Planar L-Drawings of Directed Graphs

Steven Chaplick, Markus Chimani, Sabine Cornelsen, Giordano Da Lozzo, Martin Nöllenburg, Maurizio Patrignani, Ioannis G. Tollis, Alexander Wolff

Graph Drawing and Network Visualization 2017 · Boston
Drawing Directed Graphs

There is a variety of drawing styles for directed graphs, e.g.

- **Layered layout**
 - [Sugiyama, Tagawa, Toda 1981]

- **Kandinsky style layout**
 - [Fößmeier, Kaufmann 1996]

- **Overloaded orthogonal layout**
 - [Kornaropoulos, Tollis 2011]
Drawing Directed Graphs

There is a variety of drawing styles for directed graphs, e.g.

- Layered layout
 [Sugiyama, Tagawa, Toda 1981]

- Kandinsky style layout
 [Fößmeier, Kaufmann 1996]

- Overloaded orthogonal layout
 [Kornaropoulos, Tollis 2011]

In 2016 Angelini et al. introduced **L-drawings**:

- exclusive x- and y-coordinates per vertex
- outgoing edges attach vertically
- incoming edges attach horizontally
- small arcs indicate L-bends
- crossings and “confluent” overlaps allowed
- exist for any graph
- ink minimization is NP-hard
Drawing Directed Graphs

There is a variety of drawing styles for directed graphs, e.g.

Layered layout
[Sugiyama, Tagawa, Toda 1981]

Kandinsky style layout
[Fößmeier, Kaufmann 1996]

Overloaded orthogonal layout
[Kornaropoulos, Tollis 2011]

In 2016 Angelini et al. introduced **L-drawings**:

- exclusive x- and y-coordinates per vertex
- outgoing edges attach vertically
- incoming edges attach horizontally
- small arcs indicate L-bends
- crossings and “confluent” overlaps allowed
- exist for any graph
- ink minimization is NP-hard
Planar L-Drawings

Definitions:

- **Planar L-drawing** if crossing-free
- **Upward planar L-drawing** if all edges y-increasing
- **Upward-rightward planar L-drawing** if all edges x- and y-increasing
Planar L-Drawings

Definitions:

- **Planar L-drawing** if crossing-free
- **Upward planar L-drawing** if all edges y-increasing
- **Upward-rightward planar L-drawing** if all edges x- and y-increasing

Observation:

Planar L-drawings correspond to planar 1-bend Kandinsky drawings with extra constraints on cyclic edge orders of vertices.
Overview of Results

<table>
<thead>
<tr>
<th>Directed Planar Graphs</th>
<th>Planar st-Graphs</th>
<th>Directed Plane Graphs + Port Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planar</td>
<td>NP-complete</td>
<td>Linear Time</td>
</tr>
<tr>
<td>Upward (-rightward) Planar</td>
<td>Characterization</td>
<td>Construction Linear Time Algorithm</td>
</tr>
</tbody>
</table>

- **Directed Planar Graphs**
 - Planar
 - Upward (-rightward) planar

- **Planar st-Graphs**
 - NP-complete

- **Directed Plane Graphs + Port Assignment**
 - Linear time
Overview of Results

<table>
<thead>
<tr>
<th>Directed Planar Graphs</th>
<th>NP-complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planar st-graphs</td>
<td>Characterization constructive linear time algorithm</td>
</tr>
<tr>
<td>Directed Plane Graphs + Port Assignment</td>
<td>Linear Time</td>
</tr>
</tbody>
</table>
Planar L-Drawings of Directed Graphs

Any planar L-drawing implies 4-modal embedding.

There are planar directed graphs that do not admit planar L-drawings.

6-modal in any embedding
Planar L-Drawings of Directed Graphs

Any planar L-drawing implies 4-modal embedding.

- There are planar directed graphs that do not admit planar L-drawings.

- There are graphs with 4-modal embedding but no planar L-drawing.

- every vertex is 4-modal . . .

- . . . but rightmost vertex in L-drawing can be at most bimodal

octahedron
NP-Completeness

Theorem: Deciding whether a directed graph admits a planar L-drawing is NP-complete.

Proof: (sketch)

- reduction from NP-complete **HV-rectilinear planarity testing**

[Didimo, Liotta, Patrignani 2014]

Given biconnected degree-4 planar graph G with edges labeled H and V, decide if G admits drawing with horizontal H-edges and vertical V-edges.
NP-Completeness

Theorem: Deciding whether a directed graph admits a planar L-drawing is NP-complete.

Proof: (sketch)
- reduction from NP-complete **HV-rectilinear planarity testing** [Didimo, Liotta, Patrignani 2014]

Given biconnected degree-4 planar graph G with edges labeled H and V, decide if G admits drawing with horizontal H-edges and vertical V-edges.

- core gadget: 4-wheel graph has basically two planar L-embeddings
NP-Completeness

Theorem: Deciding whether a directed graph admits a planar L-drawing is NP-complete.

Proof: (sketch)

- reduction from NP-complete *HV-rectilinear planarity testing*

 Given biconnected degree-4 planar graph G with edges labeled H and V, decide if G admits drawing with horizontal H-edges and vertical V-edges.

- core gadget: 4-wheel graph has basically two planar L-embeddings
- in HV-graph G replace vertices by 4-wheel and edges by H-/V-gadgets
NP-Completeness

Theorem: Deciding whether a directed graph admits a planar L-drawing is NP-complete.

Proof: (sketch)
- reduction from NP-complete **HV-rectilinear planarity testing**

[Didimo, Liotta, Patrignani 2014]

Given biconnected degree-4 planar graph G with edges labeled H and V, decide if G admits drawing with horizontal H-edges and vertical V-edges.

- core gadget: 4-wheel graph has basically two planar L-embeddings
- in HV-graph G replace vertices by 4-wheel and edges by H/-V-gadgets

resulting graph G' has planar L-drawing \iff G has HV-drawing
Overview of Results

<table>
<thead>
<tr>
<th>Directed Planar Graphs</th>
<th>Planar st-graphs</th>
<th>Directed Plane Graphs + Port Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planar</td>
<td>NP-complete</td>
<td>Linear Time</td>
</tr>
<tr>
<td>Upward (-rightward) planar</td>
<td></td>
<td>Characterization constructive linear time algorithm</td>
</tr>
</tbody>
</table>
Planar \(st \)-Graphs and Bitonic \(st \)-Orderings

- A **planar \(st \)-graph** \(G \) is a directed acyclic graph with exactly one source \(s \) and one sink \(t \), both embeddable on same face.
Planar st-Graphs and Bitonic st-Orderings

- A **planar st-graph** G is a directed acyclic graph with exactly one source s and one sink t, both embeddable on same face.

- **Planar st-graphs** always admit **straight-line upward planar drawings**

 \[\text{[Di Battista, Tamassia 1988]} \]

- **Have st-ordering** π respecting edge directions
Planar \(st \)-Graphs and Bitonic \(st \)-Orderings

- A **planar \(st \)-graph** \(G \) is a directed acyclic graph with exactly one source \(s \) and one sink \(t \), both embeddable on same face.

- **Planar \(st \)-graphs always admit straight-line upward planar drawings**

- **Have \(st \)-ordering \(\pi \) respecting edge directions**

- **\(st \)-ordering \(\pi \) of plane \(st \)-graph (planar \(st \)-graph + embedding) is bitonic** if successors of each vertex form bitonic sequence

\[[\text{Di Battista, Tamassia 1988}] \]

\[[\text{Gronemann 2014, 2016}] \]
Planar st-Graphs and Bitonic st-Orderings

- A **planar st-graph** G is a directed acyclic graph with exactly one source s and one sink t, both embeddable on same face.

- Planar st-graphs always admit straight-line upward planar drawings [Di Battista, Tamassia 1988]

- Have **st-ordering** π respecting edge directions

- st-ordering π of plane st-graph (planar st-graph + embedding) is **bitonic** if successors of each vertex form bitonic sequence [Gronemann 2014, 2016]

- For a planar st-graph G define a **bitonic pair** (\mathcal{E}, π) as an upward planar embedding \mathcal{E} of G with a bitonic st-ordering π.

![Diagram](image-url)
Characterization

Theorem: A planar st-graph admits an upward-planar L-drawing if and only if it admits a bitonic pair.
Characterization

Theorem: A planar st-graph admits an upward-planar L-drawing if and only if it admits a bitonic pair.

Proof: (sketch)
Characterization

Theorem: A planar \(st \)-graph admits an upward-planar L-drawing if and only if it admits a bitonic pair.

Proof: (sketch)

\[\Rightarrow \]

- y-coordinates induce \(st \)-ordering \(\pi \)
- \(\pi \) is bitonic due to upward L-properties
Characterization

Theorem: A planar \(st\)-graph admits an upward-planar L-drawing if and only if it admits a bitonic pair.

Proof: (sketch)

\[\Rightarrow \]

- y-coordinates induce \(st\)-ordering \(\pi\)
- \(\pi\) is bitonic due to upward L-properties

\[\Leftarrow \]

- use \(\pi\) for y-coordinates
- incrementally construct partial order \(\prec\) as basis for x-coordinates

\[G_{i-1} \]

\[G_i \]

- invariant: outer face of \(G_i\) simple cycle ordered by \(\prec\)
- insert each \(v_i\) btw. last two predecessors
Characterization

Theorem: A planar \(st \)-graph admits an upward-planar L-drawing if and only if it admits a bitonic pair.

Proof: (sketch)

\[\Rightarrow \]

- y-coordinates induce \(st \)-ordering \(\pi \)
- \(\pi \) is bitonic due to upward L-properties

\[\Leftarrow \]

- use \(\pi \) for y-coordinates
- incrementally construct partial order \(\prec \) as basis for x-coordinates

invariant: outer face of \(G_i \) simple cycle ordered by \(\prec \)

special case: just one predecessor \(\rightarrow \) augment graph similar to [Gronemann 2016]
Finding Bitonic Pairs

- **Assumption:** st-graph G is biconnected and has edge (s, t)
- We say G is v-monotonic or (strictly) v-bitonic if for every vertex v, subgraph induced by successors of v (− transitive edges) is a path p
- p is monotonic or (strictly) bitonic

- **Diagram:**
 - v
 - Apex of v and p

- **Inclusion:**
 - Monotonic \subseteq Bitonic
 - Strictly Bitonic \subseteq Bitonic
Finding Bitonic Pairs

- **Assumption:** \(st \)-graph \(G \) is biconnected and has edge \((s, t)\)

- We say \(G \) is \(v \)-monotonic or (strictly) \(v \)-bitonic if for every vertex \(v \)
 - subgraph induced by successors of \(v \) (− transitive edges) is a path \(p \)
 - \(p \) is monotonic or (strictly) bitonic

\[
\text{monotonic} \subset \text{bitonic} \quad \text{strictly bitonic} \subset \text{bitonic}
\]

- **Goal:** augment \(G \) into \(G^* \) by adding edges s.t. \(G^* \) is \(v \)-bitonic
Finding Bitonic Pairs

- **Assumption:** \(st \)-graph \(G \) is biconnected and has edge \((s, t)\)

- We say \(G \) is \(v \)-**monotonic** or (strictly) \(v \)-**bitonic** if for every vertex \(v \)
 - subgraph induced by successors of \(v \) (− transitive edges) is a path \(p \)
 - \(p \) is **monotonic** or (strictly) **bitonic**

- **Goal:** augment \(G \) into \(G^* \) by adding edges s.t. \(G^* \) is \(v \)-bitonic

Theorem:
Plane \(st \)-graph \(G \) admits bitonic \(st \)-ordering iff \(G^* \) is \(v \)-bitonic.
Any \(st \)-ordering of \(G^* \) is bitonic \(st \)-ordering of \(G \).

\(\sim \) [Gronemann 2016]

\(\rightarrow \) The task of finding a bitonic pair of \(G \) reduces to finding an augmentation \(G^* \) of \(G \) that is \(v \)-bitonic.
Finding a ν-Bitonic Augmentation

Visiting the SPQR-tree of biconnected planar st-graph G rooted at edge (s, t) in bottom-up fashion find augmentation G^* and embedding (if one exists).
Finding a \(v \)-Bitonic Augmentation

Visiting the SPQR-tree of biconnected planar \(st \)-graph \(G \) rooted at edge \((s, t) \) in bottom-up fashion find augmentation \(G^* \) and embedding (if one exists).

An SPQR-node \(\mu \) with source \(s_\mu \) is of

- **type M** if the augmented pertinent graph is \(s_\mu \)-monotonic
- **type B** if the augmented pertinent graph is strictly \(s_\mu \)-bitonic
Finding a \(v \)-Bitonic Augmentation

Visiting the SPQR-tree of biconnected planar \(st \)-graph \(G \) rooted at edge \((s, t)\) in bottom-up fashion find augmentation \(G^* \) and embedding (if one exists).

An SPQR-node \(\mu \) with source \(s_\mu \) is of

- **type M** if the augmented pertinent graph is \(s_\mu \)-monotonic
- **type B** if the augmented pertinent graph is strictly \(s_\mu \)-bitonic

When processing an SPQR-node \(\mu \) our primary goal is to make it type M and otherwise type B. If both fails, no \(v \)-bitonic augmentation of \(G \) exists.
Processing SPQR-Nodes

Q-node: trivially type M
Processing SPQR-Nodes

Q-node: trivially type M

S-node: replace each virtual edge by augmented pertinent graph of child node with arbitrarily flipped embedding. Node type is inherited from bottom child.
Processing SPQR-Nodes

Q-node: trivially type M

S-node: replace each virtual edge by augmented pertinent graph of child node with arbitrarily flipped embedding. Node type is inherited from bottom child.

P-node:
- if two or more children are of type B
 → successors of s_μ have two apices, so regardless of embedding no s_μ-bitonic augmentation exists
Processing SPQR-Nodes

Q-node: trivially type M

S-node: replace each virtual edge by augmented pertinent graph of child node with arbitrarily flipped embedding. Node type is inherited from bottom child.

P-node:
- if two or more children are of type B
 \[\rightarrow \text{successors of } s_{\mu} \text{ have two apices, so regardless of embedding no } s_{\mu}\text{-bitonic augmentation exists}\]
- if one child is of type B and one child is Q-node for \((s_{\mu}, t_{\mu})\)
 \[\rightarrow \text{apex of type-B node } \neq t_{\mu}, \text{ but } t_{\mu} \text{ must be apex of } s_{\mu};\]
 again \(s_{\mu}\) has two apices and no \(s_{\mu}\)-bitonic augmentation exists
Processing SPQR-Nodes

Q-node: trivially type M

S-node: replace each virtual edge by augmented pertinent graph of child node with arbitrarily flipped embedding. Node type is inherited from bottom child.

P-node:

- else embed child of type B or Q-node for \((s_\mu, t_\mu)\) rightmost (if any) and connect successors of \(s_\mu\) in order of embedding; node type is M \(\iff\) rightmost child is of type M
Processing SPQR-Nodes

Q-node: trivially type M

S-node: replace each virtual edge by augmented pertinent graph of child node with arbitrarily flipped embedding. Node type is inherited from bottom child.

P-node:
- if two or more children are of type B
 - successors of s_μ have two apices, so regardless of embedding no s_μ-bitonic augmentation exists
- if one child is of type B and one child is Q-node for (s_μ, t_μ)
 - apex of type-B node $\neq t_\mu$, but t_μ must be apex of s_μ; again s_μ has two apices and no s_μ-bitonic augmentation exists
- else embed child of type B or Q-node for (s_μ, t_μ) rightmost (if any) and connect successors of s_μ in order of embedding; node type is M \iff rightmost child is of type M

R-node: more complicated, see paper
Upward Planar L-Drawings

Theorem: It can be tested in linear time whether a planar st-graph G admits an upward-planar L-drawing. If it does, it can also be constructed in linear time.

Proof: (sketch)
- process SPQR-tree to find v-bitonic augmentation G^* and embedding E^* in root node (if any)
- any st-ordering π of G^* yields bitonic pair (E, π) of G
- G has bitonic pair $\iff G$ admits upward-planar L-drawing
- all steps can be implemented in linear time
Upward Planar L-Drawings

Theorem: It can be tested in linear time whether a planar st-graph G admits an upward-planar L-drawing. If it does, it can also be constructed in linear time.

Proof: (sketch)
- process SPQR-tree to find v-bitonic augmentation G^* and embedding E^* in root node (if any)
- any st-ordering π of G^* yields bitonic pair (E, π) of G
- G has bitonic pair $\iff G$ admits upward-planar L-drawing
- all steps can be implemented in linear time

Remark: Same approach can be used to decide existence and construct upward-rightward-planar L-drawings.
Summary

<table>
<thead>
<tr>
<th>Directed planar graphs</th>
<th>NP-complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planar st-graphs</td>
<td>Characterization, constructive linear time algorithm</td>
</tr>
<tr>
<td>Directed plane graphs</td>
<td>Linear time → see paper</td>
</tr>
<tr>
<td>+ Port assignment</td>
<td></td>
</tr>
<tr>
<td>Directed plane graphs</td>
<td></td>
</tr>
<tr>
<td>Upward planar graphs</td>
<td></td>
</tr>
<tr>
<td>Bimodal graphs</td>
<td></td>
</tr>
</tbody>
</table>

Notation:
- st-graphs: Directed planar graphs with a specified source and target.
- NP-complete: A complexity class for problems that can be solved in polynomial time if a proposed solution is given, otherwise the problem is computationally hard.
- Characterization: A formal description or classification of the objects or phenomena studied.
- Constructive linear time algorithm: An algorithm that constructs a solution in linear time relative to the input size.

Diagram:
- Planar: A graph that can be drawn on a plane without any edges crossing.
- Upward (rightward) planar: A planar graph where the edges are directed from left to right.

[Chaplick, Chimani, Cornelsen, Da Lozzo, Nöllenburg, Patrignani, Tollis, Wolff - Planar L-Drawings of Directed Graphs]
<table>
<thead>
<tr>
<th>Summary</th>
<th>planar</th>
<th>upward (-rightward) planar</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed planar graphs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>planar st-graphs</td>
<td>NP-complete</td>
<td></td>
</tr>
<tr>
<td>directed plane graphs + port assignment</td>
<td>linear time</td>
<td>\rightarrow see paper</td>
</tr>
<tr>
<td>directed plane graphs</td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>upward planar graphs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bimodal graphs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>