The Price of Upwardness

GD 2024, Vienna, September 18–20

Beyond Planarity

 K_5 is not planar

 $- K_5$ has skewness 1 (removing 1 edge yields a planar graph) and planar

 K_5 is

- K_5 has skewness 1 (removing 1 edge yields a planar graph) and planar
- The crossing number of K_5 is 1 (there is one crossing in total)

 K_5 is

- K_5 has skewness 1 (removing 1 edge yields a planar graph) and planar
- The crossing number of K_5 is 1 (there is one crossing in total)
- K_5 is 1-planar (each edge is crossed at most once)

 K_5 is

- K_5 has skewness 1 (removing 1 edge yields a planar graph) and planar
- The crossing number of K_5 is 1 (there is one crossing in total)
- K_5 is 1-planar (each edge is crossed at most once)

 \rightsquigarrow the local crossing number of K_5 is 1

 K_5 is

- K_5 has skewness 1 (removing 1 edge yields a planar graph) and planar
- The crossing number of K_5 is 1 (there is one crossing in total)
- K_5 is 1-planar (each edge is crossed at most once)
 \rightsquigarrow the <u>local crossing number</u> of K_5 is 1

 K_5 is RAC (right angle crossing)

- → the <u>local crossing number</u> of K_5 is 1

 K_5 is RAC (right angle crossing)

 fan planar

 quasi planar, ... no X
- fan planar
-

 K_5 is

- K_5 has skewness 1 (removing 1 edge yields a planar graph) and planar
- The crossing number of K_5 is 1 (there is one crossing in total)
- K_5 is 1-planar (each edge is crossed at most once)
 \rightsquigarrow the <u>local crossing number</u> of K_5 is 1

 K_5 is RAC (right angle crossing)

- → the <u>local crossing number</u> of K_5 is 1

 K_5 is RAC (right angle crossing)

 fan planar

 quasi planar, . . . no X
- fan planar
-

What about beyond planarity for directed acyclic graphs?

- K_5 is
- K_5 has skewness 1 (removing 1 edge yields a planar graph) and planar
- The crossing number of K_5 is 1 (there is one crossing in total)
- K_5 is <u>1-planar</u> (each edge is crossed at most once)
 \rightsquigarrow the <u>local crossing number</u> of K_5 is 1

 K_5 is RAC (right angle crossing) — \leftrightarrow the local crossing number of K_5 is 1

— K_5 is RAC (right angle crossing)

— fan planar

— quasi planar, ... no X
-
- fan planar
-

What about beyond planarity for directed acyclic graphs?

upward k -planar drawing of a DAG:

drawing in which each edge is

- upward (montonone in y-direction)
- crossed at most k times

upward 18-planar drawing

upward k -planar drawing of a DAG:

drawing in which each edge is

- upward (montonone in y-direction)
- crossed at most k times

upward 5-planar drawing

upward k -planar drawing of a DAG:

drawing in which each edge is

- upward (montonone in y-direction)
- crossed at most k times

upward local crossing number of a DAG G :

minimum k such that G is upward k -planar

upward 5-planar drawing

upward k -planar drawing of a DAG:

drawing in which each edge is

- upward (montonone in y-direction)
- crossed at most k times

upward local crossing number of a DAG G :

minimum k such that G is upward k -planar

Can we do better than five?

upward k -planar drawing of a DAG:

drawing in which each edge is

- upward (montonone in y-direction)
- crossed at most k times

upward local crossing number of a DAG G :

minimum k such that G is upward k-planar

upward local crossing number is at most four

– monotone/upward crossing number (Valtr 2005, Fulek et al. 2013, Schaefer 2024)

- monotone/upward crossing number (Valtr 2005, Fulek et al. 2013, Schaefer 2024)
- In any upward drawing of a graph that is not upward-planar there is a pair of independent edges that crosses an odd number of times. (Fulek et al. 2013)

- monotone/upward crossing number (Valtr 2005, Fulek et al. 2013, Schaefer 2024)
- In any upward drawing of a graph that is not upward-planar there is a pair of independent edges that crosses an odd number of times. (Fulek et al. 2013)
-
- Upward book embeddings, minimize number of pages Frati, Fulek, Ruiz-Vargas GD'11 Binucci et al. SoCG'19 Bhore, Da Lozzo, Montecchiani, and Nöllenburg GD'21 Bekos et al. GD'22 - Linear layouts of directed graphs: draw vertices on a line in topological order

- Upward book embeddings, minimize number of pages

Frati, Fulek, Ruiz-Vargas GD'11

Binucci et al. SoCG'19

Bhore, Da Lozzo, Montecchiani,
	- Stack and Queue Number Heath, Pemmaraju, and Trenk 1999 Jungblut, Merker, Ueckerdt FOCS'23

Lower Bounds: In the worst case the upward local crossing number of

– fans (path + apex) is > 0 .

Lower Bounds: In the worst case the upward local crossing number of

– fans (path + apex) is > 0 .

– bipartite outerplanar DAGs is in $\Omega(\log n) \cap \Omega(\Delta)$.

Lower Bounds: In the worst case the upward local crossing number of

- fans (path + apex) is > 0 .
- bipartite outerplanar DAGs is in $\Omega(\log n) \cap \Omega(\Delta)$.
- bipartite DAGs of constant pathwidth is in $\Omega(n)$.

Lower Bounds: In the worst case the upward local crossing number of

- fans (path + apex) is > 0 .
- bipartite outerplanar DAGs is in $\Omega(\log n) \cap \Omega(\Delta)$.
- bipartite DAGs of constant pathwidth is in $\Omega(n)$.
- cubic DAGs is in $\Omega(n)$.

Lower Bounds: In the worst case the upward local crossing number of

- fans (path + apex) is > 0 .
- bipartite outerplanar DAGs is in $\Omega(\log n) \cap \Omega(\Delta)$.
- bipartite DAGs of constant pathwidth is in $\Omega(n)$.
- cubic DAGs is in $\Omega(n)$.

Upper Bounds:

Lower Bounds: In the worst case the upward local crossing number of

- fans (path + apex) is > 0 .
- bipartite outerplanar DAGs is in $\Omega(\log n) \cap \Omega(\Delta)$.
- bipartite DAGs of constant pathwidth is in $\Omega(n)$.
- cubic DAGs is in $\Omega(n)$.

Upper Bounds: The upward local crossing number

– of outer-paths is at most two.

Lower Bounds: In the worst case the upward local crossing number of

- fans (path $+$ apex) is > 0 .
- bipartite outerplanar DAGs is in $\Omega(\log n) \cap \Omega(\Delta)$.
- bipartite DAGs of constant pathwidth is in $\Omega(n)$.
- cubic DAGs is in $\Omega(n)$.

- of outer-paths is at most two.
- $-$ is in $\mathcal{O}(\Delta \cdot$ bandwidth)

Lower Bounds: In the worst case the upward local crossing number of

- fans (path $+$ apex) is > 0 .
- bipartite outerplanar DAGs is in $\Omega(\log n) \cap \Omega(\Delta)$.
- bipartite DAGs of constant pathwidth is in $\Omega(n)$.
- cubic DAGs is in $\Omega(n)$.

- of outer-paths is at most two.
-

$$
- \text{ is in } \mathcal{O}(\Delta \cdot \text{bandwidth}) \qquad \qquad \frac{1}{i} \qquad \frac{1}{i} \qquad \frac{1}{j}
$$
\n
$$
\rightsquigarrow \mathcal{O}(\frac{n\Delta}{\log_{\Delta} n}) \text{ for planar graphs, } \mathcal{O}(\sqrt{n}) \text{ for square grids}
$$

Lower Bounds: In the worst case the upward local crossing number of

- fans (path + apex) is > 0 .
- bipartite outerplanar DAGs is in $\Omega(\log n) \cap \Omega(\Delta)$.
- bipartite DAGs of constant pathwidth is in $\Omega(n)$.
- cubic DAGs is in $\Omega(n)$.

- of outer-paths is at most two.
- ⁿ) for square grids is in ^O(∆ · bandwidth) **1** i j

$$
\frac{1}{n}
$$

$$
\rightsquigarrow \mathcal{O}(\frac{n\Delta}{\log_\Delta n})
$$
 for planar graphs, $\mathcal{O}(\sqrt{n})$ for square grids

Lower Bounds: In the worst case the upward local crossing number of

- fans (path + apex) is > 0 .
- bipartite outerplanar DAGs is in $\Omega(\log n) \cap \Omega(\Delta)$.
- bipartite DAGs of constant pathwidth is in $\Omega(n)$. – cubic DAGs is in $\Omega(n)$. expected crossing number of a random cubic graph $\in \Omega(n^2)$ (Dujmović et al. SoCG'08)

Upper Bounds: The upward local crossing number

- of outer-paths is at most two.
- 1 i j n

$$
\mathscr{K}^{\mathscr{K}}\mathscr{K}
$$

 $\rightsquigarrow \mathcal{O}\left(\frac{n\Delta}{\log n}\right)$ $\log_\Delta n$) for planar graphs, $\mathcal{O}($ √ $-$ is in $\mathcal{O}(\Delta \cdot$ bandwidth)
 $\rightsquigarrow \mathcal{O}(\frac{n\Delta}{\log n})$ for planar graphs, $\mathcal{O}(\sqrt{n})$ for square grids

Lower Bounds: In the worst case the upward local crossing number of

- fans (path + apex) is > 0 .
- bipartite outerplanar DAGs is in $\Omega(\log n) \cap \Omega(\Delta)$.
- bipartite DAGs of constant pathwidth is in $\Omega(n)$. – cubic DAGs is in $\Omega(n)$. expected crossing number of a random cubic graph $\in \Omega(n^2)$ (Dujmović et al. SoCG'08)

- of outer-paths is at most two.
- $-$ is in $\mathcal{O}(\Delta \cdot$ bandwidth)

two.
1.
$$
W
$$

$$
\rightsquigarrow \mathcal{O}(\frac{n\Delta}{\log_\Delta n})
$$
 for planar graphs, $\mathcal{O}(\sqrt{n})$ for square grids

LB: Bipartite Outerplanar DAGs

– not upward-planar (Papakostas GD'94)

LB: Bipartite Outerplanar DAGs

- not upward-planar (Papakostas GD'94)
- add to each outer edge a path of length 3 (iterate ℓ times)

- not upward-planar (Papakostas GD'94)
- add to each outer edge a path of length 3 (iterate ℓ times)

- not upward-planar (Papakostas GD'94)
- add to each outer edge a path

 $n_\ell=8+\sum_{i=1}^\ell 8\cdot 3^{i-1}\cdot 2=8\cdot 3^\ell$

 $\Delta_{\ell}=2\ell+3$

- not upward-planar (Papakostas GD'94)
- add to each outer edge a path $\,G_{0}$ not upward planar \rightsquigarrow there are two edges e, e' of G_0 crossing odd number of times

 $n_\ell=8+\sum_{i=1}^\ell 8\cdot 3^{i-1}\cdot 2=8\cdot 3^\ell$

 $\Delta_{\ell}=2\ell+3$

 $n_\ell=8+\sum_{i=1}^\ell 8\cdot 3^{i-1}\cdot 2=8\cdot 3^\ell$

 $n_\ell=8+\sum_{i=1}^\ell 8\cdot 3^{i-1}\cdot 2=8\cdot 3^\ell$

- not upward-planar (Papakostas GD'94)
- not only $(2, 6)$ and $(7, 3)$ cross an odd number of times $\rightsquigarrow e$ on the outer face of G_0 – add to each outer edge a path $\,G_{0}\,$ not upward planar \rightsquigarrow there are two edges e, e' of G_0 crossing odd number of times
- There is a cycle C, length ≤ 6 , crossed an odd number of times by e

- not upward-planar (Papakostas GD'94)
- not only $(2, 6)$ and $(7, 3)$ cross an odd number of times $\rightsquigarrow e$ on the outer face of G_0 – add to each outer edge a path $\,G_{0}\,$ not upward planar \rightsquigarrow there are two edges e, e' of G_0 crossing odd number of times
- There is a cycle C, length ≤ 6 , crossed an odd number of times by e

 $n_\ell=8+\sum_{i=1}^\ell 8\cdot 3^{i-1}\cdot 2=8\cdot 3^\ell$

- not upward-planar (Papakostas GD'94)
- not only $(2, 6)$ and $(7, 3)$ cross an odd number of times $\rightsquigarrow e$ on the outer face of G_0 – add to each outer edge a path $\,G_{0}\,$ not upward planar \rightsquigarrow there are two edges e, e' of G_0 crossing odd number of times
- There is a cycle C, length ≤ 6 , crossed an odd number of times by e

 $n_\ell=8+\sum_{i=1}^\ell 8\cdot 3^{i-1}\cdot 2=8\cdot 3^\ell$

- not upward-planar (Papakostas GD'94)
- not only $(2, 6)$ and $(7, 3)$ cross an odd number of times \rightsquigarrow e on the outer face of G_0 – add to each outer edge a path $\,G_{0}\,$ not upward planar \rightsquigarrow there are two edges e, e' of G_0 crossing odd number of times
- There is a cycle C, length ≤ 6 , crossed an odd number of times by e

- not upward-planar (Papakostas GD'94)
- not only $(2, 6)$ and $(7, 3)$ cross an odd number of times $\rightsquigarrow e$ on the outer face of G_0 – add to each outer edge a path $\,G_{0}\,$ not upward planar \rightsquigarrow there are two edges e, e' of G_0 crossing odd number of times
- There is a cycle C, length ≤ 6 , crossed an odd number of times by e

- not upward-planar (Papakostas GD'94)
- not only $(2, 6)$ and $(7, 3)$ cross an odd number of times – add to each outer edge a path $\,G_{0}\,$ not upward planar \rightsquigarrow there are two edges e, e' of G_0 crossing odd number of times

 \rightsquigarrow e on the outer face of G_0

- There is a cycle C, length ≤ 6 , crossed an odd number of times by e
-

- not upward-planar (Papakostas GD'94)
- not only $(2, 6)$ and $(7, 3)$ cross an odd number of times \rightsquigarrow e on the outer face of G_0 – add to each outer edge a path $\,G_{0}\,$ not upward planar \rightsquigarrow there are two edges e, e' of G_0 crossing odd number of times
- There is a cycle C, length ≤ 6 , crossed an odd number of times by e

upward local crossing number $> \ell/6 \in \Omega(\log n_\ell) \cap \Omega(\Delta_\ell)$

- $-$ Split G into fans.
- Draw fans respecting edge direction
	- apex rightmost within fan
	- no crossings on internal edges
	- external edges: ≤ 2 crossings

- $-$ Split G into fans.
- Draw fans respecting edge direction
	- apex rightmost within fan
	- no crossings on internal edges
	- external edges: ≤ 2 crossings

- $-$ Split G into fans.
- Draw fans respecting edge direction
	- apex rightmost within fan
	- no crossings on internal edges
	- external edges: ≤ 2 crossings

- $-$ Split G into fans.
- Draw fans respecting edge direction
	- apex rightmost within fan
	- no crossings on internal edges
	- external edges: ≤ 2 crossings

- $-$ Split G into fans.
- Draw fans respecting edge direction
	- apex rightmost within fan
	- no crossings on internal edges
	- $-$ external edges: ≤ 2 crossings

- Split G into fans.
- Draw fans respecting edge direction
- apex rightmost within fan
- no crossings on internal edges
- external edges: ≤ 2 crossings

- $-$ Split G into fans.
- Draw fans respecting edge direction
	- apex rightmost within fan
	- no crossings on internal edges
	- external edges: ≤ 2 crossings

- $-$ Split G into fans.
- Draw fans respecting edge direction
	- apex rightmost within fan
	- no crossings on internal edges
	- external edges: ≤ 2 crossings

- $-$ Split G into fans.
- Draw fans respecting edge direction
	- apex rightmost within fan
	- no crossings on internal edges
	- external edges: ≤ 2 crossings

- $-$ Split G into fans.
- Draw fans respecting edge direction
	- apex rightmost within fan
	- no crossings on internal edges
	- external edges: ≤ 2 crossings

- Adjust height such that inter-fan edges are upward
-
- $-$ Split G into fans.
- Draw fans respecting edge direction
	- apex rightmost within fan
	- no crossings on internal edges
	- external edges: ≤ 2 crossings

- Adjust height such that inter-fan edges are upward
-
- $-$ Split G into fans.
- Draw fans respecting edge direction
	- apex rightmost within fan
	- no crossings on internal edges
	- external edges: ≤ 2 crossings

- Adjust height such that inter-fan edges are upward
-
- $-$ Split G into fans.
- Draw fans respecting edge direction
	- apex rightmost within fan
	- no crossings on internal edges
	- external edges: ≤ 2 crossings

- Adjust height such that inter-fan edges are upward
-
- $-$ Split G into fans.
- Draw fans respecting edge direction
	- apex rightmost within fan
	- no crossings on internal edges
	- external edges: ≤ 2 crossings

- Adjust height such that inter-fan edges are upward
- nest fans and the contract of $\sqrt{\left(\frac{1}{2} + \frac{1}{2} +$
- $-$ Split G into fans.
- Draw fans respecting edge direction
	- apex rightmost within fan

 \overline{c}_1

- no crossings on internal edges
- external edges: ≤ 2 crossings such that
s are upward
 $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$

 \dot{c}_2

 c_3

 \mathcal{C}_5

- Adjust height such that inter-fan edges are upward
- nest fans ^c⁴
- Internal inter-fan edges are not crossed
- At most two crossings on external inter-fan edges
- External intra-fan edges do not get more than two crossings in total more than two crossings
- $-$ Split G into fans.
	- Draw fans respecting edge direction
		- apex rightmost within fan

 \overline{c}_1

- no crossings on internal edges
- external edges: ≤ 2 crossings

 \dot{c}_2

 C_3

Complexity Results

Based on the different settings, we identify two subgraphs that must cross each other

-
- Both subgraphs have a single source and a single sink, and their underlying graph - Every source-sink path in a subgraph crosses every source-sink path in the other
- Both subgraphs have a single source and a single sink, and their underlying grap
is series-parallel

3-Partition instance:

 $A = \{2, 3, 5, 1, \dots\}$

 $\stackrel{\mathtt{o}}{s}_B$

 t_B

NP-hardness

Problem: Given a digraph G , test whether it admits an upward 1-planar drawing

Theorem: If all vertices are required to lie on the outer face, Upward 1-planarity can be tested in linear time for single-source DAGs

Problem: Given a digraph G , test whether it admits an upward 1-planar drawing

Theorem: If all vertices are required to lie on the outer face, Upward 1-planarity can be tested in linear time for single-source DAGs

Note: This outer setting has been studied for several classes of beyond-planar graphs

Problem: Given a digraph G , test whether it admits an upward 1-planar drawing

Theorem: If all vertices are required to lie on the outer face, Upward 1-planarity can be tested in linear time for single-source DAGs

Note: This outer setting has been studied for several classes of beyond-planar graphs In particular, in this *outer* setting, upward 1-planarity can be tested in linear time

- S.-H. Hong, P. Eades, N. Katoh, G. Liotta, P. Schweitzer, and Y. Suzuki. A linear-time algorithm for testing outer-1-planarity. Algorithmica, 2015.
- C. Auer, C. Bachmaier, F. J. Brandenburg, A. Gleißner, K. Hanauer, D. Neuwirth, and J. Reislhuber. Outer 1-planar graphs. Algorithmica, 2016.

Follows the approach of Auer et al.

Follows the approach of Auer et al.

Construct the SPQR-tree

Follows the approach of Auer et al.

Construct the SPQR-tree

The graph has a simple structure: R-nodes are K_4 and P-nodes have at most five neighbors

Follows the approach of Auer et al.

Construct the SPQR-tree

The graph has a simple structure: R-nodes are K_4 and P-nodes have at most five neighbors

It is enough to satisfy certain local conditions on the skeletons of the nodes, plus a single global conditions concerning adjacent nodes

Follows the approach of Auer et al.

Construct the SPQR-tree

The graph has a simple structure: R-nodes are K_4 and P-nodes have at most five neighbors

It is enough to satisfy certain local conditions on the skeletons of the nodes, plus a single global conditions concerning adjacent nodes

Each skeleton has a constant number of embeddings, with acyclic planarizations, satisfying the local properties \rightsquigarrow enumerate and check the global property!

Summary

- We defined upward k -planarity and upward local crossing number of DAGs
- We gave upper and lower bounds for various graph classes
- Upper 1-planarity testing is NP-complete

even for cases where upward-planarity testing is easy

– Upper outer-1-planarity testing can be done in linear time for single-source DAGs

Summary

- We defined upward k-planarity and upward local crossing number of DAGs
- We gave upper and lower bounds for various graph classes
- Upper 1-planarity testing is NP-complete

even for cases where upward-planarity testing is easy

– Upper outer-1-planarity testing can be done in linear time for single-source DAGs

Open Problems

-
- Is there a directed outerpath that does not admit an upward 1-planar drawing?
– Are outerplanar graphs upward $f(∆)$ -planar for some function f?
– Testing upward outer-1-planarity for multi-source/multi-sink DAGs
– Pa
- Testing upward outer-1-planarity for multi-source/multi-sink DAGs
-

Summary

-
-
- Upper 1-planarity testing is NP-complete

even for cases where upward-planarity testing is easy

- We defined upward k-planarity and upward local crossing number of DAGs

- We gave upper and lower bounds for various graph classes

- Upper 1-planarity testing is NP-complete

even for cases where upward-planarity testi – Upper outer-1-planarity testing can be done in linear time for single-source DAGs

Open Problems

-
-
- Testing upward outer-1-planarity for multi-source/multi-sink DAGs – Is there a directed outerpath that does not admit an upward 1-planar drawing?
– Are outerplanar graphs upward $f(∆)$ -planar for some function f ?
– Testing upward outer-1-planarity for multi-source/multi-sink DAGs
–
-