Bounding and computing obstacle numbers of graphs

Martin Balko, Steven Chaplick, Robert Ganian, Siddharth Gupta, Michael Hoffmann, Pavel Valtr, and Alexander Wolff

> Charles University in Prague, Czech Republic

• In a drawing of a graph, vertices are points in \mathbb{R}^2 and edges are line segments.

• An obstacle is a simple polygon in the plane.

• In a drawing of a graph, vertices are points in \mathbb{R}^2 and edges are line segments.

• An obstacle is a simple polygon in the plane.

- An obstacle is a simple polygon in the plane.
- The obstacle representation of a graph *G* is a drawing of *G* with obstacles where two vertices are connected by an edge iff the corresponding line segment avoids all the obstacles.

- An obstacle is a simple polygon in the plane.
- The obstacle representation of a graph *G* is a drawing of *G* with obstacles where two vertices are connected by an edge iff the corresponding line segment avoids all the obstacles.
- The obstacle number obs(G) of a graph G is the minimum number of obstacles in an obstacle representation of G.

- An obstacle is a simple polygon in the plane.
- The obstacle representation of a graph *G* is a drawing of *G* with obstacles where two vertices are connected by an edge iff the corresponding line segment avoids all the obstacles.
- The obstacle number obs(G) of a graph G is the minimum number of obstacles in an obstacle representation of G.

- An obstacle is a simple polygon in the plane.
- The obstacle representation of a graph *G* is a drawing of *G* with obstacles where two vertices are connected by an edge iff the corresponding line segment avoids all the obstacles.
- The obstacle number obs(G) of a graph G is the minimum number of obstacles in an obstacle representation of G.
- Similarly, the convex obstacle number $obs_c(G)$ of a graph G is the minimum number of *convex* obstacles in an obstacle representation of G.

obs(T) = 1

obs(T) = 1

obs(T) = 1

 $obs(P_m \times P_n) = 1$ (Fabrizio Frati)

• Let obs(n) be the $max_G obs(G)$ over all *n*-vertex graphs *G*.

- Let obs(n) be the $max_G obs(G)$ over all *n*-vertex graphs *G*.
- Similarly, let $obs_c(n) = max_G obs_c(G)$ and note that $obs(n) \le obs_c(n)$.

- Let obs(n) be the $max_G obs(G)$ over all *n*-vertex graphs *G*.
- Similarly, let $obs_c(n) = max_G obs_c(G)$ and note that $obs(n) \le obs_c(n)$.
- Is $obs(n) \le O(n)$? (Alpert, Koch, Laison, 2010)

- Let obs(n) be the $max_G obs(G)$ over all *n*-vertex graphs *G*.
- Similarly, let $obs_c(n) = max_G obs_c(G)$ and note that $obs(n) \le obs_c(n)$.
- Is $obs(n) \le O(n)$? (Alpert, Koch, Laison, 2010)
- Lower bounds:
 - $obs(n) \ge \Omega(n/\log^2 n)$ (Mukkamala, Pach, Sariöz, 2010).
 - $obs(n) \ge \Omega(n/\log n)$ (Mukkamala, Pach, Pálvölgyi, 2011).
 - $obs(n) \ge \Omega(n/(\log \log n)^2)$ (Dujmović, Morin, 2013).

- Let obs(n) be the $max_G obs(G)$ over all *n*-vertex graphs *G*.
- Similarly, let $obs_c(n) = max_G obs_c(G)$ and note that $obs(n) \le obs_c(n)$.
- Is $obs(n) \le O(n)$? (Alpert, Koch, Laison, 2010)
- Lower bounds:
 - $obs(n) \ge \Omega(n/\log^2 n)$ (Mukkamala, Pach, Sariöz, 2010).
 - $obs(n) \ge \Omega(n/\log n)$ (Mukkamala, Pach, Pálvölgyi, 2011).
 - $obs(n) \ge \Omega(n/(\log \log n)^2)$ (Dujmović, Morin, 2013).
- There is the trivial upper bound $obs(n) \leq {n \choose 2}$.

- Let obs(n) be the $max_G obs(G)$ over all *n*-vertex graphs *G*.
- Similarly, let $obs_c(n) = max_G obs_c(G)$ and note that $obs(n) \le obs_c(n)$.
- Is $obs(n) \le O(n)$? (Alpert, Koch, Laison, 2010)
- Lower bounds:
 - \circ obs(n) ≥ Ω(n/log² n) (Mukkamala, Pach, Sariöz, 2010).
 - $obs(n) \ge \Omega(n/\log n)$ (Mukkamala, Pach, Pálvölgyi, 2011).
 - $obs(n) \ge \Omega(n/(\log \log n)^2)$ (Dujmović, Morin, 2013).
- There is the trivial upper bound $obs(n) \leq {n \choose 2}$.

For every positive integer n, we have obs(n) ≤ n [log n] - n + 1 (Balko, Cibulka, Valtr, 2015).

- For every positive integer n, we have obs(n) ≤ n [log n] n + 1 (Balko, Cibulka, Valtr, 2015).
- We can answer the question of Alpert et al. provided $\chi(G)$ is bounded.

- For every positive integer n, we have obs(n) ≤ n [log n] n + 1 (Balko, Cibulka, Valtr, 2015).
- We can answer the question of Alpert et al. provided $\chi(G)$ is bounded.
- For every positive integer *n* and every *n*-vertex graph *G*, we have obs(*G*) ≤ *n*(⌈log χ(*G*)⌉ + 1) (Balko, Cibulka, Valtr, 2015).

- For every positive integer n, we have obs(n) ≤ n [log n] n + 1 (Balko, Cibulka, Valtr, 2015).
- We can answer the question of Alpert et al. provided $\chi(G)$ is bounded.
- For every positive integer n and every n-vertex graph G, we have obs(G) ≤ n(⌈log χ(G)⌉ + 1) (Balko, Cibulka, Valtr, 2015).

- For every positive integer n, we have obs(n) ≤ n [log n] n + 1 (Balko, Cibulka, Valtr, 2015).
- We can answer the question of Alpert et al. provided $\chi(G)$ is bounded.
- For every positive integer n and every n-vertex graph G, we have obs(G) ≤ n(⌈log χ(G)⌉ + 1) (Balko, Cibulka, Valtr, 2015).

• The bounds apply even if the obstacles are required to be convex.

• I will focus on the "bounding" part.

- I will focus on the "bounding" part.
- First, we improve the best known lower bound $obs(n) \ge \Omega(n/(\log \log n)^2)$ by Dujmović, Morin.

- I will focus on the "bounding" part.
- First, we improve the best known lower bound $obs(n) \ge \Omega(n/(\log \log n)^2)$ by Dujmović, Morin.

Theorem 1

We have $obs(n) \in \Omega(n/\log \log n)$.

- I will focus on the "bounding" part.
- First, we improve the best known lower bound $obs(n) \ge \Omega(n/(\log \log n)^2)$ by Dujmović, Morin.

```
Theorem 1
```

```
We have obs(n) \in \Omega(n/\log \log n).
```

• For convex obstacles, we can prove linear lower bound!

- I will focus on the "bounding" part.
- First, we improve the best known lower bound $obs(n) \ge \Omega(n/(\log \log n)^2)$ by Dujmović, Morin.

```
Theorem 1
```

```
We have obs(n) \in \Omega(n/\log \log n).
```

• For convex obstacles, we can prove linear lower bound!

```
Theorem 2
We have obs_c(n) \in \Omega(n).
```

- I will focus on the "bounding" part.
- First, we improve the best known lower bound $obs(n) \ge \Omega(n/(\log \log n)^2)$ by Dujmović, Morin.

```
Theorem 1
```

```
We have obs(n) \in \Omega(n/\log \log n).
```

• For convex obstacles, we can prove linear lower bound!

```
Theorem 2
We have obs_c(n) \in \Omega(n).
```

• This is believed to be asymptotically tight.

- I will focus on the "bounding" part.
- First, we improve the best known lower bound $obs(n) \ge \Omega(n/(\log \log n)^2)$ by Dujmović, Morin.

```
Theorem 1
```

```
We have obs(n) \in \Omega(n/\log \log n).
```

• For convex obstacles, we can prove linear lower bound!

```
Theorem 2
We have obs_c(n) \in \Omega(n).
```

- This is believed to be asymptotically tight.
- The proofs are not constructive and follow from a counting argument.

For h, n ∈ N, let f(h, n) be the number of graphs on n vertices that have obstacle number at most h.

- For *h*, *n* ∈ N, let *f*(*h*, *n*) be the number of graphs on *n* vertices that have obstacle number at most *h*.
- Similarly, let $f_c(h, n)$ be the number of graphs on *n* vertices that have *convex* obstacle number at most *h*.

- For *h*, *n* ∈ N, let *f*(*h*, *n*) be the number of graphs on *n* vertices that have obstacle number at most *h*.
- Similarly, let $f_c(h, n)$ be the number of graphs on *n* vertices that have *convex* obstacle number at most *h*.
- Our lower bounds on obs(n) and $obs_c(n)$ follow from upper bounds on f(h, n) and $f_c(h, n)$, respectively.

- For *h*, *n* ∈ N, let *f*(*h*, *n*) be the number of graphs on *n* vertices that have obstacle number at most *h*.
- Similarly, let $f_c(h, n)$ be the number of graphs on *n* vertices that have *convex* obstacle number at most *h*.
- Our lower bounds on obs(n) and $obs_c(n)$ follow from upper bounds on f(h, n) and $f_c(h, n)$, respectively.

Theorem 3

For all positive integers *h* and *n*, we have $f(h, n) \in 2^{O(hn \log n)}$.

- For *h*, *n* ∈ N, let *f*(*h*, *n*) be the number of graphs on *n* vertices that have obstacle number at most *h*.
- Similarly, let $f_c(h, n)$ be the number of graphs on *n* vertices that have *convex* obstacle number at most *h*.
- Our lower bounds on obs(n) and $obs_c(n)$ follow from upper bounds on f(h, n) and $f_c(h, n)$, respectively.

Theorem 3

For all positive integers *h* and *n*, we have $f(h, n) \in 2^{O(hn \log n)}$.

 This improves the bound f(h, n) ∈ 2^{O(hn log² n)} by Mukkamala, Pach, and Pálvölgyi and solves a conjecture of Dujmović and Morin.

- For *h*, *n* ∈ N, let *f*(*h*, *n*) be the number of graphs on *n* vertices that have obstacle number at most *h*.
- Similarly, let $f_c(h, n)$ be the number of graphs on *n* vertices that have *convex* obstacle number at most *h*.
- Our lower bounds on obs(n) and $obs_c(n)$ follow from upper bounds on f(h, n) and $f_c(h, n)$, respectively.

Theorem 3

For all positive integers *h* and *n*, we have $f(h, n) \in 2^{O(hn \log n)}$.

 This improves the bound f(h, n) ∈ 2^{O(hn log² n)} by Mukkamala, Pach, and Pálvölgyi and solves a conjecture of Dujmović and Morin.

Theorem 4

For all positive integers *h* and *n*, we have $f_c(h, n) \in 2^{O(n(h+\log n))}$.

- For *h*, *n* ∈ N, let *f*(*h*, *n*) be the number of graphs on *n* vertices that have obstacle number at most *h*.
- Similarly, let $f_c(h, n)$ be the number of graphs on *n* vertices that have *convex* obstacle number at most *h*.
- Our lower bounds on obs(n) and $obs_c(n)$ follow from upper bounds on f(h, n) and $f_c(h, n)$, respectively.

Theorem 3

For all positive integers *h* and *n*, we have $f(h, n) \in 2^{O(hn \log n)}$.

 This improves the bound f(h, n) ∈ 2^{O(hn log² n)} by Mukkamala, Pach, and Pálvölgyi and solves a conjecture of Dujmović and Morin.

Theorem 4

For all positive integers *h* and *n*, we have $f_c(h, n) \in 2^{O(n(h+\log n))}$.

• This is asymptotically tight for h < n as Balko, Cibulka, and Valtr showed $f_c(h, n) \in 2^{\Omega(hn)}$ for 0 < h < n and $f_c(1, n) \in 2^{\Omega(n \log n)}$.

• We also prove some algorithmic results.

• We also prove some algorithmic results.

Theorem 5

Given a graph G and an integer h, the problem of recognizing whether G admits an obstacle representation with h obstacles is fixed-parameter tractable parameterized by the vertex cover number of G.

• We also prove some algorithmic results.

Theorem 5

Given a graph G and an integer h, the problem of recognizing whether G admits an obstacle representation with h obstacles is fixed-parameter tractable parameterized by the vertex cover number of G.

Theorem 6

Given a graph G and a simple polygon P, it is NP-hard to decide whether G admits an obstacle representation using P as obstacle.

• We also prove some algorithmic results.

Theorem 5

Given a graph G and an integer h, the problem of recognizing whether G admits an obstacle representation with h obstacles is fixed-parameter tractable parameterized by the vertex cover number of G.

Theorem 6

Given a graph G and a simple polygon P, it is NP-hard to decide whether G admits an obstacle representation using P as obstacle.

• The complexity of deciding whether a given graph has obstacle number 1 is still open.

We prove f_c(h, n) ∈ 2^{O(n(h+log n))} by compactly encoding the obstacle representation of every n-vertex graph with at most h convex obstacles.

- We prove f_c(h, n) ∈ 2^{O(n(h+log n))} by compactly encoding the obstacle representation of every n-vertex graph with at most h convex obstacles.
- First, we encode the relative positions of the vertices by order type (that is, orientations of triples of points).

- We prove f_c(h, n) ∈ 2^{O(n(h+log n))} by compactly encoding the obstacle representation of every n-vertex graph with at most h convex obstacles.
- First, we encode the relative positions of the vertices by order type (that is, orientations of triples of points). Goodman and Pollack proved that there are at most 2^{O(n log n)} order types of *n* points.

- We prove f_c(h, n) ∈ 2^{O(n(h+log n))} by compactly encoding the obstacle representation of every n-vertex graph with at most h convex obstacles.
- First, we encode the relative positions of the vertices by order type (that is, orientations of triples of points). Goodman and Pollack proved that there are at most 2^{O(n log n)} order types of *n* points.
- It remains to encode the obstacles with O(hn) bits.

- We prove f_c(h, n) ∈ 2^{O(n(h+log n))} by compactly encoding the obstacle representation of every n-vertex graph with at most h convex obstacles.
- First, we encode the relative positions of the vertices by order type (that is, orientations of triples of points). Goodman and Pollack proved that there are at most 2^{O(n log n)} order types of *n* points.
- It remains to encode the obstacles with O(hn) bits.
- For vertex v and obstacle O, the blocking interval $I_O(v)$ is the subsequence of rays in the radial order around v that start at v and intersect O.

- We prove f_c(h, n) ∈ 2^{O(n(h+log n))} by compactly encoding the obstacle representation of every n-vertex graph with at most h convex obstacles.
- First, we encode the relative positions of the vertices by order type (that is, orientations of triples of points). Goodman and Pollack proved that there are at most 2^{O(n log n)} order types of *n* points.
- It remains to encode the obstacles with O(hn) bits.
- For vertex v and obstacle O, the blocking interval $I_O(v)$ is the subsequence of rays in the radial order around v that start at v and intersect O.

- We prove f_c(h, n) ∈ 2^{O(n(h+log n))} by compactly encoding the obstacle representation of every n-vertex graph with at most h convex obstacles.
- First, we encode the relative positions of the vertices by order type (that is, orientations of triples of points). Goodman and Pollack proved that there are at most 2^{O(n log n)} order types of *n* points.
- It remains to encode the obstacles with O(hn) bits.
- For vertex v and obstacle O, the blocking interval $I_O(v)$ is the subsequence of rays in the radial order around v that start at v and intersect O.

Since O is convex, a pair {u, v} is a non-edge of G if ad only if u ∈ I_O(v) and v ∈ I_O(u) for some obstacle O.

- We prove f_c(h, n) ∈ 2^{O(n(h+log n))} by compactly encoding the obstacle representation of every n-vertex graph with at most h convex obstacles.
- First, we encode the relative positions of the vertices by order type (that is, orientations of triples of points). Goodman and Pollack proved that there are at most 2^{O(n log n)} order types of *n* points.
- It remains to encode the obstacles with O(hn) bits.
- For vertex v and obstacle O, the blocking interval $I_O(v)$ is the subsequence of rays in the radial order around v that start at v and intersect O.

Since O is convex, a pair {u, v} is a non-edge of G if ad only if u ∈ I_O(v) and v ∈ I_O(u) for some obstacle O.

• Thus, it suffices to encode the endpoints of blocking intervals.

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p = (p_x, p_y)$ to the line $p^* = \{(x, y) \in \mathbb{R}^2 : y = p_x x p_y\}$, and a non-vertical line $\ell = \{(x, y) \in \mathbb{R}^2 : y = mx + b\}$ to the point $\ell^* = (m, -b)$.

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p = (p_x, p_y)$ to the line $p^* = \{(x, y) \in \mathbb{R}^2 : y = p_x x p_y\}$, and a non-vertical line $\ell = \{(x, y) \in \mathbb{R}^2 : y = mx + b\}$ to the point $\ell^* = (m, -b)$.

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p = (p_x, p_y)$ to the line $p^* = \{(x, y) \in \mathbb{R}^2 : y = p_x x p_y\}$, and a non-vertical line $\ell = \{(x, y) \in \mathbb{R}^2 : y = mx + b\}$ to the point $\ell^* = (m, -b)$.

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p = (p_x, p_y)$ to the line $p^* = \{(x, y) \in \mathbb{R}^2 : y = p_x x p_y\}$, and a non-vertical line $\ell = \{(x, y) \in \mathbb{R}^2 : y = mx + b\}$ to the point $\ell^* = (m, -b)$.

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p = (p_x, p_y)$ to the line $p^* = \{(x, y) \in \mathbb{R}^2 : y = p_x x p_y\}$, and a non-vertical line $\ell = \{(x, y) \in \mathbb{R}^2 : y = mx + b\}$ to the point $\ell^* = (m, -b)$.

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p = (p_x, p_y)$ to the line $p^* = \{(x, y) \in \mathbb{R}^2 : y = p_x x p_y\}$, and a non-vertical line $\ell = \{(x, y) \in \mathbb{R}^2 : y = mx + b\}$ to the point $\ell^* = (m, -b)$.

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p = (p_x, p_y)$ to the line $p^* = \{(x, y) \in \mathbb{R}^2 : y = p_x x p_y\}$, and a non-vertical line $\ell = \{(x, y) \in \mathbb{R}^2 : y = mx + b\}$ to the point $\ell^* = (m, -b)$.

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p = (p_x, p_y)$ to the line $p^* = \{(x, y) \in \mathbb{R}^2 : y = p_x x p_y\}$, and a non-vertical line $\ell = \{(x, y) \in \mathbb{R}^2 : y = mx + b\}$ to the point $\ell^* = (m, -b)$.

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p = (p_x, p_y)$ to the line $p^* = \{(x, y) \in \mathbb{R}^2 : y = p_x x p_y\}$, and a non-vertical line $\ell = \{(x, y) \in \mathbb{R}^2 : y = mx + b\}$ to the point $\ell^* = (m, -b)$.

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p = (p_x, p_y)$ to the line $p^* = \{(x, y) \in \mathbb{R}^2 : y = p_x x p_y\}$, and a non-vertical line $\ell = \{(x, y) \in \mathbb{R}^2 : y = mx + b\}$ to the point $\ell^* = (m, -b)$.

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p = (p_x, p_y)$ to the line $p^* = \{(x, y) \in \mathbb{R}^2 : y = p_x x p_y\}$, and a non-vertical line $\ell = \{(x, y) \in \mathbb{R}^2 : y = mx + b\}$ to the point $\ell^* = (m, -b)$.

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p = (p_x, p_y)$ to the line $p^* = \{(x, y) \in \mathbb{R}^2 : y = p_x x p_y\}$, and a non-vertical line $\ell = \{(x, y) \in \mathbb{R}^2 : y = mx + b\}$ to the point $\ell^* = (m, -b)$.

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p = (p_x, p_y)$ to the line $p^* = \{(x, y) \in \mathbb{R}^2 : y = p_x x p_y\}$, and a non-vertical line $\ell = \{(x, y) \in \mathbb{R}^2 : y = mx + b\}$ to the point $\ell^* = (m, -b)$.

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p = (p_x, p_y)$ to the line $p^* = \{(x, y) \in \mathbb{R}^2 : y = p_x x p_y\}$, and a non-vertical line $\ell = \{(x, y) \in \mathbb{R}^2 : y = mx + b\}$ to the point $\ell^* = (m, -b)$.

- Thus, it suffices to encode the endpoints of blocking intervals.
- We do this in the dual setting that maps a point $p = (p_x, p_y)$ to the line $p^* = \{(x, y) \in \mathbb{R}^2 : y = p_x x p_y\}$, and a non-vertical line $\ell = \{(x, y) \in \mathbb{R}^2 : y = mx + b\}$ to the point $\ell^* = (m, -b)$.

• Traversing around *O* with the tangent lines corresponds to two cutpaths in the dual line arrangement.

• The cutpath is a convex/concave curve and thus we can estimate the number of cutpaths using a bound $O(3^n)$ on the number of cutpaths in arrangement of *n* pseudolines by Knuth.

- The cutpath is a convex/concave curve and thus we can estimate the number of cutpaths using a bound $O(3^n)$ on the number of cutpaths in arrangement of *n* pseudolines by Knuth.
- It follows there are at most $O(9^n)$ cutpaths for each obstacle.

- The cutpath is a convex/concave curve and thus we can estimate the number of cutpaths using a bound $O(3^n)$ on the number of cutpaths in arrangement of *n* pseudolines by Knuth.
- It follows there are at most $O(9^n)$ cutpaths for each obstacle.

- The cutpath is a convex/concave curve and thus we can estimate the number of cutpaths using a bound O(3ⁿ) on the number of cutpaths in arrangement of n pseudolines by Knuth.
- It follows there are at most O(9ⁿ) cutpaths for each obstacle. Thus, we can
 encode the endpoints of blocking intervals with at most O(hn) bits.

- The cutpath is a convex/concave curve and thus we can estimate the number of cutpaths using a bound $O(3^n)$ on the number of cutpaths in arrangement of *n* pseudolines by Knuth.
- It follows there are at most O(9ⁿ) cutpaths for each obstacle. Thus, we can encode the endpoints of blocking intervals with at most O(hn) bits.

Problem (Alpert, Koch, Laison, 2010)

Is the obstacle number of a graph with n vertices bounded above by a linear function of n?

Problem (Alpert, Koch, Laison, 2010)

Is the obstacle number of a graph with n vertices bounded above by a linear function of n?

Problem (Alpert, Koch, Laison, 2010)

Are the obstacle numbers of planar graphs bounded from above by a constant?

Problem (Alpert, Koch, Laison, 2010)

Is the obstacle number of a graph with n vertices bounded above by a linear function of n?

Problem (Alpert, Koch, Laison, 2010)

Are the obstacle numbers of planar graphs bounded from above by a constant?

• Obstacle numbers of outerplanar graphs are at most 1.

Problem (Alpert, Koch, Laison, 2010)

Is the obstacle number of a graph with n vertices bounded above by a linear function of n?

Problem (Alpert, Koch, Laison, 2010)

Are the obstacle numbers of planar graphs bounded from above by a constant?

- Obstacle numbers of outerplanar graphs are at most 1.
- The obstacle number of icosahedron is 2.

Problem (Alpert, Koch, Laison, 2010)

Is the obstacle number of a graph with n vertices bounded above by a linear function of n?

Problem (Alpert, Koch, Laison, 2010)

Are the obstacle numbers of planar graphs bounded from above by a constant?

- Obstacle numbers of outerplanar graphs are at most 1.
- The obstacle number of icosahedron is 2.

Problem

What is the complexity of deciding whether a given graph has obstacle number 1?

Problem (Alpert, Koch, Laison, 2010)

Is the obstacle number of a graph with n vertices bounded above by a linear function of n?

Problem (Alpert, Koch, Laison, 2010)

Are the obstacle numbers of planar graphs bounded from above by a constant?

- Obstacle numbers of outerplanar graphs are at most 1.
- The obstacle number of icosahedron is 2.

Problem

What is the complexity of deciding whether a given graph has obstacle number 1?

Thank you for your attention.