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segment = maximal set of edges forming a line segment

segment number seg(G) of a planar graph G:
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in any planar straight-line drawing of G
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Basic Definitions

4 segments

1 segment

segment number: 1

8 segments

6 lines

segment = maximal set of edges forming a line segment

segment number seg(G) of a planar graph G:
minimum number of segments

in any planar straight-line drawing of G
Dujmović, Eppstein, Suderman, Wood (CGTA’07)

line cover number line(G) of a planar graph G:
minimum number lines supporting all the edges

in any planar straight-line drawing of G
Chaplick et al. (GD’16)

aligned

minimizing number of segments
=̂

maximizing number of alignments

respective optimization problem: Segment Number

respective minimization problem: Line Cover Number
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Warm-Up: Banana-Trees, and -Cycles

Theorem:

The segment number of a banana cycle
of length at least five and with at least two independent vertices per banana

can be determined in linear time.

banana: ( Scott/Seymour 2020 )

union of internally disjoint paths
of length two with common endpoints

covering vertices

independent vertices

Observation: Dujmović, Eppstein, Suderman, Wood ’07

A banana with k parallel paths of length two
has segment number ⌊3k/2⌋.

Theorem:

The segment number of a banana tree
can be determined in linear time.
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– subdivisions of outerplanar paths [Adnan’08]

– 3-connected cubic planar graphs [DESW-CGTA’07,IMS-JGAA’17]

– cacti [G5KWZ-WG’22]

The segment number was defined by Dujmović, Eppstein, Suderman, Wood (CGTA 2007)

Bounds for various graph classes, e.g.,

– outerplanar graphs, 2-trees, planar 3-trees,
3-connected plane graphs [DESW-CGTA’07]

– (4-connected) triangulations [DM-CGTA’19]

– triconnected planar 4-regular graphs [G5KWZ-WG’22]

Segment Number is ∃R-complete [ORW-GD’19], NP-hard for fixed embedding [DMNW-JGAA’17]

grid drawings [Schulz-JGAA’15, HKMS-JGAA’18, KMSS-GD’19]

Line Cover Number is in FPT
wrt. the natural parameter

[CFLRVW-JGAA’23]

user studies [KMS-GD’17]

Recall: decision problem with
input x, parameter k

is fixed-parameter tractable (FPT)
if solvable with run time
O(f(k)|x|c), c constant, f computable



Renegar’s Decision Algorithm

Given an existential first-order formula about the reals

∃x1 . . . xm Φ(x1, . . . , xm)

(Φ: Boolean combination of equalities and inequalities of polynomials over Q)
it can be decided in time exponentially in m whether the formula is realizable over the reals.

basis depends on size and degree of polynomials

(Renegar, 1992)
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Given an existential first-order formula about the reals

∃x1 . . . xm Φ(x1, . . . , xm)

(Φ: Boolean combination of equalities and inequalities of polynomials over Q)
it can be decided in time exponentially in m whether the formula is realizable over the reals.

basis depends on size and degree of polynomials∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ > 0

iff
(x1, y1)

(x3, y3)(x2, y2)

It can be expressed as an existential first-order formula about the reals
whether there is a set of points in the plane

– that is a straight-line planar drawing of a plane graph,

– given pairs of edges are aligned

– given quadrangles are not convex

ve1 e2

quadrangle
Q

diagonal not in Q (=0 iff collinear)

(CFLRVW-JGAA’23)

⇝ |V |O(|V |) algorithm for Segment Number

(Renegar, 1992)
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Segment Number by Vertex Cover Number

vertex cover of a graph G = (V,E): set
V ′ ⊆ V s.t. e ∩ V ′ ̸= ∅ for each e ∈ E

vertex cover number of a graph:
size of its smallest vertex cover

vertex cover vertices V ′

Segment Number by Vertex Cover Number

Input: planar graph G = (V,E), integer s
Parameter: vertex cover number k of G
Question: Is segment number of G at most s?

independent vertices V \ V ′

Overview of the Approach for computing the segment number:

1. Remove some vertices of degree one and two

2. Iterate over all possible embeddings and alignments

3. Use Renegar to test for realizability

4. Reinsert the missing vertices optimally via an ILP

⇝ O(2k) vertices

⇝ 2O(k2k) time per choice

⇝ 2O(k2k) time per choice

⇝ number of choices is a function in k

vertex cover number: 5

Take the best



Segment Number by Vertex Cover Number

vertex cover vertices V ′

independent vertices V \ V ′

1. Remove some vertices of degree one and two

⇝ O(2k) vertices

vertex cover number: 5



Segment Number by Vertex Cover Number

vertex cover vertices V ′

independent vertices V \ V ′

1. Remove some vertices of degree one and two

⇝ O(2k) vertices

vertex cover number: 5

Two independent vertices v, v′ are equivalent
iff adjacent to the same vertices in V ′

j-class: equivalence class where each vertex is
adjacent to exactly j vertices.



Segment Number by Vertex Cover Number

vertex cover vertices V ′

independent vertices V \ V ′

1. Remove some vertices of degree one and two

⇝ O(2k) vertices

vertex cover number: 5

Two independent vertices v, v′ are equivalent
iff adjacent to the same vertices in V ′

j-class: equivalence class where each vertex is
adjacent to exactly j vertices.

a) Remove all vertices of degree 1 (1-classes)



Segment Number by Vertex Cover Number

vertex cover vertices V ′

independent vertices V \ V ′

1. Remove some vertices of degree one and two

⇝ O(2k) vertices

vertex cover number: 5

Two independent vertices v, v′ are equivalent
iff adjacent to the same vertices in V ′

j-class: equivalence class where each vertex is
adjacent to exactly j vertices.

a) Remove all vertices of degree 1 (1-classes)



Segment Number by Vertex Cover Number

vertex cover vertices V ′

independent vertices V \ V ′

1. Remove some vertices of degree one and two

⇝ O(2k) vertices

vertex cover number: 5

Two independent vertices v, v′ are equivalent
iff adjacent to the same vertices in V ′

j-class: equivalence class where each vertex is
adjacent to exactly j vertices.

a) Remove all vertices of degree 1 (1-classes)

b) For each 2-class, maintain at most k vertices
⇝ one per contiguous 2-class



Segment Number by Vertex Cover Number

vertex cover vertices V ′

independent vertices V \ V ′

1. Remove some vertices of degree one and two

⇝ O(2k) vertices

vertex cover number: 5

Two independent vertices v, v′ are equivalent
iff adjacent to the same vertices in V ′

j-class: equivalence class where each vertex is
adjacent to exactly j vertices.

a) Remove all vertices of degree 1 (1-classes)

b) For each 2-class, maintain at most k vertices
⇝ one per contiguous 2-class

k
(k
2

)



Segment Number by Vertex Cover Number

vertex cover vertices V ′

independent vertices V \ V ′

1. Remove some vertices of degree one and two

⇝ O(2k) vertices

vertex cover number: 5

Two independent vertices v, v′ are equivalent
iff adjacent to the same vertices in V ′

j-class: equivalence class where each vertex is
adjacent to exactly j vertices.

a) Remove all vertices of degree 1 (1-classes)

b) For each 2-class, maintain at most k vertices
⇝ one per contiguous 2-class

c) Each j-class, j > 2 contains at most two vertices
otherwise there would be a K3,3
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Segment Number by Vertex Cover Number

vertex cover vertices V ′

independent vertices V \ V ′

1. Remove some vertices of degree one and two

⇝ O(2k) vertices

vertex cover number: 5

Two independent vertices v, v′ are equivalent
iff adjacent to the same vertices in V ′

j-class: equivalence class where each vertex is
adjacent to exactly j vertices.

a) Remove all vertices of degree 1 (1-classes)

b) For each 2-class, maintain at most k vertices
⇝ one per contiguous 2-class

c) Each j-class, j > 2 contains at most two vertices
otherwise there would be a K3,3

d) Vertex cover

k
(k
2

)
2 ·

∑k
j=3

(k
j

)
∈ O(2k)

k
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2. Iterate over all possible embeddings and alignments

a) each contiguous 2-class is represented by 4 paths
which must form a non-convex quadrangle (boomerang)

(alignments at independent vertices represented by edges)
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a
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c

h

g
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f
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uw

2. Iterate over all possible embeddings and alignments

a) each contiguous 2-class is represented by 4 paths
which must form a non-convex quadrangle (boomerang)

(alignments at independent vertices represented by edges)

b) further subdivide boomerangs,
according to the choice of the alignments

still O(2k) vertices

3. Use Renegar to test in 2O(k2k) time for realizability

if the answer is yes then . . .
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x(vertex v, boomerang b, boomerang d):
number of edges in b and d that should be aligned at v

y(vertex v, boomerang b):
number of edges in b that should be aligned

with leaves adjacent to v

make sure that total number of independent
vertices per 1- and 2-class is not exceeded
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x(v, b, d) +
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⇝ can be solved in 2O(k2k) time
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4. Reinsert the missing vertices optimally via an ILP
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x(vertex v, boomerang b, boomerang d):
number of edges in b and d that should be aligned at v

y(vertex v, boomerang b):
number of edges in b that should be aligned

with leaves adjacent to v

Observe:
Due to the non-convex
shape, any given slopes on
either sides can be
combined s.t. intersection
point lies inside
boomerang.

make sure that total number of independent
vertices per 1- and 2-class is not exceeded

✓

maximize
∑

x(v, b, d) +
∑

y(v, b)

O(2k) variables and constraints

⇝ can be solved in 2O(k2k) time



List-Coloring meets Segment Number

List-Incidence Segment Number

Input: planar graph G and, for each e ∈ E(G), a list L(e) ⊆ [k].
Parameter: An integer k.
Question: Does there exist

– a planar straight-line drawing of G with ≤ k segments and

– a labeling s1, s2, . . . of its segments, s.t.

– for every e ∈ E(G), e is drawn on a segment in {si : i ∈ L(e)}?
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x

a
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s
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not feasible
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List-Coloring meets Segment Number

List-Incidence Segment Number

Input: planar graph G and, for each e ∈ E(G), a list L(e) ⊆ [k].
Parameter: An integer k.
Question: Does there exist

– a planar straight-line drawing of G with ≤ k segments and

– a labeling s1, s2, . . . of its segments, s.t.

– for every e ∈ E(G), e is drawn on a segment in {si : i ∈ L(e)}?

b

x

a c

d

r

s

b

x

a

c d

r

s

3 segments
not feasible

1, 2
3, 4

1

2, 3

1, 2 12, 3, 4

1

2

3

4

4 segments
feasible
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