Bounding and computing obstacle numbers of graphs

Martin Balko, Steven Chaplick, Robert Ganian, Siddharth Gupta, Michael Hoffmann, Pavel Valtr, and Alexander Wolff

Charles University in Prague, Czech Republic

Obstacle numbers

Obstacle numbers

- In a drawing of a graph, vertices are points in \mathbb{R}^{2} and edges are line segments.

Obstacle numbers

- In a drawing of a graph, vertices are points in \mathbb{R}^{2} and edges are line segments.

Obstacle numbers

- In a drawing of a graph, vertices are points in \mathbb{R}^{2} and edges are line segments.

- An obstacle is a simple polygon in the plane.

Obstacle numbers

- In a drawing of a graph, vertices are points in \mathbb{R}^{2} and edges are line segments.

- An obstacle is a simple polygon in the plane.

Obstacle numbers

- In a drawing of a graph, vertices are points in \mathbb{R}^{2} and edges are line segments.

- An obstacle is a simple polygon in the plane.
- The obstacle representation of a graph G is a drawing of G with obstacles where two vertices are connected by an edge iff the corresponding line segment avoids all the obstacles.

Obstacle numbers

- In a drawing of a graph, vertices are points in \mathbb{R}^{2} and edges are line segments.

- An obstacle is a simple polygon in the plane.
- The obstacle representation of a graph G is a drawing of G with obstacles where two vertices are connected by an edge iff the corresponding line segment avoids all the obstacles.
- The obstacle number obs (G) of a graph G is the minimum number of obstacles in an obstacle representation of G.

Obstacle numbers

- In a drawing of a graph, vertices are points in \mathbb{R}^{2} and edges are line segments.

- An obstacle is a simple polygon in the plane.
- The obstacle representation of a graph G is a drawing of G with obstacles where two vertices are connected by an edge iff the corresponding line segment avoids all the obstacles.
- The obstacle number obs (G) of a graph G is the minimum number of obstacles in an obstacle representation of G.

Obstacle numbers

- In a drawing of a graph, vertices are points in \mathbb{R}^{2} and edges are line segments.

- An obstacle is a simple polygon in the plane.
- The obstacle representation of a graph G is a drawing of G with obstacles where two vertices are connected by an edge iff the corresponding line segment avoids all the obstacles.
- The obstacle number obs (G) of a graph G is the minimum number of obstacles in an obstacle representation of G.
- Similarly, the convex obstacle number $\operatorname{obs}_{c}(G)$ of a graph G is the minimum number of convex obstacles in an obstacle representation of G.

Examples

Examples

	0	0	0	
0				0
0				0
0				0

Examples

Examples

Examples

Examples

Examples

Examples

$\operatorname{obs}\left(E_{n}\right)=1$

$\operatorname{obs}(T)=1$

$\operatorname{obs}\left(P_{m} \times P_{n}\right)=1$ (Fabrizio Frati)

Previous results

Previous results

- Let obs (n) be the $\max _{G}$ obs (G) over all n-vertex graphs G.

Previous results

- Let obs (n) be the $\max _{G}$ obs (G) over all n-vertex graphs G.
- Similarly, let obs $(n)=\max _{G}$ obs $_{c}(G)$ and note that obs $(n) \leq \operatorname{obs}_{c}(n)$.

Previous results

- Let obs (n) be the $\max _{G}$ obs (G) over all n-vertex graphs G.
- Similarly, let obs $(n)=\max _{G}$ obs $_{c}(G)$ and note that obs $(n) \leq \operatorname{obs}_{c}(n)$.
- Is obs $(n) \leq O(n)$? (Alpert, Koch, Laison, 2010)

Previous results

- Let obs (n) be the $\max _{G}$ obs (G) over all n-vertex graphs G.
- Similarly, let obs $(n)=\max _{G}$ obs $_{c}(G)$ and note that obs $(n) \leq \operatorname{obs}_{c}(n)$.
- Is obs $(n) \leq O(n)$? (Alpert, Koch, Laison, 2010)
- Lower bounds:
- obs $(n) \geq \Omega\left(n / \log ^{2} n\right)$ (Mukkamala, Pach, Sarıöz, 2010).
- obs $(n) \geq \Omega(n / \log n)$ (Mukkamala, Pach, Pálvölgyi, 2011).
- obs $(n) \geq \Omega\left(n /(\log \log n)^{2}\right)$ (Dujmović, Morin, 2013).

Previous results

- Let obs (n) be the $\max _{G}$ obs (G) over all n-vertex graphs G.
- Similarly, let obs ${ }_{c}(n)=\max _{G}$ obs $_{c}(G)$ and note that obs $(n) \leq \operatorname{obs}_{c}(n)$.
- Is obs $(n) \leq O(n)$? (Alpert, Koch, Laison, 2010)
- Lower bounds:
- obs $(n) \geq \Omega\left(n / \log ^{2} n\right)$ (Mukkamala, Pach, Sarıöz, 2010).
- obs $(n) \geq \Omega(n / \log n)$ (Mukkamala, Pach, Pálvölgyi, 2011).
- obs $(n) \geq \Omega\left(n /(\log \log n)^{2}\right)$ (Dujmović, Morin, 2013).
- There is the trivial upper bound obs $(n) \leq\binom{ n}{2}$.

Previous results

- Let obs (n) be the $\max _{G}$ obs (G) over all n-vertex graphs G.
- Similarly, let obs ${ }_{c}(n)=\max _{G} \operatorname{obs}_{c}(G)$ and note that obs $(n) \leq \operatorname{obs}_{c}(n)$.
- Is obs $(n) \leq O(n)$? (Alpert, Koch, Laison, 2010)
- Lower bounds:
- obs $(n) \geq \Omega\left(n / \log ^{2} n\right)$ (Mukkamala, Pach, Sarıöz, 2010).
- obs $(n) \geq \Omega(n / \log n)$ (Mukkamala, Pach, Pálvölgyi, 2011).
- obs $(n) \geq \Omega\left(n /(\log \log n)^{2}\right)$ (Dujmović, Morin, 2013).
- There is the trivial upper bound obs $(n) \leq\binom{ n}{2}$.

Upper bounds

Upper bounds

- For every positive integer n, we have obs $(n) \leq n\lceil\log n\rceil-n+1$ (Balko, Cibulka, Valtr, 2015).

Upper bounds

- For every positive integer n, we have obs $(n) \leq n\lceil\log n\rceil-n+1$ (Balko, Cibulka, Valtr, 2015).
- We can answer the question of Alpert et al. provided $\chi(G)$ is bounded.

Upper bounds

- For every positive integer n, we have obs $(n) \leq n\lceil\log n\rceil-n+1$ (Balko, Cibulka, Valtr, 2015).
- We can answer the question of Alpert et al. provided $\chi(G)$ is bounded.
- For every positive integer n and every n-vertex graph G, we have obs $(G) \leq n(\lceil\log \chi(G)\rceil+1)$ (Balko, Cibulka, Valtr, 2015).

Upper bounds

- For every positive integer n, we have obs $(n) \leq n\lceil\log n\rceil-n+1$ (Balko, Cibulka, Valtr, 2015).
- We can answer the question of Alpert et al. provided $\chi(G)$ is bounded.
- For every positive integer n and every n-vertex graph G, we have obs $(G) \leq n(\lceil\log \chi(G)\rceil+1)$ (Balko, Cibulka, Valtr, 2015).

Upper bounds

- For every positive integer n, we have obs $(n) \leq n\lceil\log n\rceil-n+1$ (Balko, Cibulka, Valtr, 2015).
- We can answer the question of Alpert et al. provided $\chi(G)$ is bounded.
- For every positive integer n and every n-vertex graph G, we have obs $(G) \leq n(\lceil\log \chi(G)\rceil+1)$ (Balko, Cibulka, Valtr, 2015).

- The bounds apply even if the obstacles are required to be convex.

Our results I

Our results I

- I will focus on the "bounding" part.

Our results I

- I will focus on the "bounding" part.
- First, we improve the best known lower bound obs $(n) \geq \Omega\left(n /(\log \log n)^{2}\right)$ by Dujmović, Morin.

Our results I

- I will focus on the "bounding" part.
- First, we improve the best known lower bound obs $(n) \geq \Omega\left(n /(\log \log n)^{2}\right)$ by Dujmović, Morin.

Theorem 1

We have obs $(n) \in \Omega(n / \log \log n)$.

Our results I

- I will focus on the "bounding" part.
- First, we improve the best known lower bound obs $(n) \geq \Omega\left(n /(\log \log n)^{2}\right)$ by Dujmović, Morin.

Theorem 1

We have obs $(n) \in \Omega(n / \log \log n)$.

- For convex obstacles, we can prove linear lower bound!

Our results I

- I will focus on the "bounding" part.
- First, we improve the best known lower bound obs $(n) \geq \Omega\left(n /(\log \log n)^{2}\right)$ by Dujmović, Morin.

Theorem 1
 We have obs $(n) \in \Omega(n / \log \log n)$.

- For convex obstacles, we can prove linear lower bound!

Theorem 2

We have obs ${ }_{c}(n) \in \Omega(n)$.

Our results I

- I will focus on the "bounding" part.
- First, we improve the best known lower bound obs $(n) \geq \Omega\left(n /(\log \log n)^{2}\right)$ by Dujmović, Morin.

Theorem 1
 We have obs $(n) \in \Omega(n / \log \log n)$.

- For convex obstacles, we can prove linear lower bound!

Theorem 2

We have obs ${ }_{c}(n) \in \Omega(n)$.

- This is believed to be asymptotically tight.

Our results I

- I will focus on the "bounding" part.
- First, we improve the best known lower bound obs $(n) \geq \Omega\left(n /(\log \log n)^{2}\right)$ by Dujmović, Morin.

Theorem 1
 We have obs $(n) \in \Omega(n / \log \log n)$.

- For convex obstacles, we can prove linear lower bound!

Theorem 2

We have obs ${ }_{c}(n) \in \Omega(n)$.

- This is believed to be asymptotically tight.
- The proofs are not constructive and follow from a counting argument.

Our results II

Our results II

- For $h, n \in \mathbb{N}$, let $f(h, n)$ be the number of graphs on n vertices that have obstacle number at most h.

Our results II

- For $h, n \in \mathbb{N}$, let $f(h, n)$ be the number of graphs on n vertices that have obstacle number at most h.
- Similarly, let $f_{c}(h, n)$ be the number of graphs on n vertices that have convex obstacle number at most h.

Our results II

- For $h, n \in \mathbb{N}$, let $f(h, n)$ be the number of graphs on n vertices that have obstacle number at most h.
- Similarly, let $f_{c}(h, n)$ be the number of graphs on n vertices that have convex obstacle number at most h.
- Our lower bounds on obs(n) and obs $_{c}(n)$ follow from upper bounds on $f(h, n)$ and $f_{c}(h, n)$, respectively.

Our results II

- For $h, n \in \mathbb{N}$, let $f(h, n)$ be the number of graphs on n vertices that have obstacle number at most h.
- Similarly, let $f_{c}(h, n)$ be the number of graphs on n vertices that have convex obstacle number at most h.
- Our lower bounds on obs(n) and obs $_{c}(n)$ follow from upper bounds on $f(h, n)$ and $f_{c}(h, n)$, respectively.

Theorem 3

For all positive integers h and n, we have $f(h, n) \in 2^{O(h n \log n)}$.

Our results II

- For $h, n \in \mathbb{N}$, let $f(h, n)$ be the number of graphs on n vertices that have obstacle number at most h.
- Similarly, let $f_{c}(h, n)$ be the number of graphs on n vertices that have convex obstacle number at most h.
- Our lower bounds on obs(n) and obs $_{c}(n)$ follow from upper bounds on $f(h, n)$ and $f_{c}(h, n)$, respectively.

Theorem 3

For all positive integers h and n, we have $f(h, n) \in 2^{O(h n \log n)}$.

- This improves the bound $f(h, n) \in 2^{O\left(h n \log ^{2} n\right)}$ by Mukkamala, Pach, and Pálvölgyi and solves a conjecture of Dujmović and Morin.

Our results II

- For $h, n \in \mathbb{N}$, let $f(h, n)$ be the number of graphs on n vertices that have obstacle number at most h.
- Similarly, let $f_{c}(h, n)$ be the number of graphs on n vertices that have convex obstacle number at most h.
- Our lower bounds on obs(n) and obs $_{c}(n)$ follow from upper bounds on $f(h, n)$ and $f_{c}(h, n)$, respectively.

Theorem 3

For all positive integers h and n, we have $f(h, n) \in 2^{O(h n \log n)}$.

- This improves the bound $f(h, n) \in 2^{O\left(h n \log ^{2} n\right)}$ by Mukkamala, Pach, and Pálvölgyi and solves a conjecture of Dujmović and Morin.

Theorem 4

For all positive integers h and n, we have $f_{c}(h, n) \in 2^{O(n(h+\log n))}$.

Our results II

- For $h, n \in \mathbb{N}$, let $f(h, n)$ be the number of graphs on n vertices that have obstacle number at most h.
- Similarly, let $f_{c}(h, n)$ be the number of graphs on n vertices that have convex obstacle number at most h.
- Our lower bounds on obs(n) and obs $_{c}(n)$ follow from upper bounds on $f(h, n)$ and $f_{c}(h, n)$, respectively.

Theorem 3

For all positive integers h and n, we have $f(h, n) \in 2^{O(h n \log n)}$.

- This improves the bound $f(h, n) \in 2^{O\left(h n \log ^{2} n\right)}$ by Mukkamala, Pach, and Pálvölgyi and solves a conjecture of Dujmović and Morin.

Theorem 4

For all positive integers h and n, we have $f_{c}(h, n) \in 2^{O(n(h+\log n))}$.

- This is asymptotically tight for $h<n$ as Balko, Cibulka, and Valtr showed $f_{c}(h, n) \in 2^{\Omega(h n)}$ for $0<h<n$ and $f_{c}(1, n) \in 2^{\Omega(n \log n)}$.

Our results III

Our results III

- We also prove some algorithmic results.

Our results III

- We also prove some algorithmic results.

Theorem 5

Given a graph G and an integer h, the problem of recognizing whether G admits an obstacle representation with h obstacles is fixed-parameter tractable parameterized by the vertex cover number of G.

Our results III

- We also prove some algorithmic results.

Theorem 5

Given a graph G and an integer h, the problem of recognizing whether G admits an obstacle representation with h obstacles is fixed-parameter tractable parameterized by the vertex cover number of G.

Theorem 6

Given a graph G and a simple polygon P, it is NP-hard to decide whether G admits an obstacle representation using P as obstacle.

Our results III

- We also prove some algorithmic results.

Theorem 5

Given a graph G and an integer h, the problem of recognizing whether G admits an obstacle representation with h obstacles is fixed-parameter tractable parameterized by the vertex cover number of G.

Theorem 6

Given a graph G and a simple polygon P, it is NP-hard to decide whether G admits an obstacle representation using P as obstacle.

- The complexity of deciding whether a given graph has obstacle number 1 is still open.

Sketch of the proof of Theorem 4

Sketch of the proof of Theorem 4

- We prove $f_{c}(h, n) \in 2^{O(n(h+\log n))}$ by compactly encoding the obstacle representation of every n-vertex graph with at most h convex obstacles.

Sketch of the proof of Theorem 4

- We prove $f_{c}(h, n) \in 2^{O(n(h+\log n))}$ by compactly encoding the obstacle representation of every n-vertex graph with at most h convex obstacles.
- First, we encode the relative positions of the vertices by order type (that is, orientations of triples of points).

Sketch of the proof of Theorem 4

- We prove $f_{c}(h, n) \in 2^{O(n(h+\log n))}$ by compactly encoding the obstacle representation of every n-vertex graph with at most h convex obstacles.
- First, we encode the relative positions of the vertices by order type (that is, orientations of triples of points). Goodman and Pollack proved that there are at most $2^{O(n \log n)}$ order types of n points.

Sketch of the proof of Theorem 4

- We prove $f_{c}(h, n) \in 2^{O(n(h+\log n))}$ by compactly encoding the obstacle representation of every n-vertex graph with at most h convex obstacles.
- First, we encode the relative positions of the vertices by order type (that is, orientations of triples of points). Goodman and Pollack proved that there are at most $2^{O(n \log n)}$ order types of n points.
- It remains to encode the obstacles with $O(h n)$ bits.

Sketch of the proof of Theorem 4

- We prove $f_{c}(h, n) \in 2^{O(n(h+\log n))}$ by compactly encoding the obstacle representation of every n-vertex graph with at most h convex obstacles.
- First, we encode the relative positions of the vertices by order type (that is, orientations of triples of points). Goodman and Pollack proved that there are at most $2^{O(n \log n)}$ order types of n points.
- It remains to encode the obstacles with $O(h n)$ bits.
- For vertex v and obstacle O, the blocking interval $I_{O}(v)$ is the subsequence of rays in the radial order around v that start at v and intersect O.

Sketch of the proof of Theorem 4

- We prove $f_{c}(h, n) \in 2^{O(n(h+\log n))}$ by compactly encoding the obstacle representation of every n-vertex graph with at most h convex obstacles.
- First, we encode the relative positions of the vertices by order type (that is, orientations of triples of points). Goodman and Pollack proved that there are at most $2^{O(n \log n)}$ order types of n points.
- It remains to encode the obstacles with $O(h n)$ bits.
- For vertex v and obstacle O, the blocking interval $I_{O}(v)$ is the subsequence of rays in the radial order around v that start at v and intersect O.

Sketch of the proof of Theorem 4

- We prove $f_{c}(h, n) \in 2^{O(n(h+\log n))}$ by compactly encoding the obstacle representation of every n-vertex graph with at most h convex obstacles.
- First, we encode the relative positions of the vertices by order type (that is, orientations of triples of points). Goodman and Pollack proved that there are at most $2^{O(n \log n)}$ order types of n points.
- It remains to encode the obstacles with $O(h n)$ bits.
- For vertex v and obstacle O, the blocking interval $I_{O}(v)$ is the subsequence of rays in the radial order around v that start at v and intersect O.

- Since O is convex, a pair $\{u, v\}$ is a non-edge of G if ad only if $u \in I_{O}(v)$ and $v \in I_{O}(u)$ for some obstacle O.

Sketch of the proof of Theorem 4

- We prove $f_{c}(h, n) \in 2^{O(n(h+\log n))}$ by compactly encoding the obstacle representation of every n-vertex graph with at most h convex obstacles.
- First, we encode the relative positions of the vertices by order type (that is, orientations of triples of points). Goodman and Pollack proved that there are at most $2^{O(n \log n)}$ order types of n points.
- It remains to encode the obstacles with $O(h n)$ bits.
- For vertex v and obstacle O, the blocking interval $I_{O}(v)$ is the subsequence of rays in the radial order around v that start at v and intersect O.

- Since O is convex, a pair $\{u, v\}$ is a non-edge of G if ad only if $u \in I_{O}(v)$ and $v \in I_{O}(u)$ for some obstacle O.

Sketch of the proof of Theorem 4

Sketch of the proof of Theorem 4

- Thus, it suffices to encode the endpoints of blocking intervals.

Sketch of the proof of Theorem 4

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p=\left(p_{x}, p_{y}\right)$ to the line $p^{*}=\left\{(x, y) \in \mathbb{R}^{2}: y=p_{x} x-p_{y}\right\}$, and a non-vertical line $\ell=\left\{(x, y) \in \mathbb{R}^{2}: y=m x+b\right\}$ to the point $\ell^{*}=(m,-b)$.

Sketch of the proof of Theorem 4

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p=\left(p_{x}, p_{y}\right)$ to the line $p^{*}=\left\{(x, y) \in \mathbb{R}^{2}: y=p_{x} x-p_{y}\right\}$, and a non-vertical line $\ell=\left\{(x, y) \in \mathbb{R}^{2}: y=m x+b\right\}$ to the point $\ell^{*}=(m,-b)$.

Sketch of the proof of Theorem 4

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p=\left(p_{x}, p_{y}\right)$ to the line $p^{*}=\left\{(x, y) \in \mathbb{R}^{2}: y=p_{x} x-p_{y}\right\}$, and a non-vertical line $\ell=\left\{(x, y) \in \mathbb{R}^{2}: y=m x+b\right\}$ to the point $\ell^{*}=(m,-b)$.

- For an obstacle O, consider traversing around the upper envelope of O with a tangent lines. This can be used to encode blocking intervals $I_{O}(v)$ for any vertex v above O.

Sketch of the proof of Theorem 4

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p=\left(p_{x}, p_{y}\right)$ to the line $p^{*}=\left\{(x, y) \in \mathbb{R}^{2}: y=p_{x} x-p_{y}\right\}$, and a non-vertical line $\ell=\left\{(x, y) \in \mathbb{R}^{2}: y=m x+b\right\}$ to the point $\ell^{*}=(m,-b)$.

- For an obstacle O, consider traversing around the upper envelope of O with a tangent lines. This can be used to encode blocking intervals $I_{O}(v)$ for any vertex v above O.

Sketch of the proof of Theorem 4

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p=\left(p_{x}, p_{y}\right)$ to the line $p^{*}=\left\{(x, y) \in \mathbb{R}^{2}: y=p_{x} x-p_{y}\right\}$, and a non-vertical line $\ell=\left\{(x, y) \in \mathbb{R}^{2}: y=m x+b\right\}$ to the point $\ell^{*}=(m,-b)$.

- For an obstacle O, consider traversing around the upper envelope of O with a tangent lines. This can be used to encode blocking intervals $I_{O}(v)$ for any vertex v above O.

Sketch of the proof of Theorem 4

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p=\left(p_{x}, p_{y}\right)$ to the line $p^{*}=\left\{(x, y) \in \mathbb{R}^{2}: y=p_{x} x-p_{y}\right\}$, and a non-vertical line $\ell=\left\{(x, y) \in \mathbb{R}^{2}: y=m x+b\right\}$ to the point $\ell^{*}=(m,-b)$.

- For an obstacle O, consider traversing around the upper envelope of O with a tangent lines. This can be used to encode blocking intervals $I_{O}(v)$ for any vertex v above O.

Sketch of the proof of Theorem 4

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p=\left(p_{x}, p_{y}\right)$ to the line $p^{*}=\left\{(x, y) \in \mathbb{R}^{2}: y=p_{x} x-p_{y}\right\}$, and a non-vertical line $\ell=\left\{(x, y) \in \mathbb{R}^{2}: y=m x+b\right\}$ to the point $\ell^{*}=(m,-b)$.

- For an obstacle O, consider traversing around the upper envelope of O with a tangent lines. This can be used to encode blocking intervals $I_{O}(v)$ for any vertex v above O.

Sketch of the proof of Theorem 4

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p=\left(p_{x}, p_{y}\right)$ to the line $p^{*}=\left\{(x, y) \in \mathbb{R}^{2}: y=p_{x} x-p_{y}\right\}$, and a non-vertical line $\ell=\left\{(x, y) \in \mathbb{R}^{2}: y=m x+b\right\}$ to the point $\ell^{*}=(m,-b)$.

- For an obstacle O, consider traversing around the upper envelope of O with a tangent lines. This can be used to encode blocking intervals $I_{O}(v)$ for any vertex v above O.

Sketch of the proof of Theorem 4

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p=\left(p_{x}, p_{y}\right)$ to the line $p^{*}=\left\{(x, y) \in \mathbb{R}^{2}: y=p_{x} x-p_{y}\right\}$, and a non-vertical line $\ell=\left\{(x, y) \in \mathbb{R}^{2}: y=m x+b\right\}$ to the point $\ell^{*}=(m,-b)$.

- For an obstacle O, consider traversing around the upper envelope of O with a tangent lines. This can be used to encode blocking intervals $I_{O}(v)$ for any vertex v above O.

Sketch of the proof of Theorem 4

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p=\left(p_{x}, p_{y}\right)$ to the line $p^{*}=\left\{(x, y) \in \mathbb{R}^{2}: y=p_{x} x-p_{y}\right\}$, and a non-vertical line $\ell=\left\{(x, y) \in \mathbb{R}^{2}: y=m x+b\right\}$ to the point $\ell^{*}=(m,-b)$.

- For an obstacle O, consider traversing around the upper envelope of O with a tangent lines. This can be used to encode blocking intervals $I_{O}(v)$ for any vertex v above O.

Sketch of the proof of Theorem 4

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p=\left(p_{x}, p_{y}\right)$ to the line $p^{*}=\left\{(x, y) \in \mathbb{R}^{2}: y=p_{x} x-p_{y}\right\}$, and a non-vertical line $\ell=\left\{(x, y) \in \mathbb{R}^{2}: y=m x+b\right\}$ to the point $\ell^{*}=(m,-b)$.

- For an obstacle O, consider traversing around the upper envelope of O with a tangent lines. This can be used to encode blocking intervals $I_{O}(v)$ for any vertex v above O.

Sketch of the proof of Theorem 4

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p=\left(p_{x}, p_{y}\right)$ to the line $p^{*}=\left\{(x, y) \in \mathbb{R}^{2}: y=p_{x} x-p_{y}\right\}$, and a non-vertical line $\ell=\left\{(x, y) \in \mathbb{R}^{2}: y=m x+b\right\}$ to the point $\ell^{*}=(m,-b)$.

- For an obstacle O, consider traversing around the upper envelope of O with a tangent lines. This can be used to encode blocking intervals $I_{O}(v)$ for any vertex v above O.

Sketch of the proof of Theorem 4

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p=\left(p_{x}, p_{y}\right)$ to the line $p^{*}=\left\{(x, y) \in \mathbb{R}^{2}: y=p_{x} x-p_{y}\right\}$, and a non-vertical line $\ell=\left\{(x, y) \in \mathbb{R}^{2}: y=m x+b\right\}$ to the point $\ell^{*}=(m,-b)$.

- For an obstacle O, consider traversing around the upper envelope of O with a tangent lines. This can be used to encode blocking intervals $I_{O}(v)$ for any vertex v above O.

Sketch of the proof of Theorem 4

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p=\left(p_{x}, p_{y}\right)$ to the line $p^{*}=\left\{(x, y) \in \mathbb{R}^{2}: y=p_{x} x-p_{y}\right\}$, and a non-vertical line $\ell=\left\{(x, y) \in \mathbb{R}^{2}: y=m x+b\right\}$ to the point $\ell^{*}=(m,-b)$.

- For an obstacle O, consider traversing around the upper envelope of O with a tangent lines. This can be used to encode blocking intervals $I_{O}(v)$ for any vertex v above O.

Sketch of the proof of Theorem 4

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p=\left(p_{x}, p_{y}\right)$ to the line $p^{*}=\left\{(x, y) \in \mathbb{R}^{2}: y=p_{x} x-p_{y}\right\}$, and a non-vertical line $\ell=\left\{(x, y) \in \mathbb{R}^{2}: y=m x+b\right\}$ to the point $\ell^{*}=(m,-b)$.

- For an obstacle O, consider traversing around the upper envelope of O with a tangent lines. This can be used to encode blocking intervals $I_{O}(v)$ for any vertex v above O.

Sketch of the proof of Theorem 4

- Traversing around O with the tangent lines corresponds to two cutpaths in the dual line arrangement.

Sketch of the proof of Theorem 4

- Traversing around O with the tangent lines corresponds to two cutpaths in the dual line arrangement.

- The cutpath is a convex/concave curve and thus we can estimate the number of cutpaths using a bound $O\left(3^{n}\right)$ on the number of cutpaths in arrangement of n pseudolines by Knuth.

Sketch of the proof of Theorem 4

- Traversing around O with the tangent lines corresponds to two cutpaths in the dual line arrangement.

- The cutpath is a convex/concave curve and thus we can estimate the number of cutpaths using a bound $O\left(3^{n}\right)$ on the number of cutpaths in arrangement of n pseudolines by Knuth.
- It follows there are at most $O\left(9^{n}\right)$ cutpaths for each obstacle.

Sketch of the proof of Theorem 4

- Traversing around O with the tangent lines corresponds to two cutpaths in the dual line arrangement.

- The cutpath is a convex/concave curve and thus we can estimate the number of cutpaths using a bound $O\left(3^{n}\right)$ on the number of cutpaths in arrangement of n pseudolines by Knuth.
- It follows there are at most $O\left(9^{n}\right)$ cutpaths for each obstacle.

Sketch of the proof of Theorem 4

- Traversing around O with the tangent lines corresponds to two cutpaths in the dual line arrangement.

- The cutpath is a convex/concave curve and thus we can estimate the number of cutpaths using a bound $O\left(3^{n}\right)$ on the number of cutpaths in arrangement of n pseudolines by Knuth.
- It follows there are at most $O\left(9^{n}\right)$ cutpaths for each obstacle. Thus, we can encode the endpoints of blocking intervals with at most $O(h n)$ bits.

Sketch of the proof of Theorem 4

- Traversing around O with the tangent lines corresponds to two cutpaths in the dual line arrangement.

- The cutpath is a convex/concave curve and thus we can estimate the number of cutpaths using a bound $O\left(3^{n}\right)$ on the number of cutpaths in arrangement of n pseudolines by Knuth.
- It follows there are at most $O\left(9^{n}\right)$ cutpaths for each obstacle. Thus, we can encode the endpoints of blocking intervals with at most $O(h n)$ bits.

Open problems

Open problems

Problem (Alpert, Koch, Laison, 2010)
Is the obstacle number of a graph with n vertices bounded above by a linear function of n ?

Open problems

Problem (Alpert, Koch, Laison, 2010)

Is the obstacle number of a graph with n vertices bounded above by a linear function of n ?

Problem (Alpert, Koch, Laison, 2010)
Are the obstacle numbers of planar graphs bounded from above by a constant?

Open problems

Problem (Alpert, Koch, Laison, 2010)

Is the obstacle number of a graph with n vertices bounded above by a linear function of n ?

Problem (Alpert, Koch, Laison, 2010)

Are the obstacle numbers of planar graphs bounded from above by a constant?

- Obstacle numbers of outerplanar graphs are at most 1.

Open problems

Problem (Alpert, Koch, Laison, 2010)

Is the obstacle number of a graph with n vertices bounded above by a linear function of n ?

Problem (Alpert, Koch, Laison, 2010)

Are the obstacle numbers of planar graphs bounded from above by a constant?

- Obstacle numbers of outerplanar graphs are at most 1.
- The obstacle number of icosahedron is 2 .

Open problems

Problem (Alpert, Koch, Laison, 2010)

Is the obstacle number of a graph with n vertices bounded above by a linear function of n ?

Problem (Alpert, Koch, Laison, 2010)

Are the obstacle numbers of planar graphs bounded from above by a constant?

- Obstacle numbers of outerplanar graphs are at most 1.
- The obstacle number of icosahedron is 2 .

Problem

What is the complexity of deciding whether a given graph has obstacle number 1 ?

Open problems

Problem (Alpert, Koch, Laison, 2010)

Is the obstacle number of a graph with n vertices bounded above by a linear function of n ?

Problem (Alpert, Koch, Laison, 2010)

Are the obstacle numbers of planar graphs bounded from above by a constant?

- Obstacle numbers of outerplanar graphs are at most 1.
- The obstacle number of icosahedron is 2 .

Problem

What is the complexity of deciding whether a given graph has obstacle number 1 ?

Thank you for your attention.

