(will be inserted by the editor)

Computer Science — Research and Development manuscript No.

Alexander Wolff

Drawing Subway Maps: A Survey

Received: July 9, 2007 / Revised: November 5, 2007 / DOI: 10.1007/s00450-007-0036-y

Abstract This paper deals with automating the draw-
ing of subway maps. There are two features of schematic
subway maps that make them different from drawings
of other networks such as flow charts or organigrams.
First, most schematic subway maps use not only hori-
zontal and vertical lines, but also diagonals. This gives
more flexibility in the layout process, but it also makes
the problem provably hard. Second, a subway map repre-
sents a network whose components have geographic loca-
tions that are roughly known to the users of such a map.
This knowledge must be respected during the search for a
clear layout of the network. For the sake of visual clarity
the underlying geography may be distorted, but it must
not be given up, otherwise map users will be hopelessly
confused.

In this paper we first give a rather generally accepted
list of rules that should be adhered to by a good subway
map. Next we survey three recent methods for draw-
ing subway maps, analyze their performance with re-
spect to the above rules, and compare the resulting maps
among each other and to official subway maps drawn by
graphic designers. We then focus on one of the methods,
which is based on mixed-integer linear programming, a
widely-used global optimization technique. This method
guarantees to find a drawing that fulfills a subset of the
above-mentioned rules (if such a drawing exists) and op-
timizes a weighted sum of costs that correspond to the
remaining rules. The method can draw even large sub-
way networks such as the London Underground in an
aesthetically pleasing manner, similar to maps made by
professional graphic designers. If station labels are in-
cluded in the optimization process, so far only medium-
size networks can be drawn. Finally we give evidence why
drawing good subway maps is difficult (even without la-
bels).

Work supported by grant WO 758/4-2 of the German Re-
search Foundation (DFG).

Faculteit Wiskunde en Informatica, Technische Universiteit
Eindhoven, Postbus 513, 5600 MB Eindhoven, the Nether-
lands, WWW: http://www.win.tue.nl/ awolff

Keywords Graph drawing - Graph labeling - Subway
map - Octilinear layout - Mixed-integer program -
NP-hard

Mathematics Subject Classification (2000) 05C62 -
90C90 - 68Q17

1 Introduction

A subway map is a schematic drawing of the underlying
geographic network that represents the different stations
and subway lines of a subway system. Its purpose is to
ease navigation in the network for passengers. Passen-
gers want to quickly answer questions like: How do I get
from A to B? Where do I have to change trains? How
many stops are left? Where to get off? Exact geogra-
phy is not only unnecessary for answering these kinds of
questions, it can be even hindering. This fact has first
been discovered and exploited by Harry Beck, an engi-
neering draftsman, who created the first schematic map
of the London Underground in 1933. This map and the
fate of Harry Beck are interesting stories in their own
right. Garland has devoted a book to them [14], which
is very worth reading. Beck designed his map accord-
ing to a simple set of rules: Meandering transport lines
are straightened and restricted to horizontals, verticals,
and diagonals at 45° (we will call such a layout octi-
linear). The scale in crowded downtown areas is larger
than in less dense suburbs in order to create more uni-
form distances between adjacent stations. In spite of all
distortion, the network topology and a general sense of
the geometry, e.g., a certain relative position between
subway stations, is retained. These principles also ap-
ply to the majority of contemporary, manually designed
subway maps [21, 26].

A transport network can naturally be represented as
a graph, where vertices correspond to stations and edges
correspond to physical connections between the incident
stations. The true location of stations and tracks deter-
mines the input layout of the network. This layout is

Alexander Wolff

usually planar (otherwise it can be planarized by intro-
ducing dummy vertices at junctions) and hence defines a
topological input embedding by specifying for each ver-
tex the clockwise order of all adjacent vertices. A lay-
out algorithm basically needs to find vertex positions in
the plane such that some desired aesthetic criteria are
fulfilled or optimized, e.g., the final drawing should pre-
serve the input topology or have few bends along the
individual subway lines, and roughly preserve the input
geometry. Since subway stations must be labeled, a lay-
out algorithm for the network also needs to consider the
space that labels require as these labels must neither
overlap with each other nor with parts of the network
layout.

The notion of a subway map as we discuss it here is an
interesting compromise between schematic road maps [8]
where vertex positions are (mostly) fixed and “conven-
tional” graph drawing where vertices can go anywhere.
The first approach aims at maintaining the user’s mental
map, the second approach aims at maximizing aesthet-
ics, such as symmetry.

Interestingly enough, the layout principles of subway
maps have not only been used in a geographic setting.
Sandvad et al. [29] and Nesbitt [22] use the metro-map
metaphor as a way to visualize abstract information re-
lated to the Internet and “trains of thoughts”, respec-
tively. The metro-map metaphor has inspired artists and
has been used in advertisement, see Figures 1 and 2,
respectively, for particularly nice examples. Stott et
al. [32] present a prototype tool to draw project plans
in a subway-map style. Technical and engineering appli-
cations of schematic graph layouts, which are currently
predominated by orthogonal layouts, can also take ad-
vantage of octilinear graph drawing. The main benefit of
octilinear layouts is that they potentially use less space
and fewer bends while still being very tidy. For exam-
ple in VLSI design the X Architecture [36] is a recent
effort for producing octilinear chip layouts. A different
application is to compute schematic layouts of sketches
of graphs, a concept introduced by Brandes et al. [7]. A
sketch can be handmade or the physical embedding of
a geometric network like the real position of telephone
cables. Brandes et al. give an efficient algorithm for com-
puting an orthogonal drawing of a sketch. However, their
algorithm cannot be extended to more than four direc-
tions. This is another possible application area for meth-
ods that can draw subway-style maps.

Overview. This article is structured as follows.

First, we give a rather generally accepted list of rules
that should be adhered to by a good subway map, see
Section 2.

The main contribution of this article is a survey of
three methods for drawing subway maps that have re-
cently been suggested. All of them rely on some under-
lying optimization machinery, which is tuned in order to
get drawings that fulfill the above rules as best as possi-

THE TATE GALLERY

hy Tithe

Fig. 1: Poster for the Tate Gallery.

ble. The first of the three methods, by Hong et al. [15],
is based on a spring embedder, a force-directed graph-
layout method. The attracting and repelling forces that
drive the movement of the vertices stem from a physical
model. They are computed incrementally by a simulated-
annealing-like local-optimization algorithm. The second
method, by Stott and Rodgers [30], uses multi-criteria
optimization based on hill climbing, a popular general-
purpose local-optimization technique. The third method,
by Noéllenburg and Wollf [25], relies on mixed-integer pro-
gramming, a widely used global-optimization technique.
Mixed-integer programming is very powerful, but care
needs to be taken to avoid long running times. We ana-
lyze the performance of the three methods with respect
to the above list of rules and compare their output at
a benchmark (the CityRail network of Sydney) that has
been tested by all of them.

Next we focus on the method based on mixed-integer
programming [25] since it is the only method that guar-
antees octilinearity, which, in our opinion, is essential
for a clear layout of subway maps, see Section 4. It is

Drawing Subway Maps: A Survey

REILL

Web Perl
Technologie &
Gesellschaft

Programmieren mit Perl DBI

KONSORTEN

Peer-to-Peer

2003 OPEN SOURCE ROUTE MAP

Linux

Technologie & Gesellschaft

Beyond Contact Writing Apache Modules Programmieren von Freeasin Open Sources Database The Cathedral . o
with Perl and C. Grafiken mit Perl Freedom Nation &TheBazaar @ Sichere Server mit Linux
SSH-Das Seeurrey pert far P &P Managing RAID on Linux
umfassende with Exim: The Mail Unix System-
Handbuch OpenSSL Administration | Transfer Agent Samba sendmail inis i Linux - Wegweiser fiir
Netzwerk- Apache — Netzwerk- & System-
& System- D’; “"“'35“"‘:: Samba kurz & gut . . Administration
Administration elerenzwe vi kurz & gut L Linux
Perl in a Nutshell ::jx *'fl ﬂ":.': in a Nutshell
Apache Perl fiir Website- 8
kurz & gut, Management Mac0s X
Programming Web Writing GNU Emacs
Services with Perl Extensions Nutshell &
Advanced Perl N
PerliTk Programming Learning GNU Emacs Mac 05 X
Pocket Reference practical mod.pert PHP Kochbuch Effective awk kurz & gut
/ ctical mod_per Programming \
Agorithmen Programmieren mit PHP Mac 05 X:
ot sed & awk The Missing
’ i Manual
Nutshell & Creating Applications :encvng?:.tung mit anual
Regulire Ausdriicke § with Mozilla MySQL Reference Manual en vi-=ditor Einfiihrung in
Unix — Ein praktischer || Unix fiir Mac 05X
. Einstieg
] Mastering PerlTk MySQL Cookbook] nix Mac 05 X
Using csh ! Programming Power for Unix TelMe
& tcsh Learning the Korn Shell mit_ Perl with Qt Tools Developers in a Nutshell
s Bioinformatik Unix Python in Webdatenbank- MySQL - Practical Programming Exploring Learning V4 Unix
aNutshell Python kurz & gut applikationen mit Einsatz & PostgreSQL with GNU Expect the bash
— Java” porl Kochbuch & PHP & MySQL Programmierung Software Shell ‘AppleScript
—Linux Python Cookbook Linux ina Nutshell
N Einfiihirung in Per| @@ Learning Perl on Server Hacks v
— Mac OS X Win 32 Systems Web Services Essentials 'GNU Emacs
as Python Standard-Bibliothek kurz & gut
s Netzwerk- & System- Perl L
Administration s Jlwrz &gut xyina = e in 2
Programming Python @@ Python utshe
s Nutshell & Taschen- Programming Linux Geritetreiber
bibliothek (kurz & gut) L . on Win32 Mason
Einfiihrung in Python e
pert DocBook: The Definitive Guide Understanding
_ Einfilhrung in XML the Linux Kernel
s Python
b i Linux — Wegweiser zur
s Technologie & Gesellschaft Jython, Web, Graphics & Perl/Tk: Installation & Konfiguration
Essentials Best of The Perl Journal
; XML Schema
mm— Unix ¢ cer Science & Perl P . Linux Security Cookbook
_ omputer Science & Perl Programming:
— Web HTML &XHTML Best of The Perl Journal
Das umfassende Learning Red Hat Linux
— XML Referenzwerk 2
Games, Diversions & Perl Culture:
Best of The Perl Journal NetBeans: Ant: The Building Embedded
; Einfiihrung in Perl The Definitive Definitive .
www.oreilly.de Java™ & XML Tiir Bioi i i ics Computer Skills Guide Guide Linux Systems
XML A Y T
Die Griibelei hat ein Ende! Python Perl Web Linux

Biicher von O'Reilly

Fig. 2: Open source product lines of the publisher O’Reilly. Interchange stations represent books that simultaneously belong

to two product lines.

also the first method dedicated to drawing subway maps
that uses global optimization and thus avoids getting
trapped in local minima. This contrasts with the other
two methods based on local optimization. However, since
no fast algorithm for solving general mixed-integer pro-
grams (MIPs) is known, we sketch some heuristic data
reduction and speed-up methods, which are important
for solving larger instances. We also sketch how to ex-
tend the basic MIP to combine graph drawing with the
placement of non-overlapping station labels.

This combined discipline has been called graph label-
ing by Klau and Mutzel [17]. Klau and Mutzel [17] and
Binucci et al. [6] have used MIP formulations for graph
labeling before. However, their methods follow Tamas-
sia’s topology-shape-metrics approach [34], which is a com-
mon approach for drawing graphs orthogonally. The ap-
proach consists of three steps: planarization, orthogonal-
ization, and compaction. The first step fixes the embed-
ding, the second step its shape (for each edge the se-
quence of its bends and their angles is determined), and
the third step the coordinates of the vertices and the
bends. Tamassia [34] mentions that his approach for or-

thogonal graph drawing carries over to hexagonal (i.e.,
60°-) drawings, but that the third step fails for drawings
with smaller angles (such as 45° in the case of octilinear
drawings).

As a justification for the use of the heavy-weight MIP
machinery, we then give Néllenburg’s beautiful proof [24]
of the NP-hardness of a restricted version of the subway-
layout problem, namely deciding whether a given embed-
ded graph can be drawn using straight octilinear edges.
The proof reminds of the mechanical constructions that
boys used to build with a Meccano or Marklin model
construction kit, see Section 5. The hardness of octilinear
graph drawing is in sharp contrast to orthogonal graph
drawing, which Tamassia [34] showed to be efficiently
solvable by his topology-shape-metrics approach.

We conclude with some thoughts about the remain-
ing differences between hand- and machine-made subway
maps, and give an open problem in Section 6.

Before turning to our list of rules for good subway
maps, we refer the interested reader to a very nicely writ-
ten general-audience (German) newspaper article [27]

Alexander Wolff

about the drawing of subway networks. It includes some
interesting historic notes.

2 Rules

In this section we list and motivate rules that a good
subway map should adhere to. Each of the rules is either
implicit or explicit in at least two of the papers of Hong
et al. [15], Stott and Rodgers [30], and Noéllenburg and
Wolff [25], whose algorithms we will discuss in the next
section. The reader is invited to study the book of Oven-
den [26], which contains an abundance of subway maps
from all over the world, in order to make up his own
mind as to which set of rules is the right one. It is an in-
teresting cartographic question whether the rules behind
existing subway maps are in fact the most user-friendly
choices. For example it is hard to estimate distances or
travel times in a subway map. Pairs of stations with the
same distance in the subway map might actually be sev-
eral kilometers apart in peripheral parts but only a few
hundred meters in the city center. User studies ought
to be made in order to evaluate to which extend cur-
rent subway maps actually support subway passengers
in quickly making the right decisions.

Before listing the rules, we quickly fix some notation
roughly following Di Battista et al. [10]. Given a graph
G = (V,E) we say that ¢ is a drawing of G if § maps
each vertex v of G to a distinct point §(v) of the plane
and each edge {u, v} to a simple (Jordan) curve that con-
nects d(u) and §(v). A drawing is plane if for any pair of
edges, the corresponding curves have at most endpoints
in common. Recall that a graph is planar if it has a plane
drawing. A plane drawing partitions the plane into con-
nected regions called faces. The unbounded face is also
referred to as outer face. An embedding is a useful ab-
straction of plane drawings: it fixes the circular ordering
of the edges around each vertex and the choice of the
outer face. Now we can say that a graph is plane if is
planar and is given with a (plane) embedding.

We assume that we are given a simple plane graph G,
to which we refer as the subway graph. We also assume
that we are given a location m(v) € R? for each vertex
v of G. These locations will usually be the locations of
the subway stations on a geographic map. (Note that the
locations do not define the embedding since we do not
assume that the subway graph has straight-line edges.)

(R1) Keep the input embedding. This supports the men-
tal (network) map of the passengers.

Restrict all line segments to the four octilinear ori-
entations horizontal, vertical, and both diagonals
at 45°. Each orientation has two directions. This
restriction makes maps clearer.

Ensure that adjacent and non-adjacent stations keep
a certain minimum distance. This increases the
readability of the map.

(R2)

(R3)

(R4) Keep the number of bends along a given subway
line small, especially in interchange stations where
several lines meet. If bends cannot be avoided, ob-
tuse angles are preferred over acute angles, i.e., the
order of preference is 135°, 90°, and 45°. This rule
helps passengers to follow a subway line with their
eyes.

Preserve the relative position between subway sta-
tions. For example, a station being north of some
other station in reality should not appear below
that station on the map. This supports the (geo-
graphic) mental map of the passengers.

Keep the total edge length of the network small.
This indirectly makes sure that dense regions of
the map get a larger share of the available space.
Together with rule (R3) this also keeps distances
between adjacent stations as uniform as possible.
Rule (R6) supports the clarity of the layout.
Color each edge according to the lines to which it
belongs. This assumes that each line has a unique
color. If an edge {u,v} belongs to k lines, then
k copies of that edge (so-called multi-edges) must
be drawn. Their order along {u,v} should be as
consistent as possible with orders along other edges
incident to u or v. Coloring is essential to help map
users to follow a line with their eyes.

Label stations with their names, and make sure
that labels do not obscure other labels or parts
of the network. Preferably all labels between two
interchange stations are placed on the same side of
the line; stations on a horizontal line may also be
alternatingly labeled above and below the line to
save space. Labels are essential for a readable map.

(R7)

Clearly, each subway map can only be a compromise of
the above criteria. For example, a map with a minimum
number of line bends could drastically distort the mental
map and, conversely, preserving the mental map could
require a large number of bends.

Now we want to state the subway-map layout problem
as formally as possible at this point. Let £ be a line
cover of G, i.e., a set of paths and cycles of G such that
each edge of G belongs to at least one element of L.
An element L € L is called a line and corresponds to a
subway line of the underlying transport network.

To keep the problem description concise, we do not
insist on coloring (multi-) edges (rule (R7)) and placing
station labels (rule (R8)) for now. Subway lines still play
a role when it comes to counting bends, see rule (R4).
The ordering of the (line-colored) multi-edges along an
edge of GG is an interesting research topic by itself and has
found some attention recently [3,4]. For more on label
placement, see Section 4.6.

Problem 1 (Subway-Map Layout Problem) Given
a plane graph G = (V| FE) with maximum degree 8 and
vertex coordinates in R?, a line cover £ of G, find a nice
drawing of G, i.e., a straight-line drawing that follows
rules (R1)—-(R6) as much as possible.

Drawing Subway Maps: A Survey

(a) Geographic layout.

P goww
©00 serowra o 2 ey woy 6008
®

0 o0 gt 0”0
o°°e o 0’60 @

©0O Macarthur

(b) Corresponding clipping of the official map [33].

Fig. 3: The Sydney CityRail subway network.

Note that the restriction to graphs with maximum
vertex degree 8 is an immediate consequence of the re-
striction to octilinear edge directions. Lifting this restric-
tion is discussed in the conclusions (Section 6).

3 Methods

There are three recent approaches to automating the
drawing of subway maps. We survey these methods in
order of date of first publication. All of them rely on
some underlying optimization machinery, which is tuned
in order to get drawings that fulfill the above rules as best
as possible. The method of Hong et al. [15] is based on a
spring embedder, the method of Stott and Rodgers [30]
uses hill climbing, and the method of Noéllenburg and
Wolff [25] relies on mixed-integer programming.

As benchmark we use the urban part of the CityRail
network of Sydney, a medium-size transportation net-
work. The reason for this choice is that the Sydney sub-
way graph is the only that appears in all three articles.
The fact that our comparison is based on a single network
seems to be rather restrictive. However, when we com-
pared for a given method its drawing of our benchmark
network to its drawings of other networks, we found that
the typical features of the method indeed show up in the
benchmark drawing.

Figure 3(a) shows the geographic position of the sta-
tions (with straight-line edges connecting them); Fig-
ure 3(b) shows the corresponding clipping of the—octi-
linear!—official map made by graphic designers. It is in-
structive to compare edge lengths in the downtown area
(around the station Central) with edge lengths in the

suburbs on each of the two maps. Table 1 describes the
combinatorial size of the network before and after a pre-
processing step that is detailed below.

For each method we detail the computing environ-
ment used and the running times reported in the cor-
responding article. Although the set-ups were of course
not identical, all methods have been implemented in Java
and were run on single-processor machines with clock
rates of 2.2-3 GHz and 0.5-4 GB RAM. Thus it is likely
that a running time in the order of seconds or minutes
on one machine would have remained of the same order
on another. One can argue that running time is not crit-
ical when drawing subway maps that usually have a life
expectancy of several years. However, if the new meth-
ods for octilinear drawing are to challenge conventional
methods for orthogonal drawing (of class diagrams in
software projects, for example), then speed may become
more important than aesthetics. Certain use cases, such
as on-line mapping, are ruled out by methods that usu-
ally need more than a few seconds to produce a result.

G |_n| m| m| f
original 1741183289 |11
contracted [15]| 31| 40| 40|11
contracted [25]| 67| 76|145|11

Table 1: Numbers n, m, m’, and f of vertices, edges, multi-
edges, and faces of the Sydney subway graph, respectively.

Alexander Wolff

(a) Complete unlabeled map.

(b) Clipped labeled map [15]. The clipping corresponds to
the maps in Figure 3.

Fig. 4: Drawings of the Sydney CityRail network by Hong et al.

3.1 Spring embedder

The first method, by Hong et al. [15], is based on a spring
embedder. A spring embedder is an iterative algorithm
that simulates a physical system that in turn represents
the graph to be drawn. One can think of the vertices
as particles with repelling forces and of the edges as
springs with contracting forces. This very popular and
fast all-round graph-drawing algorithm was suggested by
Fruchterman and Reingold [12] in the early 1990’s.

There are plenty of spring-embedder variants avail-
able. One of them is PrEd [5], which Hong et al. chose as
basis of their algorithm since PrEd maintains the embed-
ding of the input graph. Hong et al. give five algorithms
to address the subway-map layout problem. The most
refined of these algorithms modifies PrEd such that edge
weights are taken into account and such that additional
magnetic forces draw the straight-line edges towards the
closest octilinear direction. As in the original version of
PrEd, the total force acting on a vertex is simply the sum
of all attracting and repelling forces that act on that ver-
tex. Some of the expressions for the partial forces include
model-tuning parameters; the authors mention seven for
the z-components of the partial forces alone.

Hong et al. consider the geometry of the input net-
work only implicitly: they use the original embedding
as initial layout. In a preprocessing step they simplify
the subway graph by collapsing all degree-2 vertices. See

Table 1 for the effect of this. Then they set the weight
of each edge e in the remaining graph to the number
of original edges that e replaces. Having computed the
final layout, Hong et al. re-insert all degree-2 vertices
into the corresponding edges in an equidistant manner.
Their algorithm is very fast: all their examples were com-
puted within a few seconds on a single-processor 3.0 GHz
Pentium-4 machine with 1 GB of RAM under the Sun
Microsystems Java-2 Runtime Environment, Standard
Edition. The Sydney CityRail network with fixed em-
bedding took 7.6 seconds. Station labels are placed in a
second, independent step. While label-label overlaps are
avoided, labels sometimes do intersect edges.

Figure 4(b) is a clipping of Figure 17 in the article of
Hong et al. [15] and shows their Sydney CityRail map.
Originally they draw a slightly larger labeled network
(for the unlabeled counterpart, see Figure 4(a)), where
lines extend further into the suburbs, but we only con-
sider the part corresponding to the graph in Figure 3(a).
If the depicted drawing is to be judged with respect to
the rules (R1)—(R6), it is clear that the drawing pre-
serves the embedding, i.e., (R1) is fulfilled by construc-
tion. It further seems that relative position (rule (R5))
is respected quite well. This is probably due to the fact
that the geographic layout was the starting point of the
iterative layout process. On the other hand one can ob-
serve that edges are not strictly octilinear (R2) and that
there is a large variance in the distribution of the edge

Drawing Subway Maps: A Survey

(a) Without edge contraction.

o
co00000O0

o
ooocO0000COCO0000

(b) With edge contraction.

Fig. 5: Drawings of the Sydney CityRail network by Stott and Rodgers [30].

lengths. If the smallest edge length is assumed to be unit
(R3), then the total length of the network is huge (R6).
This may be due to the fact that the above mentioned
forces that determine the layout are sums of many con-
flicting terms. Most lines bend at most interchange sta-
tions more or less abruptly (rule (R4)); see the (light
blue) line that goes from the topmost station Richmond
to Central (right middle), for example. This does not
come as a surprise: line bends are not taken into account
by the magnetic forces that Hong et al. define.

3.2 Hill climbing

The second method, by Stott and Rodgers [30], uses
multi-criteria optimization based on hill climbing, a pop-
ular general-purpose local-optimization technique. They
first map the geographic layout of the given subway net-
work to an integer grid. To evaluate a drawing they use
a metric which is the weighted sum of five sub-metrics
each of which measures a specific aesthetic value of a
drawing.

Stott and Rodgers [30] draw subway maps using multi-
criteria optimization based on hill climbing. For a given
layout they define metrics that evaluate the number of
edge intersections, the octilinearity, the edge lengths, the
angular resolution at vertices, and the straightness of
subway lines. Then they define the quality of a layout

to be the weighted sum over these five metrics. Their it-
erative optimization process starts with a layout on the
integer grid that is obtained from the original embed-
ding. In each iteration they consider alternative grid po-
sitions for each vertex and for each of these grid positions
they compute the quality of the modified layout. If any
of the positions improves the quality of the layout and
preserves the topology, they move the current vertex to
the position with the largest improvement.

One can view this approach also as follows. Call two
drawings neighbors if they only differ in the position of
one vertex and if the two positions lie on the same grid
square. The quality measure mentioned above defines a
landscape over the graph of neighboring drawings; here
hill climbing yields (at least local) extrema.

Stott and Rodgers observe typical problems with lo-
cal extrema during their optimization process and give a
heuristic fix that overcomes one of these problems: they
shorten each overlong bridge b by moving the smaller
component of G — b by an appropriate amount towards
the larger. Stott and Rodgers optionally use a similar
edge contraction step as Hong et al. [15] to preprocess
the input graph. Even with this preprocessing their algo-
rithm is much slower than that of Hong et al.; the Sydney
graph took them roughly 24 minutes without and 4 min-
utes with preprocessing on a 2.4 GHz Pentium-4 machine
with 512 MB RAM under Java 2 v1.4.2.

Alexander Wolff

For the results, see the maps in Figure 5. These maps
fulfill most of our rules quite well. Rule (R4) is one of
the exceptions; especially in Figure 5(a) there are many
unnecessary bends, but also in Figure 5(b) most lines
bend in most interchange stations. Again, take the (here
yellow) line from Richmond to Central as an example.
Recall that one of the five metrics that Stott and Rodgers
use to define the quality of a layout in fact punishes the
number of bends. Increasing the weight of this metric
would probably yield a map with fewer bends—maybe
at the expense of the other metrics.

There seems to be an interesting trade-off between
rules (R2) and (R6): the map that was drawn without
the edge-contraction step (Figure 5(a)) contains only one
non-octilinear edge, but a rather high variance of edge
lengths, while the other map (Figure 5(b)) has three non-
octilinear paths of degree-2 vertices, but more or less
uniform edge lengths (due to the edge-contraction step).

The first of their five metrics punishes intersections,
which means that a non-plane drawing can become plane
during the layout process. This is what happened to the
intersection between the city circle and the blue line—
the last three stations which actually lie outside the circle
(see the rightmost stations in Figures 3(b) versus those in
Figure 5) are moved inside. The idea behind this metric is
that it should remove intersections that may sometimes
come into being since the initial layout uses geographic
station positions and straight-line edges. However, in the
Sydney example it would probably have made sense to
do the obvious: insert a dummy vertex at the intersection
and call the layout algorithm (possibly punishing bends
at dummy vertices harder). This approach may result in
unwanted bends (at points other than stations), but at
least the network topology would be correct.

Stott and Rodgers [31] extend their previous method
by integrating station labeling into their optimization
process. After each iteration of vertex movements the
number of intersections between labels and edges, ver-
tices, and other labels is minimized. In spite of this,
they experience quite a few label-label overlaps, espe-
cially along horizontal edges. The authors do not give
information on the running time of their method for la-
beled subway maps. The networks they draw and label
are rather small (at most five lines) and, more impor-
tantly, have few faces (one to three, including the outer
face).

3.3 Mixed-integer programming

The third method, by Néllenburg and Wolff [25], is based

on mixed-integer linear programming, a widely used global-

optimization technique. A mixed-integer linear program
(MIP) counsists of (a) integer and real variables, (b) a lin-
ear objective function, i.e., a weighted sum of the vari-
ables, and (c¢) linear constraints, i.e., equalities or in-
equalities that have a weighted sum of the variables on

one side and a constant on the other. In contrast to linear
programming, where integer variables are not allowed,
mixed-integer programming is very versatile and can be
used to model many problems. Since this includes NP-
hard problems, no polynomial-time algorithm for general
MIPs is known. However, there is a number of public-
domain (e.g., Ip_solve) and commercial solvers available
(e.g., CPLEX). The size of the instances that these pro-
grams can solve and the resulting running times depend
heavily on the problem. However, even if it may take a
long time to solve a MIP to optimality, a MIP solver usu-
ally finds better and better feasible solutions in the pro-
cess, i.e., solutions that fulfill all (integrality and other)
constraints, but which may not be optimal. This is of
interest for practical problems such as the drawing of
subway maps, where optimality is often not required.
Moreover, with each feasible solution MIP solvers output
a so-called optimality gap, i.e., the relative gap between
the cost of the feasible solution and the best lower bound
currently proven by the MIP solver. This is a valuable
quality estimate.

Nollenburg and Wolff [25] model the problem by split-
ting the list of rules. They refer to rules (R1)-(R3) as
hard constraints and to rules (R4)-(R6) as soft con-
straints. The hard constraints are those that Nollenburg
and Wolff insisted on, while the soft constraints model
aesthetic criteria that are to be optimized among all
drawings that fulfill the hard constraints. Given these
two categories, the hard constraints were translated into
linear equalities and inequalities of a set of variables (ba-
sically the coordinates of the vertices). Then the soft
constraints were translated into a weighted sum of three
cost functions that measure how well these constraints
are fulfilled. These are the ingredients of a MIP formula-
tion: variables, linear constraints, and a linear objective
function. This translation of rules into a formulation that
only allows linear expressions is probably the most dif-
ficult part of the work, see Section 4.

Given the MIP formulation and a concrete input—
the embedding of the input graph, the locations of the
vertices, and the line cover—, the corresponding MIP
instance can be generated automatically. Then a MIP
solver is called. If the MIP instance is not too large,
the problem not too difficult, and the solution space not
empty, the MIP solver will find feasible solutions of bet-
ter and better quality and eventually the optimal solu-
tion. Note that here a feasible solution corresponds to
a drawing that meets all hard constraints, and an opti-
mal solution corresponds to a drawing that additionally
optimizes the soft constraints.

The MIP approach yielded the planar layout in Fig-
ure 6(a). Nollenburg and Wolff [25] report a computa-
tion time of 22 minutes that was based on a simple
ad-hoc heuristic for reducing the size of the MIP. In
the meantime—given some more engineering (see Sec-
tion 4.5)—the computation time has been reduced to
77 seconds with the MIP solver CPLEX 9.1 running on

Drawing Subway Maps: A Survey

O 11|

’
[N

¥,
L e e L L B B B}

(a) Unlabeled map.

(b) Labeled map.

Fig. 6: Drawings of the Sydney CityRail network by Nollenburg and Wolff.

an Opteron-248 processor with 2.2 GHz and 4 GB RAM
under SuSE Linux 9.3. Optimality in terms of the ob-
jective function was not proven. For this solution the
optimality gap was 26.4%. In other words, we know that
the optimal drawing (which we do not know) achieves
a value of the objective function that is at most 26.4%
less than that of the drawing in Figure 6(a). (Recall that
over time, the MIP solver does not only produce better
and better feasible solutions, but also tighter and tighter
bounds on the optimum.) Note, however, that the er-
ror in modeling human perception by the choice of the
objective function (1) is probably much larger.

By construction the drawing in Figure 6(a) fulfills the
hard constraints, i.e., rules (R1)—(R3). Observe the influ-
ence of the soft constraints on the layout: there are no un-
necessarily long edges (rule (R6)); the subway lines only
bend where geographically required and pass through
interchange stations as straight as possible (rule (R4));
and, finally, the simplified edges tend to follow the orig-
inal directions (rule (R5)).

Computing a labeled subway map of Sydney took
much longer; the result after 4 hours and 57 minutes
with an optimality gap of 32.3% is shown in Figure 6(b).
By construction of the MIP there is no overlap between
labels and any other object in the drawing. Note that
many of the horizontal edges in Figure 6(a) are drawn

diagonally in the labeled layout. For more on labeling,
refer to Section 4.6.

3.4 Related map-schematization methods

Apart from the above three papers that tackle subway
maps explicitly, there are some related papers on map
schematization. Neyer [23] studied a line simplification
problem for polygonal paths and gave a polynomial-time
algorithm to find approximations to these paths using
only a restricted number of orientations. Barkowsky et
al. [2] used discrete curve evolution, an algorithm for
polygonal line simplification, to draw schematic maps.
As one example they looked at the lines of the Ham-
burg subway system. However, their algorithm neither
restricts the edge directions nor does it increase sta-
tion distances in dense downtown areas. Stations are la-
beled but no effort is made to avoid label overlap. Avelar
and Miiller [1] implemented a simulated-annealing algo-
rithm to modify a given input map by iteratively moving
the endpoints of line segments such that edges approach
octilinear line segments. The algorithm was applied to
the street network of Zurich. However, not all line seg-
ments could be drawn octilinearly because vertex po-
sitions are influenced by several potentially conflicting

10

Alexander Wolff

terms. Ware et al. [35] built on the work of Avelar and
Miiller and tailor it towards mobile applications with
small screens. Cabello et al. [8] presented an efficient
algorithm for schematizing road networks. Their algo-
rithm draws edges as octilinear paths with two or three
links and preserves the input topology. However, all ver-
tices keep their original positions, which is in general
not desired for drawing subway maps. Cabello and van
Kreveld [9] studied approximation algorithms for align-
ing points octilinearly, where each point can be placed
anywhere in its own given region. Yet, their method does
not guarantee to preserve the embedding if points cor-
respond to vertices of a graph. Merrick and Gudmunds-
son [20] suggested an efficient algorithm that simplifies
polygonal chains using the following criteria. Given a
polygonal chain P, a fixed set C of directions, and an
accuracy ¢, their algorithm finds a polygonal chain P’
that is (a) C-oriented, (b) goes through all radius-¢ cen-
tered at vertices of P in the right order, and (c) has the
minimum number of bends among all chains that ful-
fill (a) and (b). They apply their algorithm to drawing
subway networks. However, since the algorithm processes
each subway line individually, the input topology is not
kept.

4 Mixed-Integer Program

Nollenburg and Wolff formulate the subway-map lay-
out problem as a MIP. As we will see in Section 5, the
subway-map layout problem is NP-hard. This is a good
justification for applying a likewise NP-hard optimiza-
tion method such as mixed-integer programming. The
expressive power of mixed-integer programming gives the
necessary flexibility to achieve the following. If a layout
that conforms to all hard constraints exists (and this was
the case in all examples that Nollenburg and Wolff tried),
then their MIP finds such a layout. At the same time,
their MIP optimizes the weighted sum of cost functions
each of which corresponds to a soft constraint. Before we
describe a number of features of this MIP we give some
basics on linear programming.

4.1 Basics

A MIP consists of two parts: a set of linear constraints
and a linear objective function. We give a simple two-
dimensional example, see Figure 7.

Consider the objective function

maximize z + 2y (1)
subject to the constraints

y<09-z+15 (2)
y>14-z—13. (3)

Fig. 7: Difference between optimal fractional solution s* and
optimal integral solution 5.

Each constraint corresponds to a halfplane; the intersec-
tion of the halfplanes—a (possibly unbounded) polygon—
represents the set S of feasible solutions. In Figure 7 the
solution polygon is the shaded region. Among the points
in S we are interested in one that maximizes the objec-
tive function, which also has a geometric interpretation.
The coefficients of the variables in the objective function
yield a vector ¢, here ¢ = (;) If we sweep the plane in
direction ¢ with a line ¢ orthogonal to ¢, then the last
points of S swept by ¢ are those that maximize (1). The
traces of £ are marked by the dashed lines in Figure 7.

Objective function (1) and constraints (2) and (3)
represent in fact a linear program (LP). LPs can be
solved efficiently, e.g., by Karmakar’s interior-point me-
thod [16]. This changes radically when we add integrality
constraints, e.g.,

x,y € Z. 4)

Then we get an integer (linear) program (IP), whose so-
lution set consists of those points in S that lie on the
integer grid. In our example in Figure 7 these points are
marked by black dots. Note that the optimum solution 5
of the TP (1)—(4) is usually far from the optimum solution
s* of the LP (1)—(3); the optimum integral solution § can
not be obtained from the optimum fractional solution s*
by rounding down the components of the vector s*. A
MIP can have both, fractional and integral variables.

Integrality constraints make a continuous problem
discrete; if the set of fractional solutions is bounded,
then the number of integral solutions becomes finite. So
it seems solving the more restricted problem is easier.
However, the opposite is the case. Geometric properties
of the LP that are exploited by efficient solution strate-
gies are lost. On the other hand a lot more problems can
be modeled with the help of integer variables.

We give an example that will come in handy later
on, a standard trick in MIP modeling. Suppose we want
to make sure that at least one of three constraints C1,
C5, and Cj is fulfilled, but not necessarily all of them.
In other words, we want to express the disjunction C; V

Drawing Subway Maps: A Survey

11

Cs Vv (3. Suppose

C: z—3<0,
CQ: y§07
03: x+y§0

Then we introduce three binary variables aj, ag, and
as, i.e., variables that are restricted to the set {0,1}. We
further restrict these variables by the constraint

ar +az+az > 1. (5)

Now we can formulate C; V Cs V C3 as the conjunction
Ci AN Chy A CL, where

Cf x—3< M(1—a),
Cy: y < M(1-az), (6)
Cé: x+y§M(1—a3)

and M is a large constant that must be an upper bound
on the left-hand sides of the inequalities. Note that (5)
and (6) are a conjunction of linear constraints, i.e., legal
part of a MIP. By the way: it is worth making M as tight
a bound on the left-hand sides as possible—this helps to
speed up solving the MIP.

4.2 Overview

In the remainder of this section we peek into the MIP
formulation of Nollenburg and Wolff [25]. We have chosen
two parts. We first detail how the rather subway-specific
hard constraint octilinearity (rule (R2)) is modeled, see
Section 4.3. Then, we turn to the soft constraint relative
position (rule (R5)), which is also specific to drawing
geometric networks such as subway maps, see Section 4.4.

Recall that Nollenburg and Wolff (roughly) translate
the three hard constraints (R1)—(R3) into the linear con-
straints of their MIP, and the three soft constraints (R4)—
(R6) into the objective function. The objective function
is simply the weighted sum of three individual cost func-
tions:

Minimize Ap4 costrs + AR5 costrs + Arg costre, (7)

where the constants Ar4, Ars, and Arg can be set by
the user. Each of them individually emphasizes a certain
aesthetic criterion. The function costgs responsible for
optimizing relative position is treated in detail in Sec-
tion 4.4, for the other two cost functions see [25].

The total number of constraints and variables in the
MIP formulation of Néllenburg and Wolff is O(n +m/ +
m?), where m’ > m is the sum of the number of edges in
all lines in £(counting multiple edges). Note that since G
is planar, Euler’s polyhedral formula yields m < 3n — 6.
Section 4.5 deals with methods for reducing the size of
the subway graph and of the MIP. Section 4.6 describes
how vertex labels can be included in the MIP model.
Section 4.7 describes how the speed-up techniques and

21

z2

Fig. 8: The octilinear coordinate system with an octilinear
grid in the background. The marked points all have the same
Loo-distance from the origin.

the integration of label placement affect running time
and results.

We close this overview by presenting the coordinate
system that we are going to use. The idea is that we
would like to handle all four edge orientations similarly.
Hence we use an (z,y, 21, 22)-coordinate system as de-
picted in Figure 8, where each axis corresponds to one of
the four edge orientations in the layout. For each vertex
v €V we set

(v) + y()
(v) — y(v). ®)

These defining equations are also part of the MIP formu-
lation and use real-valued variables for the coordinates.
Furthermore, we need to specify an underlying met-
ric for measuring distances. We decided to use the L -
metric, which defines the distance of two vertices u and v
to be max(|z(u)—z(v)|, |y(u)—y(v)|). This metric has the
nice property that all points on the boundary of the unit
square centered at any point p have the same distance
from p. In Figure 8 eight points on the octilinear coordi-
nate axes are shown that all have the same L.-distance
from the origin. One side-effect of using the L,,-metric
is that all vertices will be placed on a axis-aligned grid
as long as all edge lengths in the L.,-metric are integers.
Attention needs to be paid because a z1- or zo-coordinate
difference of 2 corresponds to an L.-distance of 1.

=2
=T

4.3 Enforcing Octilinearity and Relative Position

The following part of the MIP formulation models hard
constraints, namely that all edges are drawn as straight,
octilinear line segments with a given minimum length,
as stated in rules (R2) and (R3). Note that rule (R3) is
only partially covered here. The distance requirement for
non-adjacent vertices is more naturally handled together
with the enforcement of planarity, see [25].

At the same time, the direction of each edge {u,v}
in the output drawing is restricted to the three closest

12

Alexander Wolff

Fig. 9: Numbering of the sectors and the octilinear directions
relative to vertex u, e.g., secy (v) = 5.

octilinear approximations® of the line segment 7 (u)7(v)
specified by the input. Hence, the soft constraint (R5)
is partially modeled as a hard constraint, too. Relative
position can also be modeled completely as a soft con-
straint, but excluding a number of directions has the
potential of speeding up the solving of the MIP.

Before formulating the constraints we need some no-
tation to address relative positions between vertices and
to denote directions of edges. For technical reasons we
direct all edges arbitrarily. If we write an edge as uv, we
mean that it is directed from u to v. For each vertex u
we define a partition of the plane into eight sectors. Each
sector is a 45°-wedge with apex u. The wedges are cen-
tered around rays that emanate from u and follow one
of the four orientations either in positive or in negative
direction. The sectors are numbered from 0 to 7 coun-
terclockwise starting with the positive z-direction, see
Figure 9.

To denote the rough relative position between two
vertices w and v in the original layout we use the terms
sec,(v) and sec,(u) representing the sector relative to
u in which v lies and vice versa. Note that these terms
are known before solving a concrete instance and are
thus constants from the MIP point of view. For each
edge uv, we introduce the variable dir(u,v) to denote the
octilinear direction of uv in the new layout. We identify
each octilinear direction with its corresponding sector.
For example if edge uv leaves u in negative zi-direction,
we say dir(u,v) = 5. To make the difference between
sec,(v) and dir(u,v) really clear, note that the former
describes the (known) input, while the latter describes
the (unknown) output. Both fulfill a kind of symmetry:

(mod 8)
(mod 8).

secy(v) = secy(u) + 4 and

dir(u,v) = dir(v,u) + 4

As mentioned above, we partially model the soft con-
straint (R5) as a hard constraint. As a compromise be-
tween conservation of relative positions and flexibility to
obtain a nice drawing, we allow that an edge is drawn
in one of three different ways. It can be drawn in the
direction corresponding to its original sector relative to

! This means that the angle between the directed lines
through v and v in in- and output is at most 67.5°.

either endpoint or it can be drawn in the two neighboring
directions. Let

secP™d (v) = sec, (v) — 1
secoe (v) = sec, (v)

secs® (v) = secy(v) +1 (mod 8).

u

(mod 8),

Recall that sec,(v) is a constant, thus secP™? etc. are
also constants, and there is no need to perform modulo
operations in the MIP.

We now restrict dir(u, v) (which is also used in other
parts of the MIP formulation, e.g., in Section 4.4) to the
set {secPred(v), seco2 (v), secs“¢(v)}. For example, in the
situation depicted in Figure 9, we want that dir(u,v) €
{4,5,6}. At the same time we must make sure that the
values of dir(u,v) and dir(v,u) correspond to opposite
directions. This is expressed by the disjunction

(dir(u, v) = seck™(v) A dir(v, u) = secP™d(u)) V
(dir(u,v) = sec8(v) A dir(v,u) = sect™8(u)) VvV (9)
(dir(u, v) = seci™(v) A dir(v,u) = seci'*®(u)).

To model disjunction (9) we apply the first half of the
standard trick that we detailed in Section 4.1: we intro-
duce binary variables apred (U, V), Qorig (4, V), Csuce(, v),
and the constraint

apred(u; 'U) + aorig(u; 'U) + asucc(ua 'U) =1 (]-O)

for each edge uwv € E. The (unique) variable that takes
value 1 in (10) will determine the part of disjunction (9)
that evaluates to true and thus the direction in which
edge uv is drawn. Now the following constraint defines
dir(u, v).

(11)

Here the unique variable «;(u,v) that equals 1 selects
the sector sec?,(v) that is assigned to dir(u, v). Note that
the constraint is indeed linear since sec’, (v) is a constant.
The constraint for dir(v,u) is analogous.

We use the variables of type a;(u,v) not only to de-
fine dir(u,v) (which at the same time constrains the rel-
ative position of adjacent vertices v and v in the output
drawing), but we also use the a;’s to enforce octilinear-
ity. For example, let secP™d(v) = 4 as in Figure 9. Then
we introduce the following constraints for edge uv and
i = pred:

y(u) —y(v) < M(1 — aprea(u,v))
—y(u) +y(w) < M(1 = aprea(u, v))
z(u) — z(v) > =M (1 — apred(u, v)) + Ly,

dir(u, U) = Eie{pred,orig,succ} SECZ(U) C QG ('LL, U)

(12)

where £, > 0 is the minimum length of edge uv accord-
ing to rule (R3). Here, we apply the second half of the
standard trick from Section 4.1. In this case the value
of the “large constant” M depends on the coordinate
range. For example, we can set M = n if at the same
time we force the output drawing to lie in the square
[0, 7] x [0, n]. Observe that constraints (12) are equivalent

Drawing Subway Maps: A Survey

13

to y(u) = y(v) and z(u) > x(v) + Lyy if aprea(u,v) = 1.
This is exactly what is needed for an edge pointing hor-
izontally to the left.

The constraints for other edge directions and for the
cases ¢ = orig and ¢ = succ are constructed analogously.

4.4 Optimizing Relative Position

To preserve as much of the overall appearance of the sub-
way network as possible we have already restricted the
edge directions to the set of the three octilinear directions
closest to the input direction. Ideally, one wants to draw
an edge uv using its nearest octilinear approximation,
i.e., the direction where dir(u,v) = sec,(v). Nollenburg
and Wolff model (R5) by introducing a cost of 1 in case
the layout does not use that direction.

For each edge uv they define as its cost a binary vari-
able p(uv) which is 0 if and only if dir(u,v) = sec,(v).
This is modeled by

—Mp(uv) < dir(u, v) —secy(v) < Mp(uv). (13)

Now the cost for deviating from the original relative po-
sitions can simply be expressed as

cost(gs)y = Z p(uv).

uwveE

(14)

4.5 Speed-Up Techniques

A common feature of subway maps is that they tend to
have a large number of degree-2 vertices on line sections
between two interchange stations. As we have seen in
Section 3, both Hong et al. [15] and Stott and Rodgers [30]
contract all degree-2 vertices, define appropriate edge
weights, apply their layout algorithms on the contracted
graph, and then reinsert the degree-2 vertices. Nollen-
burg and Wolff [25] modify this data-reduction trick by
keeping up to two dummy vertices on each chain of de-
gree-2 vertices. The rationale behind drawing the con-
nection between the corresponding interchange vertices
as a polyline with at most three segments is that this dis-
torts the map less than insisting on no bends. Again, the
original vertices are reinserted uniformly on their cor-
responding polylines. Nollenburg and Wolff report that
their experiments showed that this is a good compromise
between flexibility of the drawing and size of the MIP
model. Recall that the target function penalizes bends
along lines so that in many cases bends at these special
degree-2 vertices are in fact avoided.

The only part of their MIP formulation that needs
a quadratic number of constraints (and variables) is the
one that ensures planarity, which is a direct consequence
of rule (R3). This is why the most urgent need is to re-
duce the number of these constraints. An immediate re-
duction is as follows. For a planar drawing of an embed-
ded graph it suffices to require that non-incident edges of

the same face do not intersect. This already guarantees
that no two edges intersect except at common endpoints.
So instead of introducing planarity constraints for all
pairs of non-incident edges, it is enough to include them
only for pairs of non-incident edges of the same face.

However, the number of these planarity constraints is
often still far too high, see Section 4.7. Nollenburg and
Wolff observed that, on the one hand, only a small frac-
tion of all possible intersections was relevant for the lay-
out. On the other hand, it is not clear how to determine
relevant edge pairs in advance. A way out is the callback
function of the MIP optimizer CPLEX. Nollenburg and
Wolff exploit this as follows. Their initial MIP formu-
lation does not contain any planarity constraints at all.
Then, during the optimization process, planarity con-
straints are added on demand as follows. Whenever the
optimizer returns a new (and better) feasible solution,
a callback routine is notified. This routine interrupts
the optimizer and checks externally for edge crossings
in the layout that corresponds to the current feasible so-
lution. If the layout contains pairs of intersecting edges,
Nollenburg and Wolff add only the planarity constraints
corresponding to those pairs and continue the optimiza-
tion. If the current layout is plane, it is stored. The user
can decide whether or not to continue the search for even
better solutions. Section 4.7 shows the advantages of this
approach in terms of number of constraints and running
time.

4.6 Label Placement

Subway maps in practice are of little interest to a passen-
ger unless all stations are labeled with their names. La-
bels may not intersect each other or overlap vertices and
edges of the graph. In a sense, they compete with the net-
work for space and for an aesthetic placement. Therefore
the significant amount of space required by labels ought
to be taken into account during the layout process. Both
Stott and Rodgers [31] and Noéllenburg and Wolff [25]
take this so-called graph-labeling approach [17].

Still, Stott and Rodgers decouple layout and label
process to a certain extent in the following sense. During
their incremental layout process they repeatedly pick a
vertex and move it to a better neighboring grid position.
Labels are not taken into account when deciding which
vertex to pick. Instead they locally find a best labeling
after moving a vertex with similar metrics and a similar
choice as in the case of vertices. They report that the
tightly-coupled approach of considering label positions
when evaluating vertex positions “proved to be exces-
sively slow” [31].

The MIP formulation of Nollenburg and Wolff must
by definition use the tightly-coupled approach, and faces
the same problem with running time. To counteract this,
Nollenburg and Wolff model all labels for collapsed degree-
2 or degree-1 vertices along an edge together. The indi-

14

Alexander Wolff

v

Fig. 10: Modeling vertex labels with a parallelogram-shaped
region attached to edge vw.

vidual vertex labels are then placed inside a parallelo-
gram-shaped region that is attached to the correspond-
ing edge. If the connection between two interchanges is
modeled as a three-link path, the middle segment re-
ceives the edge label. The side length of the parallel-
ogram matches the length of the longest vertex label.
This enforces that all labels of stations along one edge
are consistently placed on the same side of that edge,
which is visually often more pleasing than an arbitrary
mix of labels on both sides of the edge; see the soft part
of rule (R8). Labels are restricted to be placed horizon-
tally or, if the corresponding edge itself is horizontal,
diagonally in z;-direction. This keeps both the number
of reading directions small and avoids unnecessary com-
plexity in the model.

Nollenburg and Wolff modify the given subway graph
by adding new vertices and edges such that each paral-
lelogram forms a new special face, see Figure 10. Be-
cause the MIP creates a planar drawing of this extended
subway graph, all labels can safely be placed inside the
parallelograms. The new parts of the parallelograms can
be seen as additional subway lines. They differ from the
other subway lines only in that they can be embedded in
two ways (instead of only one) and in that their shape
is fixed. A label at an interchange station is modeled
individually as a special edge of length equal to the la-
bel length, see e.g., station Karlsplatz in Figure 11(e).
Binucci et al. [6] use a similar idea to label edges with
rectangles in orthogonal graph drawings. In contrast to
Nollenburg and Wolff, Binucci et al. consider each edge
and its label individually.

4.7 Experiments

In this section we report on additional experimental re-
sults with the mixed-integer programming approach of
Nollenburg and Wolff. Apart from the Sydney example
that has been treated in Section 3, we picked two more
examples (see [24] for more), namely Vienna and Lon-
don. In both cases the input embedding was obtained by
assuming straight-line edges between the stations. The
MIPs were solved on the same machine as the Sydney
example in Section 3.3. The size of the corresponding

Vienna (5 lines) London (11 lines)
G nlmlm/lfH n| m| m]| f
original 90 96 | 96 8 || 308 | 361 | 441 | 55
contracted | 44 50 | 50 8 186 | 239 | 307 | 55
labeled 98 | 117 | 60 | 21 453 | 550 | 396 | 99

Table 2: Numbers n, m, m’, and f of vertices, edges, multi-
edges, and faces of the sample graphs, respectively.

unlabeled labeled
Vienna |all pairs| faces |none]|| all pairs | faces | none
variables 9,960 6,048| 872 53,538| 12,834 1,050
constraints| 39,363 23,226|1,875|| 219,064| 51,160| 2,551
edge pairs 1,136 647 0 6,561 1,473 0
Sydney |all pairs| faces |none || all pairs | faces | none
variables 23,299| 13,347(1,419|| 160,039| 36,639| 2,039
constraints| 93,496| 52,444|3,241|| 656,840(147,815| 5,090
edge pairs 2,735 1,491 0 19,750| 4,325 0
London |all pairs| faces |none || all pairs | faces | none
variables | 227,535| 53,487(4,063|1,204,343|118,879| 5,655
constraints| 930,863 (212,925|9,041 (4,958,294 [480,755|13,706
edge pairs | 27,934| 6,178 0|| 149,863| 14,153 0

Table 3: Numbers of variables, constraints, and enforced non-
intersecting edge pairs for the sample graphs.

graphs is given in Table 2 (for the Sydney data, see Ta-
ble 1) and the sizes of the MIPs are given in Table 3.
There, the number of variables, constraints, and enforced
non-intersecting edge pairs according to the planarity
constraints is given, see Section 4.5. The columns all
pairs, faces, and none contain the corresponding num-
bers for MIP formulations with planarity constraints for
each pair of edges, for each pair of edges that lie on
the same face, and without planarity constraints, respec-
tively. The numbers of constraints and variables that
were needed by the callback mechanism are bounded
from below by column none and from above by column
faces. These two columns also show that planarity is in
fact responsible for 90-95% of the constraints and vari-
ables.

The geographic layout of the subway system of Vi-
enna is depicted in Figure 11(a). For the unlabeled draw-
ing in Figure 11(b) weights (2,3,1) were used for the
soft constraints ((R4),(R5),(R6)) in the objective func-
tion (7). The drawing was obtained in 21 seconds as an
intermediate feasible solution. The optimality gap for
this solution was 19.7%. No additional planarity con-
straints were added by the callback function. Observe
the influence of the soft constraints on the layout: there
are no unnecessarily long edges (R6); the five subway
lines only bend where geographically required and pass

Drawing Subway Maps: A Survey 15

Floridsdorf

Neue Donau

& Handelskai
S
& I:
\\& Leopoldau

Dresdner Strasse
Grossfeldsiedlung

Jaegerstrasse
(Yspittelau

Aderklaaer Strasse
Rennbahnweg
Kagraner Platz

Kagran

Friedensbruecke Alte Donau

VIC Kaisermuehlen

Rossauer Laende Donauinsel

[Vorgartenstrasse
Nussdorfer Strasse
Waehringer Strasse Volksoper
Michelbeuern AKH Schottentor Universitaet
Alser Strasse
Josefstaedter Strasse Schweden)
. plaiz
(a) Geographic layout. Thaasiasse
Burggasse Stadthalle
o @ 2 & e 4 2 O S L
&£ £ S o ¢ L O P
S & FEFS FFS
F L S T S FS
SRS > & F &
O TP NS o
3¢ o
&
Gumpendorfer Strasse
Taubstummengasse
Niederhofstrasse Suedtiroler Platz
[N
S Philadelphiabruecke Keplerplatz
& @ Tachertegasse
Am Schoepfwerk
Alterlaa
Erlaaer Strasse
Perfektastrasse
(b) Map with weights (2,3, 1). Siobenhiren
(e) Labeled map with weights (3, 3,1).
om Strebersdorf 52]
Jedlersdorf Gerasdorf
NuBdorf riinner strate (2] Leopoldau

siRenbrunn Kl

Neue Donau Siemens-

straRe

Oberdabling

N

Krottenbachstr.
Handelskai Kagraner Platz = Breitenleer Strafe

Dresdner
Strafe

Friedensbriicke

Gersthof

Traisengasse
Alte Donau Hausfeld-

Kaisermiihlen- Hirschstetten strage
Erzherzog-
Michelbeuern - RoBauer Vienna Int. Centre C] (6]
Hernals Allg.Krankenhaus, Linde & Donauinsel Karl-StraRe ©m

"Alser Strafe

(c) Map with weights (10,1, 1).

Ottakring C) Josefstadter
al

e

Stadlau ()

ThaliastraRe
o

Lobau
Praterkai
Taubstummen-
gasse
St Marx
Sudtiroler Sid-
Platz bahnhof Gelsel-
bergstr.
Meidling Simmering (]
et Schedifkaplatz
scherttegasse Schopfwerk Keplerplatz Zentralfriedhof
Am Schépfuerk
cuthel Schoder G I Grillgasse Kaiserebersdorf
Alterlaa Inzersdorf Reumannplatz 8
Personenbh:
Erlaer StraBe Neu Erlaa Cehwechat
PerfektastraBe 3§henbrunner Kledering
Vosendorf- [Seo]
Siebenhirten ([HED Sreniren @ =717]

(d) Map with weights (1,1, 5). (f) Official map including commuter trains (thin blue lines).

Fig. 11: The Vienna subway network. Drawings (b)—(e) were produced with the MIP of Nollenburg and Wolff using different
weights in the objective function. The weights favor few bends (R4), good relative position (R5), and small network length
(R6) in this order.

16

Alexander Wolff

JZANY
be .".) ,,,,7,:,.

Fig. 12: Unlabeled London subway map produced by the MIP of Néllenburg and Wolff.

through interchange stations as straight as possible (R4);
and, finally, the simplified edges tend to follow the orig-
inal directions (R5).

Figures 11(c) and 11(d) show the influence of the
soft constraints in an exaggerated fashion: increasing the
weight for bends (R4) yields a drawing with as few bends
as possible (see Figure 11(c)), while increasing the weight
for the network length (R6) yields a drawing where all
edges but one span exactly one unit square (see Fig-
ure 11(d)).

Figure 11(e) shows a labeled layout of the Vienna
network with labels modeled as parallelogram-shaped
faces. Here, the weights (3,3, 1) were used for the objec-
tive function. To ensure planarity of the extended label
graph, 183 edge pairs were forced to be non-intersecting,
which added 5,856 constraints to the MIP. With 4 hours
and 7 minutes the computation time was much higher
than for the unlabeled drawing. The optimality gap was
41.4%. The result in Figure 11(e) shows that the MIP
method is indeed capable of drawing labeled subway
maps that are comparable to current hand-drawn maps.
Some minor changes by a graphic designer would suffice
to use such a map in practice. Figure 11(f) shows the
official Vienna subway map. Note that the extension of
the (violet) line U2 is still missing in the official map.

Finally, Figure 12 shows an unlabeled layout of the
London Underground network, one of the oldest and
largest subway systems in the world. The weights for
the objective function were (4,1,4) in this case and it
took about 20 minutes to compute the layout with an
optimality gap of 38.8%. The callback mechanism added

352 planarity constraints for 11 edge pairs to the MIP.
The result is certainly not as sophisticated as the original
London Tube Map?, which has become a mental map of
the city [26]. However, Figure 12 does show that the MIP
method has the potential to produce high-quality draw-
ings even of large real-world subway networks. Unfortu-
nately, the method did not succeed in finding a labeled
layout for London due to the size of the corresponding
MIP, see Table 3.

5 Complexity

In this section we discuss the computational complexity
of drawing graphs with a given embedding. Before we
turn to octilinear drawings, let us have a quick glance
at orthogonal drawings, where all edges are drawn as
rectilinear paths. Such drawings are very common for
schematic diagrams in various applications such as flow
charts or organigrams. The area of orthogonal graph
drawing has been studied extensively; for an overview
see the book of Di Battista et al. [10] or the survey
of Eiglsperger et al. [11]. Tamassia’s seminal work on
orthogonal graph drawing has the following immediate
consequence.

Theorem 1 (Tamassia [34]) Let G = (V, E) be a plane
graph with mazimum degree 4. Then there is an efficient
algorithm that decides whether G can be drawn such that

2 See www.tfl.gov.uk/tube/maps/.

Drawing Subway Maps: A Survey

17

1. all edges are drawn as axis-parallel line segments,
2. the embedding of G is preserved, and
3. the drawing is plane.

Tamassia’s algorithm is more general in that it can
layout any plane graph with maximum degree 4 such that
the edges are drawn as rectilinear paths, i.e., bends are
allowed. Among all such layouts, the algorithm computes
one with the minimum total number of bends. Note that
the problem of finding a minimum-bend drawing imme-
diately gets NP-hard [13] if G is not plane but planar,
i.e., if the embedding of G is not fixed.

It is astonishing that adding two diagonal orienta-
tions increases the complexity of the subway-map layout
problem drastically. N6llenburg showed that one cannot
expect to find an efficient algorithms that draws a given
planar graph in a subway-map-like style.

Theorem 2 (Nollenburg [24]) OCTILINEARGRAPH-
DRAWING is NP-hard. In other words, given a plane
graph G = (V, E) with mazimum degree 8, it is NP-hard
to decide whether G can be drawn such that

1. all edges are drawn as straight, octilinear line seg-
ments,

2. the embedding of G is preserved, and

3. the layout is planar.

Since the proof is quite beautiful, we now give the
details. The gadgets in the proof remind of the mechan-
ical constructions that one can build with a Meccano or
Marklin model construction kit. We hope that the fig-
ures help to seduce the reader to follow us through this
proof since it exemplifies the idea behind so-called re-
ductions. Reductions are a fundamental concept in the-
oretical computer science. In the following paragraph we
explain how they are used to prove NP-hardness.

According to the definition of NP-hardness we have
to show that every problem in the class NP (such as
SATISFIABILITY or GRAPHISOMORPHISM) can be reduced
to our problem in polynomial time. In other words, if
there were a polynomial-time algorithm for our problem,
then all problems in the class NP could be solved in
polynomial time. However, since other problems (such as
SATISFIABILITY or HAMILTONIANCIRCUIT) are known to
be NP-hard, it is enough to reduce one of those to our
problem to show its hardness. This is what the following
proof does.

Proof (Nollenburg [24]) The proof is by reduction from
PLANAR 3-SAT, which is known to be NP-hard [19]. In
an instance of PLANAR 3-SAT we are given a Boolean
formula of a special type, and the task it to find an as-
signment of truth values to the variables in this formula
such that the whole formula evaluates to true. PLANAR
3-SAT restricts the given Boolean formula ¢ in that

(a) ¢ must be in conjunctive normal form (CNF), i.e.,
a conjunction of disjunctions, e.g., 1 A (T3 V x3) A
(x1 VT3V 24),

Lo] o] [os | [2] 5]~

c7

Fig. 13: Example of a planar variable-clause graph.

each disjunction (or clause) consists of exactly three
literals, i.e., possibly negated variables, e.g., (z1 V
T3 Va3) A(x1 VT3V ay), and

(c) the variable-clause graph H, is planar. The graph
H,, is bipartite; the vertices in one part of the bipar-
tition represent the variables of ¢, and the vertices in
the other part represent the clauses of . Each clause
is connected to the three variables that it contains.
It is known [18] that the graph H, can be drawn as
depicted in Figure 13, i.e., all variables are placed on
a horizontal line and the clauses are drawn as three-
legged combs connecting from either above or below
the variables.

Reducing OCTILINEARGRAPHDRAWING to PLANAR
3-SAT means that we have to describe a polynomial-time
transformation that maps a planar 3-CNF formula ¢ to
a plane graph G(¢) such that ¢ is satisfiable if and only
if G(¢) can be drawn octilinearly. Instead of consider-
ing ¢ itself, we take the planar embedded variable-clause
graph H, as the object that will be transformed. Indeed,
we construct the graph G(p) from two types of substruc-
tures in a way such that its overall structure resembles
H,. We need one gadget to model the variables, i.e., a
gadget that can be drawn in exactly two conformations
representing the truth assignments of the respective vari-
able. The second gadget will represent a clause of ¢, so it
has the shape of the combs in H,, (recall Figure 13) and
is able to transmit the truth values of the three literals
involved. At the point where the three legs meet there
is a structure that admits a planar drawing if and only
if at least one of the literals evaluates to true. Thus, we
can draw G(p) octilinearly if and only if ¢ is satisfiable.

The construction of the gadgets uses three basic build-
ing blocks that are depicted in Figure 14 and 15. The

(a) (b)

Fig. 14: Basic building blocks. A triangle with fixed side AC
has exactly three different octilinear realizations (a). The
square block in (b) has a fixed octilinear shape.

18

Alexander Wolff

(a) Configuration corresponding to true.

(b) Configuration corresponding to false.

Fig. 16: The variable gadget.

W W BB

Fig. 15: The translational joint.

main observation is that in the octilinear setting all non-
degenerate triangles are isosceles right triangles since all
angles must be multiples of 45°. So the degree of freedom
when drawing an octilinear triangle with one side fixed
consists in the choice of the vertex adjacent to the right
angle, see Figure 14(a).

Now, we can combine several triangles to form com-

pound structures such as the square block in Figure 14(b).

The underlying plane graph with five vertices and four
triangular faces has the property that Figure 14(b) is the
only way of drawing it octilinearly. The reason is that
vertex FE is incident to the four triangular faces and thus
the four angles adjacent to £ must sum to 360°. But this
is the case only if the four right angles of the triangles
are adjacent to F/, which defines the shape of the graph.
Obviously, larger rigid structures can be constructed by
attaching these square blocks side-by-side.

The third building block models a translational joint
between two rigid components. To this end we connect
two bars made out of square blocks by four adjacent tri-
angles as depicted in Figure 15. These triangles admit
exactly the three octilinear realizations of the combined
structure that are shown in Figure 15. To rule out the
rightmost realization we add a spacer triangle to the up-
per bar. Now, the layout on the right-hand side violates
planarity as the spacer touches the other bar, while the
other two drawings remain valid. Note that in this struc-
ture all square blocks necessarily have the same unit size
and that the distance between the two bars also equals
one unit.

Now we can construct more complex structures that
serve as gadgets for variables and clauses of . It is im-
portant that all parts of these gadgets are connected in
such a way that the side lengths of the square blocks in-

volved are equal. This is ensured by connecting square
blocks side-by-side or by using the translational joint to
connect square blocks. In that case we can assume that
all vertices are placed on a uniform grid with unit length
and we do not have to deal with differently scaled sub-
structures.

First, we describe the variable gadget. It must have
the property to be drawable in exactly two configura-
tions that represent the truth values of the corresponding
variable. Further, the gadget must be able to transmit
its truth value to the clauses containing this variable,
depending on whether the variable is negated in the re-
spective clause or not. A sample variable gadget is shown
in Figure 16. The main part of this gadget is a large
horizontal variable bar in the middle of the construction
made up of square blocks and containing some dents. It is
framed by a box of square blocks with upward and down-
ward ports that will be connected to the clause gadgets.
The variable bar is always in one of two positions that
are horizontally one unit apart, see Figure 16. Let the
left position represent the value true and the right posi-
tion false. The connections to the clauses are shown as
the openings of tunnels with vertical literal bars inside.
These literal bars are fixed to the sides of their tunnels
by translational joints and hence can move upwards and
downwards. The literal bars can only be moved towards
the variable bar if there is a dent aligned with the tunnel
opening. If there is no dent aligned then the vertical bar
in turn must be shifted away from the variable bar and
into its tunnel, otherwise planarity would be violated by
the touching bars. Thus, the literal bar transmits pres-
sure into the clause gadget. The placement of the dents
on the variable bar is as follows. Assume that the bar is
in the position of Figure 16(a). Then, for all connections
representing positive literals we place an aligned dent on
the bar. For negated literals the dents are placed one
position to the left such that they align with the tun-
nel openings when the variable bar takes its right-hand
position as in Figure 16(b). Consequently, only those lit-
eral bars corresponding to literals that evaluate to true
can be fitted into their dents. This fact is required for
constructing the clause gadget. Note that all parts of

Drawing Subway Maps: A Survey

19

the structure are connected such that they use the same
square block size and thus all vertices are placed on a
grid.

Second, we describe the clause gadget. It must be
constructed such that it is planar if and only if at least
one literal of that clause is true, i.e., one of the literal bars
in the tunnels connected to the variables fits into its dent.
In other words, the gadget cannot be drawn correctly if
there is pressure from all three literals bars. Now we
describe the clause gadget, as shown in Figure 17, in
detail.

The clause gadget has the shape of a three-legged
comb just as in the variable-clause graph H.,, recall Fig-
ure 13. The tunnel corresponding to the second literal
can be connected directly to its variable gadget. The two
outer tunnels are making a turn to run horizontally to-
wards the center of the gadget. At this turn the vertical
pressure from the variable is transformed into horizon-
tal pressure. This can be seen in Figure 17(a). The left
literal bar is in its upper position and thus causes the
adjacent horizontal bar to be in its right position. The
literal bar on the right-hand side is in its lower posi-
tion and therefore allows the corresponding horizontal
bar to be shifted away from the center of the clause gad-
get. However, the crucial part of this gadget is a flexible
switch in the center of the gadget that is able to select
a satisfied literal if there is one. As a whole, this switch
can shift vertically by one unit due to four joints fixing
it to the walls of the gadget. In Figure 17(a) it is in its
lower position and in Figure 17(b) and 17(c) it is shifted
upwards. The middle part of the switch consists of a bar
made up of four square blocks and two triangles. This
bar can be moved to the left and to the right indepen-
dently using two standard translational joints. Note the
three black triangles at the left, bottom and right side of
the switch. These triangles may overlap with the trian-
gles at the end of those literal bars that exert pressure
into the clause gadget as can be seen in Figure 17(c),
where the left literal bar and the switch bar touch each
other and thus violate planarity. Hence, the whole gadget
can be drawn octilinearly as long as at least one literal
evaluates to true and the switch is shifted towards this
very literal. However, if all literals are false and hence
the respective bars are shifted into the gadget, then all
possible positions for the switch result in a violation of
planarity. Again, all side lengths of the square blocks in
the clause gadget are equal because all the different parts
are connected via translational joints.

With these two gadgets for variables and clauses we
can construct the whole graph G(¢) by connecting the
literal tunnels of the clause gadgets to their ports in the
respective variable gadgets. The resulting graph is planar
since the input variable-clause graph H, is planar. We
choose the input embedding of G(yp) according to H,,
and the above gadget structures.

To conclude the proof, let us repeat the correspon-
dence between a planar Boolean 3-CNF formula ¢ and

the graph G(p) constructed above. If ¢ is satisfiable then
G(y) can be drawn octilinearly such that each variable
gadget is realized corresponding to the truth value in
a satisfying variable assignment of ¢. Consequently, by
construction, each clause gadget is correctly drawable.
If, however, ¢ is not satisfiable then for each variable
assignment there is at least one clause that evaluates
to false. This means that G(p) cannot be drawn octi-
linearly because in the corresponding clause gadget all
literal bars are pushed towards the center of this clause
so that none of the conformations of the switch can be
drawn planarly.

Finally, the reduction itself can be done in polynomial
time because G() is embedded on a grid of size polyno-
mial in the length of ¢. Therefore G(¢) has a polynomial
number of vertices and edges. O

We have just seen that OCTILINEARGRAPHDRAWING
is a hard problem. Now we set out to show that among
the hard problems it is on the easy side. We prove that
OCTILINEARGRAPHDRAWING lies in NP, i.e., there is
a non-deterministic polynomial-time algorithm for it.
This means that it is “easier” than, say, QUANTIFIED-
BOOLEANFORMULA, which is PSPACE-hard, and much
easier than the halting problem, which is undecidable.

Corollary 1 OCTILINEARGRAPHDRAWING is NP-com-
plete.

Proof According to Theorem 2, the problem OCTILINEAR-
GRAPHDRAWING is NP-hard. To show the NP-complete-
ness of OCTILINEARGRAPHDRAWING it remains to prove
that the problem lies in AP. A common way to show
that a problem IT lies in NP is to specify for each in-
stance I of I a finite set Sy such that if I is a “yes”-
instance, S; contains a witness W for this and W can
be verified deterministically in polynomial time. Then a
non-deterministic algorithm for IT consists of “guessing”
an element of Sy and then verifying it. In our case we
could let S; be the set of all straight-line drawings of a
given planar graph G. Then verification would be easy,
since for such a drawing one can check efficiently whether
all edges are octilinear, the embedding is preserved, and
the drawing is planar. However, the cardinality of S
would not necessarily be finite, even if scaling and rotat-
ing were factored out.

Instead, we utilize the MIP formulation of Section 4
restricted to the part that models the hard constraints
(R1)—(R3). This MIP has a solution if and only if there
is an embedding-preserving octilinear planar drawing of
the input graph G, i.e., if and only if the conditions of
Theorem 2 are met.

In this MIP all integer variables are bounded by small
constants and the only non-integer variables are the ver-
tex coordinates. Now we can guess an assignment of the
integer variables, which basically corresponds to guessing
edge directions. To decide whether such an assignment
is feasible, we simply solve the linear program (LP) that

20

Alexander Wolff

(a) The second literal is selected by the switch.

(b) The third literal is selected.

(c) The first literal is selected.

Fig. 17: The clause gadget. In each of the subfigures the literal bar in the left leg transmits false while the other two bars
transmit true. Alternative literal bar positions are indicated with dotted lines. In (c) the switch selects the first literal. This

violates planarity at the flash symbol.

corresponds to an instance of the MIP in which all in-
teger variables have been set according the assignment
that we guessed. The LP can be solved in O(N3-5L?)
time by Karmakar’s interior-point method [16], where N
is the number of constraints and L is the number of in-
put bits. The LP consists of N = O(n?) constraints and
variables. Its coeflicients are small integers each of which
requires only a constant number of bits. Hence, solving
the LP is polynomial in terms of the size of the input
graph, and OCTILINEARGRAPHDRAWING is in N'P. O

6 Conclusion and Future Work

We have surveyed three methods for drawing subway
networks; a spring embedder by Hong et al. [15], a hill
climber by Stott and Rodgers [30], and a MIP-based
method by Néllenburg and Wolff [25]. The medium-size
CityRail network of Sydney is the only network that
was drawn by each of the methods. We have compared
the drawings in the corresponding publications and have
evaluated them using a list of rules. The method of Hong
et al. was by far the fastest, but in terms of quality infe-
rior to the other two methods. The method of Nollenburg
and Wolff was quite fast on this particular example, but
since it relies on a MIP solver, its running time is diffi-
cult to predict. The strength of their method is the fact
that the hard constraints—including octilinearity—are
fulfilled by construction. The hill-climber based method
of Stott and Rodgers managed to force all edges but a
few to octilinear directions, but it introduced more bends
than the MIP-based method.

The pros and cons of the two slower methods are
the following. When using hill climbing, on the one hand
the optimization may be stopped at any time and yields
some result. On the other hand, the process usually gets
stuck in local optima. Then it fails to improve even when

given a lot of time. Another minus is that the multi-
criteria optimization does not guarantee octilinearity.

In contrast, the MIP approach by construction will
only find drawings that fulfill all hard constraints. For
unlabeled drawings the MIP solver usually quickly gen-
erates good intermediate solutions, but proving their op-
timality can take a long time. However, in practice it is
usually not worth waiting for the optimal solution (in
terms of the objective function). Instead, any good fea-
sible solution will do. Recall that the objective function
is just an attempt to mathematically formulate the aes-
thetic quality of a drawing and hence the optimal solu-
tion is not necessarily more pleasing (for a human viewer)
than some close-by solutions.

For labeled subway maps the MIPs become signifi-
cantly larger in terms of numbers of variables and con-
straints, and hence their optimization takes much more
time. The results for examples like Vienna and Sydney
look promising, but the MIP of Nollenburg and Wolff
did not succeed to find a labeled drawing for the large-
scale network of London. Thus further heuristic speed-
ups for combining the drawing and labeling of subway
maps are required. One could, for example, soften the
requirement that labels may not overlap edges of the
network. Instead one could punish such overlaps by the
objective function and hope that most of them will dis-
appear due to optimization. One could also precompute
simple parts of the network including their labels, e.g.,
long suburban lines that lie completely in the outer face,
assuming that this would speed up the optimization of
the denser and more difficult downtown area [28]. Pos-
sibly the path-simplification algorithm of Merrick and
Gudmundsson [20] (see Section 3.4) could be integrated
into a global optimization procedure that forbids inter-
section of independent paths.

Which of the two slower methods—hill climbing ver-
sus MIP—yields nicer drawings may depend on personal

Drawing Subway Maps: A Survey

21

U4 o o =
Y dﬂaﬁf’ \ =z e
N 4
‘&‘Q{b\‘z, 4{/ T |— g Z00
S N & T |— =
G 4) =
N & g :
! g g
<, @
<, =]
Messe '%0‘ 2 -
% % & Dom/Rémer b
& % OstendstraRe
Galluswarte ",% %
% /
%
%, / &
% ¢
2 7\ B o
/g S
S ® %,
RN "%
@ Zor,
%,
Niederrad Stresemannallee %37
Jz-.
" 4
LOUISB!
ER Neu-
1 — |5e1\DU [S 5] QB‘

Fig. 18: Clipping of the official map of the Frankfurt public
transportation network, which has many parallel lines and
uses octilinearly oriented rectangles to mark stations.

preferences. Both succeed in drawing unlabeled networks
in a quality comparable to maps drawn by graphic de-
signers. This indicates that our list of rules indeed models
similar layout criteria as those applied by professionals.
A user study would help to clarify in how far these cri-
teria do in fact support subway passengers in quickly
making the right decisions.

One may ask why maps drawn by graphic designers
appear still somewhat more pleasing and elegant than
the best automatically generated maps. We think that
there are two main reasons. First, the automatically gen-
erated drawings we see today are the result of academic
feasibility studies, not the output of professional tools.
Therefore, they lack the finishing touch that professional
graphic designers apply to their drawings: nice fonts and
colors, rounded bends, special symbols for interchange
stations, line breaks in labels etc. Second, and more im-
portant, a professional graphic designer uses background
knowledge that is not available to the current algorithms:
(s)he sees symmetries or knows underlying structure (such
as the circular lines in London or Moscow), and can stress
or otherwise take advantage of these in the layout pro-
cess. In a way, a good layout of a complicated subway
system is (stilll) a piece of art, and thus may be out of
reach for complete automation. Maybe this is the begin-
ning of a new field: computational aesthetics or compu-
tational design?

We close with a concrete problem that the current
MIP formulation ignores, namely parallel subway lines.
These appear quite often, especially in German subway
networks (see Figure 18), but also elsewhere (see Fig-
ure 3(b)). With the increasing multiplicity of edges it
becomes difficult to visually keep the different colors of
the lines apart. This phenomenon can be counteracted by
increasing line thickness and inter-line distances. This in
turn would force incident stations to become larger. Ide-
ally, the sizes of vertices and the thickness of edges would

be integrated into the model. This would also remove the
current restriction (of 8) on the maximum vertex degree
of the underlying subway graph. Some of this work can
already be seen in the MIP formulation of Binucci et
al. [6], where vertices and labels are represented by axis-
parallel rectangles—for drawing graphs orthogonally.

Acknowledgments

I thank Seok-Hee Hong and Herman Haverkort for inter-
esting discussions during their respective visits to Karl-
sruhe in 2004 and Damian Merrick for providing me
with the drawings in Figure 4. I am indebted to Mar-
tin Nollenburg for the material in Section 5, for pointing
me to Figure 1, and for intensive discussions, especially
about the remaining insufficiencies of automatically gen-
erated subway maps. Thanks to Dorothea Wagner for
insisting that I should investigate this beautiful topic
and for a hardcopy of Figure 2. Thanks to the publisher
O’Reilly for permission to use Figure 2. Finally I thank
the anonymous referees of this article for their detailed
and very helpful comments.

References

1. Silvania Avelar and Matthias Miiller. Generating topo-
logically correct schematic maps. In Proc. 9th Internat.
Sympos. Spatial Data Handling (SDH’00), pages 4a.28—
4a.35, 2000.

2. Thomas Barkowsky, Longin Jan Latecki, and Kai-Florian
Richter. Schematizing maps: Simplification of geo-
graphic shape by discrete curve evolution. In C. Freksa,
W. Brauer, C. Habel, and K. F. Wender, editors, Proc.
Spatial Cognition II—Integrating abstract theories, em-
pirical studies, formal models, and practical applications,
volume 1849 of Lecture Notes in Artificial Intelligence,
pages 41-53, 2000.

3. Michael Bekos, Michael Kaufmann, Katerina Potika, and
Antonios Symvonis. Line crossing minimization on metro
maps. In Seok-Hee Hong and Takao Nishizeki, editors,
Proc. 15th Internat. Sympos. Graph Drawing (GD’07),
volume 4875 of Lecture Notes Comput. Sci., pages 231—
242. Springer-Verlag, 2008.

4. Marc Benkert, Martin Noéllenburg, Takeaki Uno, and
Alexander Wolff. Minimizing intra-edge crossings in
wiring diagrams and public transport maps. In Michael
Kaufmann and Dorothea Wagner, editors, Proc. 14th In-
ternat. Sympos. Graph Drawing (GD’06), volume 4372
of Lecture Notes Comput. Sci., pages 270-281. Springer-
Verlag, 2007.

5. Francois Bertault. A force-directed algorithm that pre-
serves edge-crossing properties. Inform. Process. Lett.,
74(1):7-13, 2000.

6. Carla Binucci, Walter Didimo, Giuseppe Liotta, and
Maddalena Nonato. Orthogonal drawings of graphs with
vertex and edge labels. Comput. Geom. Theory Appl.,
32(2):71-114, 2005.

7. Ulrik Brandes, Markus Eiglsperger, Michael Kaufmann,
and Dorothea Wagner. Sketch-driven orthogonal graph
drawing. In Stephen G. Kobourov and Michael T.
Goodrich, editors, Proc. 10th Internat. Sympos. Graph
Drawing (GD’02), volume 2528 of Lecture Notes Com-
put. Sci., pages 1-11. Springer-Verlag, 2002.

22 Alexander Wolff
8. Sergio Cabello, Mark de Berg, and Marc van Kreveld. 28. Maxwell Roberts. Personal email communication, 2007.
Schematization of networks. Comput. Geom. Theory 29. Elmer S. Sandvad, Kaj Grgnbak, Lennert Sloth, and

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.
20.

21.
22.

23.

24.

25.

26.
27.

Appl., 30(3):223-238, 2005.

Sergio Cabello and Marc van Kreveld. Approximation
algorithms for aligning points. In Proc. 19th Annu. ACM
Sympos. Comput. Geom. (SoCG’03), pages 20-28, 2003.
Guiseppe Di Battista, Peter Eades, Roberto Tamassia,
and loannis G. Tollis. Graph Drawing. Prentice Hall,
Upper Saddle River, NJ, 1999.

Markus Eiglsperger, Sandor P. Fekete, and Gunnar W.
Klau. Orthogonal graph drawing. In Michael Kaufmann
and Dorothea Wagner, editors, Drawing Graphs: Methods
and Models, volume 2025 of Lecture Notes Comput. Sci.,
chapter 6, pages 121-171. Springer-Verlag, 2001.
Thomas M. J. Fruchterman and Edward M. Reingold.
Graph drawing by force-directed placement. Software —
Practice & Ezxperience, 21(11):1129-1164, 1991.

Ashim Garg and Roberto Tamassia. On the compu-
tational complexity of upward and rectilinear planarity
testing. SIAM J. Comput., 31(2):601-625, 2001.

Ken Garland. Mr Beck’s Underground Map. Capital
Transport Publishing, Harrow Weald, Middlesex.
Seok-Hee Hong, Damian Merrick, and Hugo A. D.
do Nascimento. Automatic visualisation of metro maps.
J. Visual Languages & Comput., 17(3):203-224, 2006.
Narendra Karmakar. A new polynomial-time algorithm
for linear programming. Combinatorica, 4(4):373-395,
1984.

Gunnar W. Klau and Petra Mutzel. Combining graph
labeling and compaction. In Jan Kratochvil, editor,
Proc. Tth Internat. Sympos. Graph Drawing (GD’99),
volume 1731 of Lecture Notes Comput. Sci., pages 27—
37. Springer-Verlag, 1999.

Donald E. Knuth and Arvind Raghunathan. The prob-
lem of compatible representatives. SIAM J. Discr. Math.,
5(3):422-427, 1992.

David Lichtenstein. Planar formulae and their uses.
SIAM J. Comput., 11(2):329-343, 1982.

Damian Merrick and Joachim Gudmundsson. Path sim-
plification for metro map layout. In Michael Kauf-
mann and Dorothea Wagner, editors, Proc. 14th Internat.
Sympos. Graph Drawing (GD’06), volume 4372 of Lec-
ture Notes Comput. Sci., pages 258-269. Springer-Verlag,
2006.

Alastair Morrison. Public transport maps in western eu-
ropean cities. Cartogr. J., 33(2):93-110, 1996.

Keith V. Nesbitt. Getting to more abstract places using
the metro map metaphor. In Proc. 8th Internat. Conf. In-
form. Visualisation (IV’04), pages 488-493. IEEE Com-
puter Society, 2004.

Gabriele Neyer. Line simplification with restricted orien-
tations. In Frank K. Dehne, Arvind Gupta, Jorg-Riidiger
Sack, and Roberto Tamassia, editors, Proc. 6th Inter-
nat. Workshop Algorithms Data Struct. (WADS’99), vol-
ume 1663 of Lecture Notes Comput. Sci., pages 13-24.
Springer-Verlag, 1999.

Martin Noéllenburg. Automated drawings of metro maps.
Technical Report 2005-25, Fakultdt fiir Informatik, Uni-
versitdt Karlsruhe, 2005. Available at http://www.ubka.
uni-karlsruhe.de/indexer-vvv/ira/2005/25.

Martin Noéllenburg and Alexander Wolff. A mixed-integer
program for drawing high-quality metro maps. In Patrick
Healy and Nikola S. Nikolov, editors, Proc. 13th Internat.
Sympos. Graph Drawing (GD’05), volume 3843 of Lec-
ture Notes Comput. Sci., pages 321-333. Springer-Verlag,
2006.

Mark Ovenden. Metro Maps of the World. Capital Trans-
port Publishing, Harrow Weald, Middlesex.

Klemens Polatschek. Die Schoénheit des Untergrun-
des. Frankfurter Allgemeine Sonntagszeitung 28, 16 July
2006. Available via http://fazarchiv.faz.net.

30.

31.

32.

33.
34.

35.

36.

Jgrgen Lindskov Knudsen. A metro map metaphor for
guided tours on the Web: the Webvise Guided Tour Sys-
tem. In Proc. 10th Internat. World Wide Web Conf.
(WWW?01), pages 326-333. ACM Press, 2001.
Jonathan Stott and Peter Rodgers. Metro map lay-
out using multicriteria optimization. In Proc. 8th Inter-
nat. Conf. Inform. Visualisation (IV’04), pages 355-362.
TEEE Computer Society, 2004.

Jonathan M. Stott and Peter Rodgers. Automatic metro
map design techniques. In Proc. 22nd Internat. Carto-
graphic Conf. (ICC’05), La Coruifia, Spain, 2005.
Jonathan M. Stott, Peter Rodgers, Remo Aslak
Burkhard, Michael Meier, and Matthias Thomas Jelle
Smis. Automatic layout of project plans using a metro
map metaphor. In Proc. 9th Internat. Conf. Inform. Vi-
sualisation (IV’05), pages 203-206, 2005.

Sydney CityRail.

Roberto Tamassia. On embedding a graph in the grid
with the minimum number of bends. SIAM J. Comput.,
16(3):421-444, 1987.

J. Mark Ware, Suchith Anand, George E. Taylor, and
Nathan Thomas. Automated production of schematic
maps for mobile applications. Transactions in GIS,
10(1):25-42, 2006.

X Initiative. http://www.xinitiative.org.

