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Drawing Directed Graphs ac'l!

There is a variety of drawing styles for directed graphs, e.g.
J;L B »

)
Fal [$

o
Overloaded

orthogonal layout
[Kornaropoulos, Tollis 2011]

Layered layout Kandinsky style layout

[Sugiyama, Tagawa, Toda 1981] [FoBmeier, Kaufmann 1996]
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Drawing Directed Graphs ac'l!

There is a variety of drawing styles for directed graphs, e.g.
LT
[ L [o

O
Layered layout Kandinsky style layout Overloaded

[Sugiyama, Tagawa, Toda 1981] [FoBmeier, Kaufmann 1996] Orthogonal IayOUt
[Kornaropoulos, Tollis 2011]

HS

In 2016 Angelini et al. introduced L-drawings:

B exclusive x- and y-coordinates per vertex
outgoing edges attach vertically

incoming edges attach horizontally

small arcs indicate L-bends

crossings and “confluent” overlaps allowed
exist for any graph

® ink minimization is NP-hard
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Drawing Directed Graphs ac'l!
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In 2016 Angelini et al. introduced L-drawings:
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exclusive x- and y-coordinates per vertex
outgoing edges attach vertically

incoming edges attach horizontally

small arcs indicate L-bends

crossings and “confluent” overlaps allowed
exist for any graph

® ink minimization is NP-hard
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Planar L-Drawings ac!le
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planar © upward planar © upward-rightward planar
Definitions:

® Planar L-drawing if crossing-free
® Upward planar L-drawing if all edges y-increasing
® Upward-rightward planar L-drawing if all edges x- and y-increasing
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Planar L-Drawings
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planar © upward planar © upward-rightward planar

Definitions:

® Planar L-drawing if crossing-free
® Upward planar L-drawing if all edges y-increasing
® Upward-rightward planar L-drawing if all edges x- and y-increasing

Observation:

Planar L-drawings correspond to planar E:{:

1-bend Kandinsky drawings with extra o N
constraints on cyclic edge orders of vertices. 6

(©)
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Overview of Results ac!li

A o

planar upward (-rightward) planar

directed

planar graphs NP—Complete

characterization

planar st-graphs e _ _
constructive linear time algorithm

directed plane graphs

+ port assignment linear time
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Planar L-Drawings of Directed Graphs ac!l!

Any planar L-drawing implies 4-modal embedding.

B There are planar directed graphs that do not admit planar L-drawings.

6-modal in any embedding
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Planar L-Drawings of Directed Graphs ac!l!

Any planar L-drawing implies 4-modal embedding.

B There are planar directed graphs that do not admit planar L-drawings.

6-modal in any embedding

B There are graphs with 4-modal embedding but no planar L-drawing.

)

every vertex is 4-modal . ..

)
... but rightmost vertex in L-drawing

can be at most bimodal
octahedron |

<—JI
I
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NP-Completeness ac'l!

Theorem: Deciding whether a directed graph admits a planar

L-drawing is NP-complete.

Proof: (sketch)
B reduction from NP-complete HV-rectilinear planarity testing

[Didimo, Liotta, Patrignani 2014]

Given biconnected degree-4 planar graph G with edges labeled H and V/,
decide if G admits drawing with horizonal H-edges and vertical V-edges.
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NP-Completeness ac'l!

Theorem: Deciding whether a directed graph admits a planar

L-drawing is NP-complete.

Proof: (sketch)
B reduction from NP-complete HV-rectilinear planarity testing

[Didimo, Liotta, Patrignani 2014]

Given biconnected degree-4 planar graph G with edges labeled H and V/,
decide if G admits drawing with horizonal H-edges and vertical V-edges.

B core gadget: 4-wheel graph has basically two planar L-embeddings
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NP-Completeness ac'l!

Theorem: Deciding whether a directed graph admits a planar

L-drawing is NP-complete.

Proof: (sketch)
B reduction from NP-complete HV-rectilinear planarity testing

[Didimo, Liotta, Patrignani 2014]

Given biconnected degree-4 planar graph G with edges labeled H and V/,
decide if G admits drawing with horizonal H-edges and vertical V-edges.

B core gadget: 4-wheel graph has basically two planar L-embeddings
W in HV-graph G replace vertices by 4-wheel and edges by H-/V-gadgets

@ 4-wheel

m H-gadget

H V -gadget
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NP-Completeness ac'l!

Theorem: Deciding whether a directed graph admits a planar

L-drawing is NP-complete.

Proof: (sketch)
B reduction from NP-complete HV-rectilinear planarity testing

[Didimo, Liotta, Patrignani 2014]

Given biconnected degree-4 planar graph G with edges labeled H and V/,
decide if G admits drawing with horizonal H-edges and vertical V-edges.

B core gadget: 4-wheel graph has basically two planar L-embeddings
W in HV-graph G replace vertices by 4-wheel and edges by H-/V-gadgets

@ dwheel resulting graph G’ has

B H-gadget planar L-drawing
=

H G has HV-drawing
V -gadget (]
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Overview of Results ac!li

A o

planar upward (-rightward) planar

directed

planar graphs NP—Complete

characterization

planar st-graphs N _ _
constructive linear time algorithm

directed plane graphs

+ port assignment linear time
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Planar st-Graphs and Bitonic st-Orderings ac!l!

B A planar st-graph G is a directed acyclic graph with exactly
one source s and one sink ¢, both embeddable on same face.

t
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Planar st-Graphs and Bitonic st-Orderings ac!l!

B A planar st-graph G is a directed acyclic graph with exactly
one source s and one sink ¢, both embeddable on same face.
B planar st-graphs always admit straight-line

upwa rd planar d raW|ngS [Di Battista, Tamassia 1988]
B have st-ordering 7 respecting edge directions
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Planar st-Graphs and Bitonic st-Orderings ac!l!

B A planar st-graph G is a directed acyclic graph with exactly
one source s and one sink ¢, both embeddable on same face.

B planar st-graphs always admit straight-line
upwa rd planar d raW|ngS [Di Battista, Tamassia 1988]
B have st-ordering 7 respecting edge directions

B st-ordering 7 of plane st-graph (planar st-graph
+ embedding) is bitonic if successors of each
vertex form bitonic sequence [Gronemann 2014, 2016]

- 8
Increasing ; 4 6 \decreasing
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Planar st-Graphs and Bitonic st-Orderings ac!l!

B A planar st-graph G is a directed acyclic graph with exactly
one source s and one sink ¢, both embeddable on same face.
B planar st-graphs always admit straight-line

upwa rd planar d raW|ngS [Di Battista, Tamassia 1988]
B have st-ordering 7 respecting edge directions

B st-ordering 7 of plane st-graph (planar st-graph
+ embedding) is bitonic if successors of each
vertex form bitonic sequence [Gronemann 2014, 2016]

- 8
Increasing ; 4 6 \decreasing
5

®m For a planar st-graph G define a bitonic pair (£, 7) as an
upward planar embedding & of G with a bitonic st-ordering .

Chaplick, Chimani, Cornelsen, Da Lozzo, Néllenburg, Patrignani, Tollis, Wolff - Planar L-Drawings of Directed Graphs




Characterization ac!l!

Theorem: A planar st-graph admits an upward-planar L-drawing

if and only if it admits a bitonic pair.
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Characterization ac!l!

Theorem: A planar st-graph admits an upward-planar L-drawing

if and only if it admits a bitonic pair.

Proof: (sketch)
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Characterization ac!l!

Theorem: A planar st-graph admits an upward-planar L-drawing

if and only if it admits a bitonic pair.
Proof: (sketch)

= o2 . . .
(8 B y-coordinates induce st-ordering
5 &L B 7 is bitonic due to upward L-properties
3 = >
o
20 O
ol
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Characterization ac!l!

Theorem: A planar st-graph admits an upward-planar L-drawing

if and only if it admits a bitonic pair.

Proof: (sketch)

= o2 . . .
(8 B y-coordinates induce st-ordering
z &L B 7 is bitonic due to upward L-properties
3 = >
o
20 O
ol

< M use 7 for y-coordinates
B incrementally construct partial order < as basis for x-coordinates

V; V; B invariant: outer face of G;
simple cycle ordered by <
G, .
Oy < uz < O U3 <, ® insert each v; btw. last
Gi1 Gi1 two predecessors
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Characterization ac!l!

Theorem: A planar st-graph admits an upward-planar L-drawing

if and only if it admits a bitonic pair.

Proof: (sketch)

= o . . :
(8 B y-coordinates induce st-ordering
z &L B 7 is bitonic due to upward L-properties
3 = >
o
20 O
ol

< M use 7 for y-coordinates
B incrementally construct partial order < as basis for x-coordinates

@ invariant: outer face of G;
simple cycle ordered by <

® insert each v; btw. last
two predecessors

special case: just one predecessor — augment graph similar to [Gronemann 2016]
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Finding Bitonic Pairs ac!ln
B Assumption: st-graph G is biconnected and has edge (s, t)

B We say GG is v-monotonic or (strictly) v-bitonic if for every vertex v
® subgraph induced by successors of v (— transitive edges) is a path p

B p is monotonic or (strictly) bitonic
apex of v and p

\ \ \ I I,
AN \\ I I,
N\ I/// N\
O w vO v O
monotonic C bitonic strictly bitonic C bitonic
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Finding Bitonic Pairs ac!ln
B Assumption: st-graph G is biconnected and has edge (s, t)

B We say GG is v-monotonic or (strictly) v-bitonic if for every vertex v
® subgraph induced by successors of v (— transitive edges) is a path p
B p is monotonic or (strictly) bitonic

O,o;—Q"? ,

apex of v and p

N \\ \\ II ¥
A /
\\I I/// \\\\I///
O w vO v O
monotonic C bitonic strictly bitonic C bitonic

B Goal: augment G into G* by adding edges s.t. G* is v-bitonic
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Finding Bitonic Pairs ac!ln
B Assumption: st-graph G is biconnected and has edge (s, t)

B We say GG is v-monotonic or (strictly) v-bitonic if for every vertex v
® subgraph induced by successors of v (— transitive edges) is a path p

B p is monotonic or (strictly) bitonic
apex of v and p

DO S | I
SN I,
O v vO v
monotonic C bitonic strictly bitonic C bitonic

B Goal: augment GG into G* by adding edges s.t. G* is v-bitonic

Theorem: Plane st-graph G admits bitonic st-ordering iff G* is v-bitonic.

Any st-ordering of G™ is bitonic st-ordering of G. < Gronemann 2016]

— The task of finding a bitonic pair of G reduces to finding
an augmentation G* of GG that is v-bitonic.

Chaplick, Chimani, Cornelsen, Da Lozzo, Néllenburg, Patrignani, Tollis, Wolff - Planar L-Drawings of Directed Graphs



Finding a v-Bitonic Augmentation ac'l!

Visiting the SPQR-tree of biconnected planar st-graph G rooted at edge (s, t)
in bottom-up fashion find augmentation G* and embedding (if one exists).

30t

EORNGR .
-

@3@ @@@@m@m
0D OO0 gk
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Finding a v-Bitonic Augmentation ac'l!

Visiting the SPQR-tree of biconnected planar st-graph G rooted at edge (s, t)
in bottom-up fashion find augmentation G* and embedding (if one exists).

30t

@@NMN’
1¥s (D O

An SPQR-node v with source s, is of
® type M if the augmented pertinent graph is s,-monotonic
B type B if the augmented pertinent graph is strictly s,,-bitonic
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Finding a v-Bitonic Augmentation ac'l!

Visiting the SPQR-tree of biconnected planar st-graph G rooted at edge (s, t)
in bottom-up fashion find augmentation G* and embedding (if one exists).

30t

@@NMN’
1¥s (D O

An SPQR-node v with source s, is of
® type M if the augmented pertinent graph is s,-monotonic
B type B if the augmented pertinent graph is strictly s,,-bitonic

When processing an SPQR-node 1 our primary goal is to make it type M
and otherwise type B. If both fails, no v-bitonic augmentation of GG exists.

10 Chaplick, Chimani, Cornelsen, Da Lozzo, Néllenburg, Patrignani, Tollis, Wolff - Planar L-Drawings of Directed Graphs



11

Processing SPQR-Nodes

Q-node: trivially type M

ac'lt
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11

Processing SPQR-Nodes ac'l!
@ Q-node: trivially type M

S-node: replace each virtual edge by augmented pertinent graph of
child node with arbitrarily flipped embedding.
Node type is inherited from bottom child.
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Processing SPQR-Nodes

Q-node: trivially type M

@ S-node: replace each virtual edge by augmented pertinent graph of
child node with arbitrarily flipped embedding.

Node type is inherited from bottom child.
,’D} P-node:

® if two or more children are of type B

— successors of s,, have two apices, so regardless of embedding no
s,-bitonic augmentation exists

ac'lt
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Processing SPQR-Nodes ac'l!

Q-node: trivially type M

@ S-node: replace each virtual edge by augmented pertinent graph of
child node with arbitrarily flipped embedding.
Node type is inherited from bottom child.
(D} P-node:
® if two or more children are of type B
— successors of s,, have two apices, so regardless of embedding no
s,-bitonic augmentation exists

® if one child is of type B and one child is Q-node for (s,,t,)
— apex of type-B node # ¢,,, but ¢, must be apex of s,;

again s, has two apices and no s,-bitonic augmentation exists
t, Aty

Sy Sy
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Processing SPQR-Nodes

Q-node: trivially type M

@ S-node: replace each virtual edge by augmented pertinent graph of
child node with arbitrarily flipped embedding.
Node type is inherited from bottom child.

,:D) P-node:

ac'lt

B else embed child of type B or Q-node for (s,,,%,) rightmost
(if any) and connect successors of s, in order of embedding;
node type is M < rightmost child is of type M
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Processing SPQR-Nodes ac'l!

@ Q-node: trivially type M

S-node: replace each virtual edge by augmented pertinent graph of
child node with arbitrarily flipped embedding.

Node type is inherited from bottom child.
,’D} P-node:
\ . .
® if two or more children are of type B
— successors of s,, have two apices, so regardless of embedding no
s,-bitonic augmentation exists

® if one child is of type B and one child is Q-node for (s,,t,)
— apex of type-B node # ¢,,, but ¢, must be apex of s,;
again s, has two apices and no s,-bitonic augmentation exists

B else embed child of type B or Q-node for (s,,,%,) rightmost
(if any) and connect successors of s, in order of embedding;
node type is M < rightmost child is of type M

R-node: more complicated, see paper
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Upward Planar L-Drawings ac!l!

Theorem: |t can be tested in linear time whether a planar st-graph

GG admits an upward-planar L-drawing.
If it does, It can also be constructed in linear time.

Proof: (sketch)

B process SPQR-tree to find v-bitonic augmentation G* and embedding £*
in root node (if any)

B any st-ordering ™ of G* yields bitonic pair (£, 7) of G

® G has bitonic pair & G admits upward-planar L-drawing

B all steps can be implemented in linear time
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Upward Planar L-Drawings ac!l!

Theorem: |t can be tested in linear time whether a planar st-graph

GG admits an upward-planar L-drawing.
If it does, It can also be constructed in linear time.

Proof: (sketch)

B process SPQR-tree to find v-bitonic augmentation G* and embedding £*
in root node (if any)

B any st-ordering ™ of G* yields bitonic pair (£, 7) of G

® G has bitonic pair & G admits upward-planar L-drawing

B all steps can be implemented in linear time

Remark: Same approach can be used to decide existence and construct
upward-rightward-planar L-drawings.
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Summary

SE——.—

planar upward (-rightward) planar

directed
planar graphs

NP-complete

planar st-graphs

characterization
constructive linear time algorithm

directed plane graphs
+ port assignment

linear time
— see paper

directed plane graphs
upward planar graphs

bimodal graphs

13
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