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Obstacle numbers

• In a drawing of a graph, vertices are points in R2 and edges are line segments.

• An obstacle is a simple polygon in the plane.

• The obstacle representation of a graph G is a drawing of G with obstacles
where two vertices are connected by an edge iff the corresponding line
segment avoids all the obstacles.

• The obstacle number obs(G ) of a graph G is the minimum number of
obstacles in an obstacle representation of G .

• Similarly, the convex obstacle number obsc(G ) of a graph G is the minimum
number of convex obstacles in an obstacle representation of G .
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Previous results

• Let obs(n) be the maxG obs(G ) over all n-vertex graphs G .

• Similarly, let obsc(n) = maxG obsc(G ) and note that obs(n) ≤ obsc(n).

• Is obs(n) ≤ O(n)? (Alpert, Koch, Laison, 2010)

• Lower bounds:

◦ obs(n) ≥ Ω(n/ log2 n) (Mukkamala, Pach, Sarıöz, 2010).
◦ obs(n) ≥ Ω(n/ log n) (Mukkamala, Pach, Pálvölgyi, 2011).
◦ obs(n) ≥ Ω(n/(log log n)2) (Dujmović, Morin, 2013).

• There is the trivial upper bound obs(n) ≤
(n

2

)
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Upper bounds

• For every positive integer n, we have obs(n) ≤ ndlog ne − n + 1 (Balko,
Cibulka, Valtr, 2015).

• We can answer the question of Alpert et al. provided χ(G ) is bounded.

• For every positive integer n and every n-vertex graph G , we have
obs(G ) ≤ n(dlogχ(G )e+ 1) (Balko, Cibulka, Valtr, 2015).

• The bounds apply even if the obstacles are required to be convex.
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Our results I

• I will focus on the “bounding” part.

• First, we improve the best known lower bound obs(n) ≥ Ω(n/(log log n)2) by
Dujmović, Morin.

Theorem 1

We have obs(n) ∈ Ω(n/ log log n).

• For convex obstacles, we can prove linear lower bound!

Theorem 2

We have obsc(n) ∈ Ω(n).

• This is believed to be asymptotically tight.

• The proofs are not constructive and follow from a counting argument.
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Our results II

• For h, n ∈ N, let f (h, n) be the number of graphs on n vertices that have
obstacle number at most h.

• Similarly, let fc(h, n) be the number of graphs on n vertices that have convex
obstacle number at most h.

• Our lower bounds on obs(n) and obsc(n) follow from upper bounds on
f (h, n) and fc(h, n), respectively.

Theorem 3

For all positive integers h and n, we have f (h, n) ∈ 2O(hn log n).

• This improves the bound f (h, n) ∈ 2O(hn log2 n) by Mukkamala, Pach, and
Pálvölgyi and solves a conjecture of Dujmović and Morin.

Theorem 4

For all positive integers h and n, we have fc(h, n) ∈ 2O(n(h+log n)).

• This is asymptotically tight for h < n as Balko, Cibulka, and Valtr showed
fc(h, n) ∈ 2Ω(hn) for 0 < h < n and fc(1, n) ∈ 2Ω(n log n).
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Theorem 4

For all positive integers h and n, we have fc(h, n) ∈ 2O(n(h+log n)).

• This is asymptotically tight for h < n as Balko, Cibulka, and Valtr showed
fc(h, n) ∈ 2Ω(hn) for 0 < h < n and fc(1, n) ∈ 2Ω(n log n).



Our results II

• For h, n ∈ N, let f (h, n) be the number of graphs on n vertices that have
obstacle number at most h.

• Similarly, let fc(h, n) be the number of graphs on n vertices that have convex
obstacle number at most h.

• Our lower bounds on obs(n) and obsc(n) follow from upper bounds on
f (h, n) and fc(h, n), respectively.

Theorem 3

For all positive integers h and n, we have f (h, n) ∈ 2O(hn log n).

• This improves the bound f (h, n) ∈ 2O(hn log2 n) by Mukkamala, Pach, and
Pálvölgyi and solves a conjecture of Dujmović and Morin.
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Our results III

• We also prove some algorithmic results.

Theorem 5

Given a graph G and an integer h, the problem of recognizing whether G admits
an obstacle representation with h obstacles is fixed-parameter tractable
parameterized by the vertex cover number of G .

Theorem 6

Given a graph G and a simple polygon P, it is NP-hard to decide whether G
admits an obstacle representation using P as obstacle.

• The complexity of deciding whether a given graph has obstacle number 1 is
still open.
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Sketch of the proof of Theorem 4

• We prove fc(h, n) ∈ 2O(n(h+log n)) by compactly encoding the obstacle
representation of every n-vertex graph with at most h convex obstacles.

• First, we encode the relative positions of the vertices by order type (that is,
orientations of triples of points). Goodman and Pollack proved that there are
at most 2O(n log n) order types of n points.

• It remains to encode the obstacles with O(hn) bits.

• For vertex v and obstacle O, the blocking interval IO(v) is the subsequence
of rays in the radial order around v that start at v and intersect O.

• Since O is convex, a pair {u, v} is a non-edge of G if ad only if u ∈ IO(v)
and v ∈ IO(u) for some obstacle O.
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• Thus, it suffices to encode the endpoints of blocking intervals.

• We do this in the dual setting that maps a point p = (px , py ) to the
line p∗ = {(x , y) ∈ R2 : y = pxx − py}, and a non-vertical
line ` = {(x , y) ∈ R2 : y = mx + b} to the point `∗ = (m,−b).

• For an obstacle O, consider traversing around the upper envelope of O with
a tangent lines. This can be used to encode blocking intervals IO(v) for any
vertex v above O.
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• Traversing around O with the tangent lines corresponds to two cutpaths in
the dual line arrangement.

O

• The cutpath is a convex/concave curve and thus we can estimate the number
of cutpaths using a bound O(3n) on the number of cutpaths in arrangement
of n pseudolines by Knuth.

• It follows there are at most O(9n) cutpaths for each obstacle. Thus, we can
encode the endpoints of blocking intervals with at most O(hn) bits.
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Open problems

Problem (Alpert, Koch, Laison, 2010)

Is the obstacle number of a graph with n vertices bounded above by a linear
function of n?

Problem (Alpert, Koch, Laison, 2010)

Are the obstacle numbers of planar graphs bounded from above by a constant?

• Obstacle numbers of outerplanar graphs are at most 1.

• The obstacle number of icosahedron is 2.

Problem

What is the complexity of deciding whether a given graph has obstacle number 1?
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