cover number

– the segment number

– the line cover number

– The list-coloring versions of Segment Number and Line Cover Number
are in FPT parameterized by their natural parameters

– It would be interesting to investigate Segment Number w.r.t. other parameters

– treewidth (complexity even for tree-width 2 unknown)

– cluster deletion number
minimum number of vertices that have to be removed s.t.
remainder is union of disjoint cliques.

– The segment number can be determined in linear time for banana trees.

Summary and Open Problems

Thank
you

– Segment Number is in FPT parameterized by

– the vertex cover number

– the segment number

– the line cover number

– The list-coloring versions of Segment Number and Line Cover Number
are in FPT parameterized by their natural parameters

– It would be interesting to investigate Segment Number w.r.t. other parameters

– treewidth (complexity even for tree-width 2 unknown)

– cluster deletion number
minimum number of vertices that have to be removed s.t.
remainder is union of disjoint cliques.

– The segment number can be determined in linear time for banana trees.

	Title Page
	summary

