The Price of Upwardness

Patrizio Angelini	Therese Biedl	Markus Chimani		Sabine Cornelsen	
(John Cabot)	(Waterloo)	(Osnabrück)		(Konstanz)	
Giordano Da Lozz	o Seok-Hee H	long	Giuseppe L	iotta	
(Roma III)	(Sydney)	(Perugia)	
Maurizio Patrigna	ni Sergey Pup	yrev	Ignaz Rutte	er Alexa	nder Wolff
(Roma III)	(Meta)		(Passau)	(W	ürzburg)

GD 2024, Vienna, September 18–20

Beyond Planarity

 K_5 is not planar

 K_5 is not planar

- K_5 has skewness 1 (removing 1 edge yields a planar graph)

 K_5 is not planar

- K_5 has skewness 1 (removing 1 edge yields a planar graph)
- The crossing number of K_5 is 1 (there is one crossing in total)

 K_5 is not planar

- K_5 has skewness 1 (removing 1 edge yields a planar graph)
- The crossing number of K_5 is 1 (there is one crossing in total)
- K_5 is 1-planar (each edge is crossed at most once)

 K_5 is not planar

- K_5 has skewness 1 (removing 1 edge yields a planar graph)
- The crossing number of K_5 is 1 (there is one crossing in total)
- K_5 is 1-planar (each edge is crossed at most once)

 \rightsquigarrow the local crossing number of K_5 is 1

 K_5 is not planar

- K_5 has skewness 1 (removing 1 edge yields a planar graph)
- The crossing number of K_5 is 1 (there is one crossing in total)
- K_5 is 1-planar (each edge is crossed at most once)

 \rightsquigarrow the local crossing number of K_5 is 1

- $-K_5$ is <u>RAC</u> (right angle crossing)
- fan planar
- quasi planar, ... no X

 K_5 is not planar

- K_5 has skewness 1 (removing 1 edge yields a planar graph)
- The crossing number of K_5 is 1 (there is one crossing in total)
- K_5 is 1-planar (each edge is crossed at most once)

 \rightsquigarrow the local crossing number of K_5 is 1

- $-K_5$ is <u>RAC</u> (right angle crossing)
- fan planar
- quasi planar, ... no

What about beyond planarity for directed acyclic graphs?

 K_5 is not planar

- K_5 has skewness 1 (removing 1 edge yields a planar graph)
- The crossing number of K_5 is 1 (there is one crossing in total)
- K_5 is <u>1-planar</u> (each edge is crossed at most once) \rightsquigarrow the local crossing number of K_5 is 1
- $-K_5$ is <u>RAC</u> (right angle crossing)
- fan planar
- quasi planar, ... no

What about beyond planarity for directed acyclic graphs?

upward k-planar drawing of a DAG:

drawing in which each edge is

- upward (montonone in y-direction)
- crossed at most k times

upward 18-planar drawing

upward k-planar drawing of a DAG:

drawing in which each edge is

- upward (montonone in y-direction)
- crossed at most k times

upward 5-planar drawing

upward k-planar drawing of a DAG:

drawing in which each edge is

- upward (montonone in y-direction)
- crossed at most k times

upward local crossing number of a DAG G:

minimum k such that G is upward k-planar

upward 5-planar drawing

upward k-planar drawing of a DAG:

drawing in which each edge is

- upward (montonone in y-direction)
- crossed at most k times

upward local crossing number of a DAG G:

minimum k such that G is upward k-planar

Can we do better than five?

upward k-planar drawing of a DAG:

drawing in which each edge is

- upward (montonone in y-direction)
- crossed at most k times

upward local crossing number of a DAG G:

minimum k such that G is upward k-planar

upward local crossing number is at most four

- monotone/upward crossing number (Valtr 2005, Fulek et al. 2013, Schaefer 2024)

- monotone/upward crossing number (Valtr 2005, Fulek et al. 2013, Schaefer 2024)
- In any upward drawing of a graph that is not upward-planar there is a pair of independent edges that crosses an odd number of times. (Fulek et al. 2013)

- monotone/upward crossing number (Valtr 2005, Fulek et al. 2013, Schaefer 2024)
- In any upward drawing of a graph that is not upward-planar there is a pair of independent edges that crosses an odd number of times. (Fulek et al. 2013)
- Linear layouts of directed graphs: draw vertices on a line in topological order
 - Upward book embeddings, minimize number of pages Frati, Fulek, Ruiz-Vargas GD'11
 Binucci et al. SoCG'19
 Bhore, Da Lozzo, Montecchiani, and Nöllenburg GD'21
 Bekos et al. GD'22
 - Stack and Queue Number
 Heath, Pemmaraju, and Trenk 1999
 Jungblut, Merker, Ueckerdt FOCS'23
 Nöllenburg and Pupyrev GD'23

Lower Bounds: In the worst case the upward local crossing number of

- fans (path + apex) is > 0.

Lower Bounds: In the worst case the upward local crossing number of

- fans (path + apex) is > 0.

- bipartite outerplanar DAGs is in $\Omega(\log n) \cap \Omega(\Delta)$.

Lower Bounds: In the worst case the upward local crossing number of

- fans (path + apex) is > 0.
- bipartite outerplanar DAGs is in $\Omega(\log n) \cap \Omega(\Delta)$.
- bipartite DAGs of constant pathwidth is in $\Omega(n)$.

Lower Bounds: In the worst case the upward local crossing number of

- fans (path + apex) is > 0.
- bipartite outerplanar DAGs is in $\Omega(\log n) \cap \Omega(\Delta)$.
- bipartite DAGs of constant pathwidth is in $\Omega(n)$.
- cubic DAGs is in $\Omega(n)$.

Lower Bounds: In the worst case the upward local crossing number of

- fans (path + apex) is > 0.
- bipartite outerplanar DAGs is in $\Omega(\log n) \cap \Omega(\Delta)$.
- bipartite DAGs of constant pathwidth is in $\Omega(n)$.
- cubic DAGs is in $\Omega(n)$.

Upper Bounds:

Lower Bounds: In the worst case the upward local crossing number of

- fans (path + apex) is > 0.
- bipartite outerplanar DAGs is in $\Omega(\log n) \cap \Omega(\Delta)$.
- bipartite DAGs of constant pathwidth is in $\Omega(n)$.
- cubic DAGs is in $\Omega(n)$.

Upper Bounds: The upward local crossing number

- of outer-paths is at most two.

Lower Bounds: In the worst case the upward local crossing number of

- fans (path + apex) is > 0.
- bipartite outerplanar DAGs is in $\Omega(\log n) \cap \Omega(\Delta)$.
- bipartite DAGs of constant pathwidth is in $\Omega(n)$.
- cubic DAGs is in $\Omega(n)$.

Upper Bounds: The upward local crossing number

- of outer-paths is at most two.
- is in $\mathcal{O}(\Delta \cdot \text{bandwidth})$ •

Lower Bounds: In the worst case the upward local crossing number of

- fans (path + apex) is > 0.
- bipartite outerplanar DAGs is in $\Omega(\log n) \cap \Omega(\Delta)$.
- bipartite DAGs of constant pathwidth is in $\Omega(n)$.
- cubic DAGs is in $\Omega(n)$.

Upper Bounds: The upward local crossing number

- of outer-paths is at most two.
- is in $\mathcal{O}(\Delta \cdot \text{bandwidth})$ •

 $\rightsquigarrow \mathcal{O}(\frac{n\Delta}{\log_{\Delta} n})$ for planar graphs, $\mathcal{O}(\sqrt{n})$ for square grids

Lower Bounds: In the worst case the upward local crossing number of

- fans (path + apex) is > 0.
- bipartite outerplanar DAGs is in $\Omega(\log n) \cap \Omega(\Delta)$.
- bipartite DAGs of constant pathwidth is in $\Omega(n)$.
- cubic DAGs is in $\Omega(n)$.

Upper Bounds: The upward local crossing number

- of outer-paths is at most two.
- is in $\mathcal{O}(\Delta \cdot \text{bandwidth})$ •

$$\rightsquigarrow \mathcal{O}(rac{n\Delta}{\log_{\Delta}n})$$
 for planar graphs, $\mathcal{O}(\sqrt{n})$ for square grids

Lower Bounds: In the worst case the upward local crossing number of

- fans (path + apex) is > 0.
- bipartite outerplanar DAGs is in $\Omega(\log n) \cap \Omega(\Delta)$.
- bipartite DAGs of constant pathwidth is in $\Omega(n)$. expected crossing number of a - cubic DAGs is in $\Omega(n)$. random cubic graph $\in \Omega(n^2)$ (Dujmović et al. SoCG'08)

Upper Bounds: The upward local crossing number

- of outer-paths is at most two.
- is in $\mathcal{O}(\Delta \cdot \mathsf{bandwidth})$

 $\rightsquigarrow \mathcal{O}(\frac{n\Delta}{\log_{\Delta} n})$ for planar graphs, $\mathcal{O}(\sqrt{n})$ for square grids

Lower Bounds: In the worst case the upward local crossing number of

- fans (path + apex) is > 0.
- bipartite outerplanar DAGs is in $\Omega(\log n) \cap \Omega(\Delta)$.
- bipartite DAGs of constant pathwidth is in $\Omega(n)$. expected crossing number of a - cubic DAGs is in $\Omega(n)$. random cubic graph $\in \Omega(n^2)$ (Dujmović et al. SoCG'08)

Upper Bounds: The upward local crossing number

- of outer-paths is at most two.
- is in $\mathcal{O}(\Delta \cdot \mathsf{bandwidth})$

$$\frac{1}{i}$$
 $\frac{1}{i}$

$$\rightsquigarrow \mathcal{O}(\frac{n\Delta}{\log_{\Delta} n})$$
 for planar graphs, $\mathcal{O}(\sqrt{n})$ for square grids

Lower Bounds

LB: Bipartite Outerplanar DAGs

not upward-planar
 (Papakostas GD'94)

LB: Bipartite Outerplanar DAGs

- not upward-planar
 (Papakostas GD'94)
- add to each outer edge a path of length 3 (iterate ℓ times)

- not upward-planar
 (Papakostas GD'94)
- add to each outer edge a path of length 3 (iterate ℓ times)

- not upward-planar
 (Papakostas GD'94)
- add to each outer edge a path of length 3 (iterate ℓ times)

 $n_{\ell} = 8 + \sum_{i=1}^{\ell} 8 \cdot 3^{i-1} \cdot 2 = 8 \cdot 3^{\ell}$

 $\Delta_\ell = 2\ell + 3$

- not upward-planar (Papakostas GD'94)
- add to each outer edge a path of length 3 (iterate ℓ times)
 G₀ not upward planar
 → there are two edges e, e' of G₀ crossing odd number of times

 $n_{\ell} = 8 + \sum_{i=1}^{\ell} 8 \cdot 3^{i-1} \cdot 2 = 8 \cdot 3^{\ell}$

 $\Delta_\ell = 2\ell + 3$

 $n_{\ell} = 8 + \sum_{i=1}^{\ell} 8 \cdot 3^{i-1} \cdot 2 = 8 \cdot 3^{\ell}$

- not upward-planar
 (Papakostas GD'94)
- add to each outer edge a path of length 3 (iterate ℓ times)
 G₀ not upward planar
 → there are two edges e, e' of G₀ crossing odd number of times
 not only (2,6) and (7,3) cross an odd number of times
 - $\leadsto e$ on the outer face of G_0
- There is a cycle C, length ≤ 6, crossed an odd number of times by e

- not upward-planar
 (Papakostas GD'94)
- add to each outer edge a path of length 3 (iterate ℓ times)
 G₀ not upward planar
 → there are two edges e, e' of G₀ crossing odd number of times
 not only (2,6) and (7,3) cross an odd number of times
 - $\leadsto e$ on the outer face of G_0
- There is a cycle C, length ≤ 6, crossed an odd number of times by e

 not upward-planar (Papakostas GD'94)

- add to each outer edge a path of length 3 (iterate ℓ times)
 G₀ not upward planar
 → there are two edges e, e' of G₀ crossing odd number of times
 not only (2,6) and (7,3) cross an odd number of times
 → e on the outer face of G₀
- There is a cycle C, length ≤ 6, crossed an odd number of times by e

- not upward-planar
 (Papakostas GD'94)
- add to each outer edge a path of length 3 (iterate ℓ times)
 G₀ not upward planar
 → there are two edges e, e' of G₀ crossing odd number of times
 not only (2,6) and (7,3) cross an odd number of times
 - $\leadsto e$ on the outer face of G_0
- There is a cycle C, length ≤ 6 , crossed an odd number of times by e

- not upward-planar (Papakostas GD'94)
- add to each outer edge a path of length 3 (iterate ℓ times)
 G₀ not upward planar
 → there are two edges e, e' of G₀ crossing odd number of times
 not only (2,6) and (7,3) cross an odd number of times
 - $\rightsquigarrow e$ on the outer face of G_0
- There is a cycle C, length ≤ 6, crossed an odd number of times by e

- not upward-planar
 (Papakostas GD'94)
- add to each outer edge a path of length 3 (iterate ℓ times)
 G₀ not upward planar
 → there are two edges e, e' of G₀ crossing odd number of times
 not only (2,6) and (7,3) cross
 - an odd number of times $\rightarrow e$ on the outer face of G_0
- There is a cycle C, length ≤ 6, crossed an odd number of times by e
- C crossed by $\ell+1$ paths

- not upward-planar
 (Papakostas GD'94)
- add to each outer edge a path of length 3 (iterate ℓ times)
 G₀ not upward planar
 → there are two edges e, e' of G₀ crossing odd number of times
 not only (2,6) and (7,3) cross an odd number of times
 → e on the outer face of G₀
- There is a cycle C, length ≤ 6, crossed an odd number of times by e

upward local crossing number $> \ell/6 \in \Omega(\log n_\ell) \cap \Omega(\Delta_\ell)$ ths

- Split G into fans.
- Draw fans respecting edge direction
 - apex rightmost within fan
 - no crossings on internal edges
 - external edges: ≤ 2 crossings

- Split G into fans.
- Draw fans respecting edge direction
 - apex rightmost within fan
 - no crossings on internal edges
 - external edges: ≤ 2 crossings

- Split G into fans.
- Draw fans respecting edge direction
 - apex rightmost within fan
 - no crossings on internal edges
 - external edges: ≤ 2 crossings

- Split G into fans.
- Draw fans respecting edge direction
 - apex rightmost within fan
 - no crossings on internal edges
 - external edges: ≤ 2 crossings

- Split G into fans.
- Draw fans respecting edge direction
 - apex rightmost within fan
 - no crossings on internal edges
 - external edges: ≤ 2 crossings

- Split G into fans.
- Draw fans respecting edge direction
 - apex rightmost within fan
- no crossings on internal edges
- external edges: ≤ 2 crossings

- Split G into fans.
- Draw fans respecting edge direction
 - apex rightmost within fan
 - no crossings on internal edges
 - external edges: ≤ 2 crossings

- Split G into fans.
- Draw fans respecting edge direction
 - apex rightmost within fan
 - no crossings on internal edges
 - external edges: ≤ 2 crossings

- Split G into fans.
- Draw fans respecting edge direction
 - apex rightmost within fan
 - no crossings on internal edges
 - external edges: ≤ 2 crossings

- Split G into fans.
- Draw fans respecting edge direction
 - apex rightmost within fan
 - no crossings on internal edges
 - external edges: ≤ 2 crossings

- Adjust height such that inter-fan edges are upward
- nest fans

- Split G into fans.
- Draw fans respecting edge direction
 - apex rightmost within fan
 - no crossings on internal edges
 - external edges: ≤ 2 crossings

- Adjust height such that inter-fan edges are upward
- nest fans

- Split G into fans.
- Draw fans respecting edge direction
 - apex rightmost within fan
 - no crossings on internal edges
 - external edges: ≤ 2 crossings

- Adjust height such that inter-fan edges are upward
- nest fans

- Split G into fans.
- Draw fans respecting edge direction
 - apex rightmost within fan
 - no crossings on internal edges
 - external edges: ≤ 2 crossings

- Adjust height such that inter-fan edges are upward
- nest fans

- Split G into fans.
- Draw fans respecting edge direction
 - apex rightmost within fan
 - no crossings on internal edges
 - external edges: ≤ 2 crossings

- Adjust height such that inter-fan edges are upward
- nest fans

- Split G into fans.
- Draw fans respecting edge direction
 - apex rightmost within fan
 - no crossings on internal edges
 - external edges: ≤ 2 crossings

 C_5

 C_3

- Adjust height such that inter-fan edges are upward
- nest fans
- Internal inter-fan edges ------are not crossed
- At most two crossings on external inter-fan edges------
- External intra-fan edges do not get more than two crossings in total

- Split G into fans.
 - Draw fans respecting edge direction
 - apex rightmost within fan
 - no crossings on internal edges
 - external edges: ≤ 2 crossings

 C_5

 C_3

Complexity Results

		Upward Planarity		Upward 1-Planarity	
Underlying	Acyclic	Fixed	Variable	Fixed rot.	Variable rot.
planar graph	orientation	embedding	embedding	system	system
Series- parallel	Multi-source Multi-sink	Р	Р		
	Single-source Single-sink	Р	Р		
General	Multi-source Multi-sink	Р	NPC		
	Single-source Single-sink	Р	P		

		Upward	Planarity	Upward 1-Planarity	
Underlying	Acyclic	Fixed	Variable	Fixed rot.	Variable rot.
planar graph	orientation	embedding	embedding	system	system
Series- parallel	Multi-source Multi-sink	Р	Р		
	Single-source Single-sink	Р	Р		
General	Multi-source Multi-sink	Р	NPC	NPC	NPC
	Single-source Single-sink	Р	Р	NPC	NPC

		Upward Planarity		Upward 1-Planarity	
Underlying	Acyclic	Fixed	Variable	Fixed rot.	Variable rot.
Series- parallel	Multi-source Multi-sink	P	P	NPC	NPC
	Single-source Single-sink	Р	Р	NPC	Р
General	Multi-source Multi-sink	Р	NPC	NPC	NPC
	Single-source Single-sink	Р	Р	NPC	NPC

		Upward Planarity		Upward 1-Planarity		
Underlying	Acyclic	Fixed	Variable	Fixed rot.	Variable rot.	
planar graph	orientation	embedding	embedding	system	system	
Series- parallel	Multi-source Multi-sink	Р	Р	NPC	NPC 1 so 2 sin	urce, iks
	Single-source Single-sink	Р	Р	NPC	Р	
General	Multi-source Multi-sink	Р	NPC	NPC	NPC	
	Single-source Single-sink	Р	Р	NPC One	$\frac{NPC}{K_4}$	
minor					-	

		Upward Planarity		Upward 1-Planarity		
Underlying	Acyclic	Fixed	Variable	Fixed rot.	Variable rot.	1
planar graph	orientation	embedding	embedding	system	system	
Series- parallel	Multi-source Multi-sink	Р	Р	NPC	NPC 1 so 2 sir	urce, nks
	Single-source Single-sink	Р	Р	NPC	P Ways upward p	anar
General	Multi-source Multi-sink	Р	NPC	NPC	NPC	
	Single-source Single-sink	Р	Р	NPC One	$\stackrel{\bullet}{\sim} K_4$	
				min	or	-

Based on the different settings, we identify two subgraphs that must cross each other

- Every source-sink path in a subgraph crosses every source-sink path in the other
- Both subgraphs have a single source and a single sink, and their underlying graph is series-parallel

3-Partition instance:

 $\mathsf{A} = \{2, 3, 5, 1, \dots\}$

 t_B Ο

 $\check{s_B}$

NP-hardness

Problem: Given a digraph G, test whether it admits an upward 1-planar drawing

Theorem: If all vertices are required to lie on the outer face, Upward 1-planarity can be tested in linear time for single-source DAGs

Problem: Given a digraph G, test whether it admits an upward 1-planar drawing

Theorem: If all vertices are required to lie on the outer face, Upward 1-planarity can be tested in linear time for single-source DAGs

Note: This *outer* setting has been studied for several classes of beyond-planar graphs

Problem: Given a digraph G, test whether it admits an upward 1-planar drawing

Theorem: If all vertices are required to lie on the outer face, Upward 1-planarity can be tested in linear time for single-source DAGs

<u>Note</u>: This *outer* setting has been studied for several classes of beyond-planar graphs In particular, in this *outer* setting, upward 1-planarity can be tested in linear time

- S.-H. Hong, P. Eades, N. Katoh, G. Liotta, P. Schweitzer, and Y. Suzuki. *A linear-time algorithm for testing outer-1-planarity*. Algorithmica, 2015.
- C. Auer, C. Bachmaier, F. J. Brandenburg, A. Gleißner, K. Hanauer, D. Neuwirth, and J. Reislhuber. *Outer 1-planar graphs.* Algorithmica, 2016.

Follows the approach of Auer et al.

Follows the approach of Auer et al.

Construct the SPQR-tree

Follows the approach of Auer et al.

Construct the SPQR-tree

The graph has a simple structure: R-nodes are K_4 and P-nodes have at most five neighbors

Follows the approach of Auer et al.

Construct the SPQR-tree

The graph has a simple structure: R-nodes are K_4 and P-nodes have at most five neighbors

It is enough to satisfy certain local conditions on the skeletons of the nodes, plus a single global conditions concerning adjacent nodes

Follows the approach of Auer et al.

Construct the SPQR-tree

The graph has a simple structure: R-nodes are K_4 and P-nodes have at most five neighbors

It is enough to satisfy certain local conditions on the skeletons of the nodes, plus a single global conditions concerning adjacent nodes

Each skeleton has a constant number of embeddings, with acyclic planarizations, satisfying the local properties \rightsquigarrow enumerate and check the global property!

Summary

- We defined upward k-planarity and upward local crossing number of DAGs
- We gave upper and lower bounds for various graph classes
- Upper 1-planarity testing is NP-complete

even for cases where upward-planarity testing is easy

- Upper outer-1-planarity testing can be done in linear time for single-source DAGs

Summary

- We defined upward k-planarity and upward local crossing number of DAGs
- We gave upper and lower bounds for various graph classes
- Upper 1-planarity testing is NP-complete

even for cases where upward-planarity testing is easy

- Upper outer-1-planarity testing can be done in linear time for single-source DAGs

Open Problems

- Is there a directed outerpath that does not admit an upward 1-planar drawing?
- Are outerplanar graphs upward $f(\Delta)$ -planar for some function f?
- Testing upward outer-1-planarity for multi-source/multi-sink DAGs
- Parameterized complexity of upward 1-planarity

Summary

- We defined upward k-planarity and upward local crossing number of DAGs
- We gave upper and lower bounds for various graph classes
- Upper 1-planarity testing is NP-complete

even for cases where upward-planarity testing is easy

Thank you!

- Upper outer-1-planarity testing can be done in linear time for single-source DAGs

Open Problems

- Is there a directed outerpath that does not admit an upward 1-planar drawing?
- Are outerplanar graphs upward $f(\Delta)$ -planar for some function f?
- Testing upward outer-1-planarity for multi-source/multi-sink DAGs
- Parameterized complexity of upward 1-planarity