Planar __Drawings of Directed Graphs

Steven Chaplick, Markus Chimani, Sabine Cornelsen, Giordano Da Lozzo, Martin Nöllenburg, Maurizio Patrignani, Ioannis G. Tollis, Alexander Wolff

Graph Drawing and Network Visualization 2017 · Boston

algorithms and COMPLEXITY GROUP

Drawing Directed Graphs

There is a variety of drawing styles for directed graphs, e.g.

Layered layout [Sugiyama, Tagawa, Toda 1981]

Kandinsky style layout [Fößmeier, Kaufmann 1996]

Drawing Directed Graphs

There is a variety of drawing styles for directed graphs, e.g.

In 2016 Angelini et al. introduced L-drawings:

- exclusive x- and y-coordinates per vertex
- outgoing edges attach vertically
- incoming edges attach horizontally
- small arcs indicate L-bends
- crossings and "confluent" overlaps allowed
- exist for any graph
- ink minimization is NP-hard

 $Chaplick, \ Chimani, \ Cornelsen, \ Da \ Lozzo, \ \underline{N\"ollenburg}, \ Patrignani, \ Tollis, \ Wolff \ \cdot \ Planar \ L-Drawings \ of \ Directed \ Graphs$

Drawing Directed Graphs

There is a variety of drawing styles for directed graphs, e.g.

In 2016 Angelini et al. introduced L-drawings:

- exclusive x- and y-coordinates per vertex
- outgoing edges attach vertically
- incoming edges attach horizontally
- small arcs indicate L-bends
- crossings and "confluent" overlaps allowed
- exist for any graph
- ink minimization is NP-hard

 $Chaplick, \ Chimani, \ Cornelsen, \ Da \ Lozzo, \ \underline{N\"ollenburg}, \ Patrignani, \ Tollis, \ Wolff \ \cdot \ Planar \ L-Drawings \ of \ Directed \ Graphs$

Planar L-Drawings

Definitions:

- Planar L-drawing if crossing-free
- Upward planar L-drawing if all edges y-increasing
- Upward-rightward planar L-drawing if all edges x- and y-increasing

Planar L-Drawings

Definitions:

- Planar L-drawing if crossing-free
- Upward planar L-drawing if all edges y-increasing
- Upward-rightward planar L-drawing if all edges x- and y-increasing

Observation:

Planar L-drawings correspond to planar 1-bend Kandinsky drawings with extra constraints on cyclic edge orders of vertices.

Overview of Res	ults	acılı
	planar	upward (-rightward) planar
directed planar graphs	NP-complete	
planar <i>st</i> -graphs		characterization constructive linear time algorithm
directed plane graphs + port assignment	linear time	
3	Chaplick, Chimani, Cornelsen, Da	Lozzo, <u>Nöllenburg</u> , Patrignani, Tollis, Wolff · Planar L-Drawings of Directed Graphs

Overview of Res	ults	acılı
	planar	upward (-rightward) planar
directed planar graphs	NP-complete	
planar <i>st</i> -graphs		characterization constructive linear time algorithm
directed plane graphs + port assignment	linear time	
3	Chaplick, Chimani, Cornelsen, Da	Lozzo, <u>Nöllenburg</u> , Patrignani, Tollis, Wolff · Planar L-Drawings of Directed Graphs

Planar L-Drawings of Directed Graphs

Any planar L-drawing implies 4-modal embedding.

- acılıı
- There are planar directed graphs that do not admit planar L-drawings.

6-modal in any embedding

Planar L-Drawings of Directed Graphs

Any planar L-drawing implies 4-modal embedding.

There are planar directed graphs that do not admit planar L-drawings.

6-modal in any embedding

There are graphs with 4-modal embedding but no planar L-drawing.

octahedron

every vertex is 4-modal but rightmost vertex in L-drawing can be at most bimodal

Chaplick, Chimani, Cornelsen, Da Lozzo, Nöllenburg, Patrignani, Tollis, Wolff · Planar L-Drawings of Directed Graphs

acili

Theorem: Deciding whether a directed graph admits a planar L-drawing is NP-complete.

Proof: (sketch)

reduction from NP-complete HV-rectilinear planarity testing

[Didimo, Liotta, Patrignani 2014]

Given biconnected degree-4 planar graph G with edges labeled H and V, decide if G admits drawing with horizonal H-edges and vertical V-edges.

Theorem: Deciding whether a directed graph admits a planar L-drawing is NP-complete.

Proof: (sketch)

reduction from NP-complete HV-rectilinear planarity testing

[Didimo, Liotta, Patrignani 2014]

Given biconnected degree-4 planar graph G with edges labeled H and V, decide if G admits drawing with horizonal H-edges and vertical V-edges.

core gadget: 4-wheel graph has basically two planar L-embeddings

Theorem: Deciding whether a directed graph admits a planar L-drawing is NP-complete.

Proof: (sketch)

reduction from NP-complete HV-rectilinear planarity testing

[Didimo, Liotta, Patrignani 2014]

Given biconnected degree-4 planar graph G with edges labeled H and V, decide if G admits drawing with horizonal H-edges and vertical V-edges.

core gadget: 4-wheel graph has basically two planar L-embeddings

In HV-graph G replace vertices by 4-wheel and edges by H-/V-gadgets

Chaplick, Chimani, Cornelsen, Da Lozzo, Nöllenburg, Patrignani, Tollis, Wolff · Planar L-Drawings of Directed Graphs

Theorem: Deciding whether a directed graph admits a planar L-drawing is NP-complete.

Proof: (sketch)

reduction from NP-complete HV-rectilinear planarity testing

[Didimo, Liotta, Patrignani 2014]

Given biconnected degree-4 planar graph G with edges labeled H and V, decide if G admits drawing with horizonal H-edges and vertical V-edges.

core gadget: 4-wheel graph has basically two planar L-embeddings

In HV-graph G replace vertices by 4-wheel and edges by H-/V-gadgets

Overview of Res	ults	acılı
	planar	upward (-rightward) planar
directed planar graphs	NP-complete	
planar <i>st</i> -graphs		characterization constructive linear time algorithm
directed plane graphs + port assignment	linear time	
6	Chaplick, Chimani, Cornelsen, Da	Lozzo, <u>Nöllenburg</u> , Patrignani, Tollis, Wolff · Planar L-Drawings of Directed Graphs

A planar st-graph G is a directed acyclic graph with exactly one source s and one sink t, both embeddable on same face.

A planar st-graph G is a directed acyclic graph with exactly one source s and one sink t, both embeddable on same face.

- planar st-graphs always admit straight-line upward planar drawings [Di Battista, Tamassia 1988]
- have st-ordering π respecting edge directions

A planar st-graph G is a directed acyclic graph with exactly one source s and one sink t, both embeddable on same face.

- planar st-graphs always admit straight-line upward planar drawings [Di Battista, Tamassia 1988]
- **•** have *st*-ordering π respecting edge directions
- st-ordering π of plane st-graph (planar st-graph + embedding) is bitonic if successors of each vertex form bitonic sequence [Gronemann 2014, 2016]

increasing decreasing

A planar st-graph G is a directed acyclic graph with exactly one source s and one sink t, both embeddable on same face.

- planar st-graphs always admit straight-line upward planar drawings [Di Battista, Tamassia 1988]
- **a** have *st*-ordering π respecting edge directions
- st-ordering π of plane st-graph (planar st-graph + embedding) is **bitonic** if successors of each vertex form bitonic sequence [Gronemann 2014, 2016]

For a planar *st*-graph *G* define a **bitonic pair** (\mathcal{E}, π) as an upward planar embedding \mathcal{E} of *G* with a bitonic *st*-ordering π .

Theorem: A planar *st*-graph admits an upward-planar L-drawing if and only if it admits a bitonic pair.

Theorem: A planar *st*-graph admits an upward-planar L-drawing if and only if it admits a bitonic pair.

Proof: (sketch)

 \Rightarrow

Theorem: A planar *st*-graph admits an upward-planar L-drawing if and only if it admits a bitonic pair.

Proof: (sketch)

y-coordinates induce st-ordering π
 π is bitonic due to upward L-properties

Theorem: A planar *st*-graph admits an upward-planar L-drawing if and only if it admits a bitonic pair.

Proof: (sketch)

y-coordinates induce st-ordering π
 π is bitonic due to upward L-properties

 \models **use** π for y-coordinates

incrementally construct partial order \prec as basis for x-coordinates

invariant: outer face of G_i simple cycle ordered by ≺
insert each v_i btw. last two predecessors

 G_{i-1}

Theorem: A planar *st*-graph admits an upward-planar L-drawing if and only if it admits a bitonic pair.

Proof: (sketch)

simple cycle ordered by ≺
insert each v_i btw. last two predecessors

special case: just one predecessor ightarrow augment graph similar to [Gronemann 2016]

 \tilde{u}_1

Chaplick, Chimani, Cornelsen, Da Lozzo, Nöllenburg, Patrignani, Tollis, Wolff · Planar L-Drawings of Directed Graphs

Finding Bitonic Pairs

- **Assumption:** st-graph G is biconnected and has edge (s, t)
- We say G is v-monotonic or (strictly) v-bitonic if for every vertex v
 - \blacksquare subgraph induced by successors of v (- transitive edges) is a path p
 - *p* is monotonic or (strictly) bitonic

monotonic \subset bitonic

strictly bitonic \subset bitonic

Finding Bitonic Pairs

- **Assumption:** st-graph G is biconnected and has edge (s, t)
- We say G is v-monotonic or (strictly) v-bitonic if for every vertex v
 - \blacksquare subgraph induced by successors of v (- transitive edges) is a path p
 - *p* is monotonic or (strictly) bitonic

monotonic \subset bitonic

strictly bitonic \subset bitonic

Goal: augment G into G^* by adding edges s.t. G^* is v-bitonic

Finding Bitonic Pairs

- **Assumption:** st-graph G is biconnected and has edge (s, t)
- We say G is v-monotonic or (strictly) v-bitonic if for every vertex v
 - \blacksquare subgraph induced by successors of v (- transitive edges) is a path p
 - *p* is monotonic or (strictly) bitonic

monotonic \subset bitonic

strictly bitonic \subset bitonic

Goal: augment G into G^* by adding edges s.t. G^* is v-bitonic

Theorem: Plane *st*-graph *G* admits bitonic *st*-ordering iff G^* is *v*-bitonic. Any *st*-ordering of G^* is bitonic *st*-ordering of *G*. ~ [Gronemann 2016]

> \rightarrow The task of finding a bitonic pair of G reduces to finding an augmentation G^* of G that is v-bitonic.

Finding a v-Bitonic Augmentation

acili

Visiting the SPQR-tree of biconnected planar st-graph G rooted at edge (s, t) in bottom-up fashion find augmentation G^* and embedding (if one exists).

Finding a v-Bitonic Augmentation

acılı

Visiting the SPQR-tree of biconnected planar st-graph G rooted at edge (s, t) in bottom-up fashion find augmentation G^* and embedding (if one exists).

An SPQR-node μ with source s_{μ} is of

- **Type M** if the augmented pertinent graph is s_{μ} -monotonic
- **Type B** if the augmented pertinent graph is strictly s_{μ} -bitonic

Finding a v-Bitonic Augmentation

acilii

Visiting the SPQR-tree of biconnected planar st-graph G rooted at edge (s, t) in bottom-up fashion find augmentation G^* and embedding (if one exists).

An SPQR-node μ with source s_{μ} is of

- **type M** if the augmented pertinent graph is s_{μ} -monotonic
- **Type B** if the augmented pertinent graph is strictly s_{μ} -bitonic

When processing an SPQR-node μ our primary goal is to make it type M and otherwise type B. If both fails, no v-bitonic augmentation of G exists.

Q-node: trivially type M

Q-node: trivially type M

S-node: replace each virtual edge by augmented pertinent graph of child node with arbitrarily flipped embedding. Node type is inherited from bottom child.

Q-node: trivially type M

S-node: replace each virtual edge by augmented pertinent graph of child node with arbitrarily flipped embedding. Node type is inherited from bottom child.

P-node:

- if two or more children are of type B
 - \rightarrow successors of s_{μ} have two apices, so regardless of embedding no
 - s_{μ} -bitonic augmentation exists

Q-node: trivially type M

S-node: replace each virtual edge by augmented pertinent graph of child node with arbitrarily flipped embedding. Node type is inherited from bottom child.

P-node:

- if two or more children are of type B
 - \rightarrow successors of s_{μ} have two apices, so regardless of embedding no $s_{\mu}\text{-bitonic}$ augmentation exists
- If one child is of type B and one child is Q-node for (s_{μ}, t_{μ}) \rightarrow apex of type-B node $\neq t_{\mu}$, but t_{μ} must be apex of s_{μ} ; again s_{μ} has two apices and no s_{μ} -bitonic augmentation exists

Q-node: trivially type M

S-node: replace each virtual edge by augmented pertinent graph of child node with arbitrarily flipped embedding. Node type is inherited from bottom child.

P-node:

else embed child of type B or Q-node for (s_{μ}, t_{μ}) rightmost (if any) and connect successors of s_{μ} in order of embedding; node type is M \Leftrightarrow rightmost child is of type M

Q-node: trivially type M

S-node: replace each virtual edge by augmented pertinent graph of child node with arbitrarily flipped embedding. Node type is inherited from bottom child.

P-node:

- if two or more children are of type B
 - \rightarrow successors of s_{μ} have two apices, so regardless of embedding no $s_{\mu}\text{-bitonic}$ augmentation exists
- If one child is of type B and one child is Q-node for (s_{μ}, t_{μ}) \rightarrow apex of type-B node $\neq t_{\mu}$, but t_{μ} must be apex of s_{μ} ; again s_{μ} has two apices and no s_{μ} -bitonic augmentation exists
- else embed child of type B or Q-node for (s_{μ}, t_{μ}) rightmost (if any) and connect successors of s_{μ} in order of embedding; node type is M \Leftrightarrow rightmost child is of type M

R-node: more complicated, see paper

Theorem: It can be tested in linear time whether a planar *st*-graph *G* admits an upward-planar L-drawing. If it does, it can also be constructed in linear time.

Proof: (sketch)

- process SPQR-tree to find v-bitonic augmentation G* and embedding E* in root node (if any)
- any *st*-ordering π of G^* yields bitonic pair (\mathcal{E}, π) of G
- \blacksquare G has bitonic pair \Leftrightarrow G admits upward-planar L-drawing
- all steps can be implemented in linear time

Theorem: It can be tested in linear time whether a planar *st*-graph *G* admits an upward-planar L-drawing. If it does, it can also be constructed in linear time.

Proof: (sketch)

- process SPQR-tree to find v-bitonic augmentation G* and embedding E* in root node (if any)
- any st-ordering π of G^* yields bitonic pair (\mathcal{E},π) of G
- \blacksquare G has bitonic pair \Leftrightarrow G admits upward-planar L-drawing
- all steps can be implemented in linear time

Remark: Same approach can be used to decide existence and construct upward-rightward-planar L-drawings.

Summary	planar	upward (-rightward) planar
directed planar graphs	NP-complete	
planar <i>st</i> -graphs		characterization constructive linear time algorithm
directed plane graphs + port assignment	$\begin{array}{c} \text{linear time} \\ \rightarrow \text{ see paper} \end{array}$	
directed plane graphs upward planar graphs bimodal graphs		

Summary	planar	upward (-rightward) planar
directed planar graphs	NP-complete	
planar <i>st</i> -graphs		characterization constructive linear time algorithm
directed plane graphs + port assignment	linear time \rightarrow see paper	
directed plane graphs upward planar graphs bimodal graphs	?	