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Problem Definition

upward k-planar drawing of a DAG:

drawing in which each edge is

– upward (montonone in y-direction)
– crossed at most k times

upward local crossing number of a DAG G:

minimum k such that G is upward k-planar

upward local crossing number is at most four
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Previous Results

– monotone/upward crossing number (Valtr 2005, Fulek et al. 2013, Schaefer 2024)

– In any upward drawing of a graph that is not upward-planar there is a pair of
independent edges that crosses an odd number of times. (Fulek et al. 2013)

– Upward book embeddings, minimize number of pages
Frati, Fulek, Ruiz-Vargas GD’11
Binucci et al. SoCG’19
Bhore, Da Lozzo, Montecchiani, and Nöllenburg GD’21
Bekos et al. GD’22

– Stack and Queue Number
Heath, Pemmaraju, and Trenk 1999
Jungblut, Merker, Ueckerdt FOCS’23
Nöllenburg and Pupyrev GD’23

– Linear layouts of directed graphs: draw vertices on a line in topological order
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crossed an odd number of times
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If there are no two outer edges of G0 that
cross an odd number of times . . . then e
crosses all edges of C bit e′ an even number
of times. Thus, it crosses C an odd number
of times.
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odd number of times, continues with that edge
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procedure will eventually end.
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c1 c2

c2

c3

c4

c1

– Split G into fans.

If the subpath is – say – below the apex, and the last
part of the subpath goes up (i.e. it goes towards the
apex in y-direction), draw it inside
⇝ crossing in green path when changing to subpaths
above the apex

– Draw fans respecting edge direction
– apex rightmost within fan
– no crossings on internal edges
– external edges: ≤ 2 crossingsc5
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c1

– Split G into fans.

a second crossing might happen when going
back from the next subpath
But no more crossings can occur on that edge.
(attention: here the subpath starts from above
the apex)

– Draw fans respecting edge direction
– apex rightmost within fan
– no crossings on internal edges
– external edges: ≤ 2 crossingsc5
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c1

c2

c3

c4

c1

– Split G into fans.

– Adjust height such that
inter-fan edges are upward

c2
– nest fans

c4

c3

c5

– Draw fans respecting edge direction
– apex rightmost within fan
– no crossings on internal edges
– external edges: ≤ 2 crossings

special case: the apex c5 in the last fan is above c4, the first
vertex in the last fan is above cv and the complete first subpath
goes up. So the edge connecting the first and the second
subpath cannot be drawn around all fans. But that doesn’t
mattet, since it does not create new crossings.

c5



UP: Outer Paths

c1

c2

c3

c4

c1

– Split G into fans.

– Adjust height such that
inter-fan edges are upward

c2
– nest fans

c4

c3
– Internal inter-fan edges

are not crossed
– At most two crossings

on external inter-fan edges

– External intra-fan edges do not get
more than two crossings in total

c5

– Draw fans respecting edge direction
– apex rightmost within fan
– no crossings on internal edges
– external edges: ≤ 2 crossingsc5
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NP-hardness
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s
sA

t

Based on the different settings, we identify two subgraphs that must cross each other

– Both subgraphs have a single source and a single sink, and their underlying graph
is series-parallel

– Every source-sink path in a subgraph crosses every source-sink path in the other
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A Positive Result

Problem: Given a digraph G, test whether it admits an upward 1-planar drawing

Theorem: If all vertices are required to lie on the outer face, Upward 1-planarity can
be tested in linear time for single-source DAGs

Note: This outer setting has been studied for several classes of beyond-planar graphs

In particular, in this outer setting, upward 1-planarity can be tested in linear time

– C. Auer, C. Bachmaier, F. J. Brandenburg, A. Gleißner, K. Hanauer, D. Neuwirth,
and J. Reislhuber. Outer 1-planar graphs. Algorithmica, 2016.

– S.-H. Hong, P. Eades, N. Katoh, G. Liotta, P. Schweitzer, and Y. Suzuki. A
linear-time algorithm for testing outer-1-planarity. Algorithmica, 2015.
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Linear-time algorithm for upward outer 1-planarity: Main ingredients

Follows the approach of Auer et al.

Construct the SPQR-tree

The graph has a simple structure: R-nodes are K4 and P-nodes have at most five
neighbors

It is enough to satisfy certain local conditions on the skeletons of the nodes, plus a
single global conditions concerning adjacent nodes

v

v′

u

u′

u
v

u′
v′

Each skeleton has a constant number of embeddings, with acyclic planarizations,
satisfying the local properties ⇝ enumerate and check the global property!
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