
Drawing Binary Tanglegrams: An Experimental Evaluation

Martin Nöllenburg∗ Markus Völker∗ Alexander Wolff† Danny Holten†

Abstract
A tanglegram is a pair of trees whose leaf sets are in one-
to-one correspondence; matching leaves are connected by
inter-tree edges. In applications such as phylogenetics or
hierarchical clustering, it is required that the individual trees
are drawn crossing-free. A natural optimization problem,
denoted tanglegram layout problem, is thus to minimize the
number of crossings between inter-tree edges.

The tanglegram layout problem is NP-hard even for

complete binary trees, for general binary trees the prob-

lem is hard to approximate if the Unique Games Conjecture

holds. In this paper we present an extensive experimen-

tal comparison of a new and several known heuristics for

the general binary case. We measure the performance of the

heuristics with a simple integer linear program and a new ex-

act branch-and-bound algorithm. The new heuristic returns

the first solution that the branch-and-bound algorithm com-

putes (in quadratic time). Surprisingly, in most cases this

simple heuristic is at least as good as the best of the other

heuristics.

1 Introduction

In this paper we are interested in evaluating the per-
formance of several recently suggested algorithms for
drawing so-called tanglegrams [15], that is, pairs of trees
whose leaf sets are in one-to-one correspondence. The
need to visually compare pairs of trees arises in appli-
cations such as phylogenetics or clustering.

In biology, a phylogenetic tree is a (rooted) binary
tree that describes a hypothesis of the evolutionary
history of a set of species (or taxa) that are placed at the
leaves of the tree. Each inner node represents a potential
ancestor of the taxa at its child nodes. Figure 1 shows an
example. There are various tree reconstruction methods
available in computational biology that allow biologists
to build a set of candidate trees from the DNA or
protein sequences of a set of taxa. These trees can
be compared using tree-distance measures, but it is
also important to graphically depict the trees. A good
drawing of the trees helps biologists to recognize and

∗Fakultät für Informatik, Universität Karlsruhe and Karlsruhe
Institute of Technology (KIT), Germany. Supported by DFG
grant WO 758/4-3. Email: {noellenburg, mvoelker}@iti.uka.de

†Faculteit Wiskunde en Informatica, TU Eindhoven,
The Netherlands. Email: {a.wolff, d.h.r.holten}@tue.nl

compare different substructures of the trees. This is
more than a single number such as a tree distance can
achieve. Moreover, tree drawings are often used to
communicate the findings of a study to its readers. For
this purpose, tanglegrams have established themselves
as a visualization method for pairs of related trees [15].

In clustering, our second application, clusters are
often computed incrementally: in the beginning each
object forms its own cluster, and then, step by step, the
pair of clusters that is closest according to some dis-
tance measure is joined. Such a hierarchical clustering
is naturally represented by a binary tree called dendro-
gram, where elements are represented by the leaves and
each inner node of the tree represents a cluster contain-
ing the leaves in its subtree. Pairs of dendrograms of
the same data stemming from different clustering algo-
rithms or parameter settings can be compared visually
using tanglegrams.

From the application point of view it makes sense to
insist that (a) the trees under consideration are drawn
plane, that is, without edge crossings, (b) each leaf
of one tree is connected by an inter-tree edge to the
corresponding leaf in the other tree, and (c) the number
of crossings among the inter-tree edges is minimized.
This results in legible tanglegram drawings: each tree
is drawn in the usual style and distracting crossings
of inter-tree edges are kept to a minimum. Following
the bioinformatics literature [13, 15], we call this the
tanglegram layout problem; Fernau et al. [5] refer to it as
two-tree crossing minimization. Formally, the problem
can be stated as follows.
Tanglegram Layout (TL): Given a pair 〈S, T 〉 of two
rooted trees S and T on n leaves and a bijection between
their leaf sets, find a tanglegram layout, that is, two
plane drawings of S and T , such that

1. the drawing of S is to the left of the line x = 0 with
all leaves on x = 0;

2. the drawing of T is to the right of the line x = 1
with all leaves on x = 1;

3. the inter-tree edges are drawn as straight-line seg-
ments;

4. the number of inter-tree edge crossings is minimum.

Given a tree T , we say that a linear order of its
leaves is compatible with T if for each node v of T the

(a) arbitrary layout (b) optimal layout

Figure 1: A binary tanglegram of phylogenetic trees for lice of pocket gophers [8].

nodes in the subtree of v form an interval in the order.
Note that TL is a purely combinatorial problem: in
short, given two trees S and T , TL consists of finding
an order σ of the leaves of S compatible with S and an
order τ of the leaves of T compatible with T such that
the number of inversions between τ and σ is minimum
[2, 5]. Let the crossing number of a tanglegram 〈S, T 〉
be the minimum number of inter-tree edge crossings of
any tanglegram drawing of 〈S, T 〉.

We restrict ourselves to binary TL, that is, the case
where both given trees are binary. Binary TL is NP-
hard [5], even if both trees are complete [2]. Without the
restriction to complete trees, the optimization version of
binary TL is hard to approximate if the Unique Games
Conjecture holds [2].

The contributions of this paper are two-fold. We
first give two new exact methods for solving binary TL:
a simple integer linear program (ILP) and a branch-and-
bound algorithm, see Sections 3.4 and 3.5, respectively.
The branch-and-bound algorithm has a variable for the
order of the children in each node of the tanglegram.
The algorithm exploits the fact that the variables can
be chosen independently; it chooses a variable order-
ing that often yields a very good first solution, whose
value can then be used as upper bound to prune many
branches of the search tree. The algorithm takes expo-
nential time in general, but yields a fast and simple, yet
effective heuristic. The heuristic outputs—in quadratic
time—the first solution that the branch-and-bound al-
gorithm finds.

Our second and main contribution is an extensive
experimental comparison of this new heuristic and sev-
eral known heuristics for binary TL (Section 4). We
measure the performance of the heuristics with respect
to the optimum, which we compute with the above exact
methods. Before presenting our comparison, we review

related work (Section 2) and describe the algorithms
that we compare (Section 3).

2 Related Work

In graph drawing the so-called two-sided crossing min-
imization problem (2SCM) is an important NP-hard
problem that occurs when computing layered graph lay-
outs. Such layouts have been introduced by Sugiyama
et al. [17] and are widely used for drawing hierarchical
graphs. In 2SCM, vertices of a bipartite graph are to
be placed on two parallel lines (called layers) such that
for each vertex on one line all its adjacent vertices lie
on the other line. As in TL the objective is to minimize
the number of edge crossings provided that edges are
drawn as straight-line segments. In one-sided crossing
minimization (1SCM) the order of the vertices on one
of the layers is fixed. Even 1SCM is NP-hard [4], even
if the given graph is a forest of 4-stars [14].

Jünger and Mutzel [10] performed an experimental
comparison of exact and heuristic algorithms for both
1SCM and 2SCM. Their main findings were that for
1SCM the exact solution can be computed quickly for
up to 60 vertices in the free layer, and for 2SCM an
iterated barycenter heuristic is the method of choice for
instances with more than 15 vertices in each layer.

The main difference between TL and 2SCM is that
in TL, the possible orders of the leaves are limited to
those that are compatible with the two input trees.
Furthermore, the inter-tree edges are restricted to be
a matching of the leaves.

Dwyer and Schreiber [3] studied drawing a series
of tanglegrams in 2.5 dimensions, that is, the trees are
drawn on a set of stacked two-dimensional planes. They
considered a one-sided version of binary TL by fixing
the layout of the first tree in the stack, and then, layer-

by-layer, computing an optimal leaf order of the next
tree with respect to the previous one in O(n2 log n)
time each. Such a one-sided TL problem is denoted as
one-tree crossing minimization (1TCM). We include an
iterated version of the 1TCM algorithm that alternately
fixes one of the trees and optimizes the other as a
heuristic in our experimental comparison. Note that the
efficient algorithm of Dwyer and Schreiber for 1TCM
contrasts the NP-hardness of 1SCM.

Fernau et al. [5] showed how to solve the one-sided
version in O(n log2 n) time, proved that binary TL is
NP-hard, and gave a fixed-parameter algorithm that
runs in O?(ck) time, where the O?-notation ignores
polynomial factors, c is a constant that Fernau et al.
estimate to be 1024, and k is the crossing number
of the given tanglegram. They also made the simple
observation that the edges of the tanglegram can be
directed from one root to the other. Thus the existence
of a planar drawing can be verified using a linear-time
upward-planarity test for single-source directed acyclic
graphs [1]. Later, apparently not knowing these results,
Lozano et al. [13] gave a quadratic-time algorithm for
the same special case, to which they refer as planar
tanglegram layout.

Zainon and Calder [18] described an interactive
tree-comparison tool that allows manual and automatic
rearrangement of a tanglegram. They aimed at high-
lighting differences and similarities in the two trees;
they did not explicitly minimize the number of inter-
tree edge crossings. They implemented two heuristics.
The first heuristic starts at the roots of both trees and
flips the subtrees of one tree if this increases the number
of edges between the aligned subtrees; then it recurses
on both pairs of aligned subtrees. The second heuris-
tic minimizes the triplet difference between two n-leaf
trees over all 22n−2 possible arrangements. The triplet
difference counts the number of all three-leaf subsets for
which the respective induced subtrees differ in the two
trees. They recommended the following semi-automatic
approach: use the first heuristic to find a layout of the
full trees and then untangle small groups of edges indi-
vidually using the second (exponential-time) heuristic,
followed by some manual fine tuning.

Holten and van Wijk [9] presented a tanglegram vi-
sualization tool for the comparison of pairs of large (not
necessarily binary) trees. Their tool repeatedly applies
the barycenter method [17] to reduce inter-tree cross-
ings (see Section 3.2) and a subsequent edge-bundling
technique to reduce visual clutter. The crossing reduc-
tion heuristic of Holten and van Wijk is included in our
experimental evaluation.

Recently, Buchin et al. [2] showed that binary TL
remains NP-hard even if both trees are complete binary

trees. For this case they gave an O(n3)-time factor-
2 approximation algorithm that recursively splits an
instance into subinstances and a simple O?(4k)-time
fixed-parameter algorithm, where k is as above. They
also showed that binary TL is hard to approximate if
the Unique Games Conjecture holds. We include in our
evaluation a version of their approximation algorithm,
that contains improvements for dealing with unbalanced
trees.

3 Algorithms

In this section we review the recursive splitting algo-
rithm of Buchin et al. [2] and describe our improvement
of their method for unbalanced binary trees. We fur-
ther describe the hierarchy sorting algorithm of Holten
and van Wijk [9] and a variant, and the iterated one-
tree crossing minimization algorithm of Dwyer and
Schreiber [3]. Finally, a simple integer linear program
(ILP) and an exact branch-and-bound algorithm are
presented as two new methods that provide optimal so-
lutions for the experiments in Section 4. The branch-
and-bound algorithm additionally gives rise to a fast,
yet effective heuristic.

3.1 Recursive Splitting Algorithm The main
idea behind the recursive splitting algorithm of Buchin
et al. [2] is to consider for an instance 〈S, T 〉 the four
possible orders of the two subtrees S1, S2 of S and T1, T2

of T below the roots vS and vT of S and T as in Fig-
ure 2. The two pairs of horizontally aligned subtrees
of each subtree order induce two subinstances that are
solved recursively (in the example of Figure 2 these are
〈S1, T1〉 and 〈S2, T2〉). Each such order gives rise to a
certain number of crossings at that level of the recur-
sion (called current-level crossings), which is added to
the number of crossings of both recursively solved sub-
problems (called lower-level crossings). Each current-
level crossing has the property that it can be removed
by swapping the subtrees of vS or vT . For example, the
crossing depicted in Figure 2 can be removed by swap-
ping the subtrees of vS and placing S2 above S1. Of
course such a swap generally introduces other current-
level crossings. The minimum of the four possibilities is
returned to the previous level of the recursion.

The two subproblems that arise from each recursive
split are not independent. Nevertheless, they are
treated independently by the algorithm. That is the
point that introduces an error with respect to the
actual number of crossings, which, for the case of
complete binary trees, can be bounded by the number
of crossings in an optimal solution [2]. For complete
binary trees the recursive algorithm thus yields a 2-
approximation. Obviously, the depth of the recursion

T2

S1

S2

T1

S T
vS vT

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

8

7

(a) optimal layout: 1 crossing

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

8

7

(b) heuristic layout: 14 crossings

Figure 2: A subinstance 〈S, T 〉 with
a current-level crossing.

Figure 3: Example of a binary tree for which the algorithm of Buchin et al. [2]
performs badly.

equals the minimum height h of the two trees. The
recursion tree is of size O(8h) since each instance starts
eight recursive calls (two for each of the four subtree
arrangements). The computation of all current-level
crossings is done in O(4hn) time, resulting in a total
running time of O(8h + 4hn). For complete trees with
h = log n this resolves to O(n3) time.

In applications most binary TL instances do not
consist of complete binary trees. The above recursive
algorithm can be applied to any pair of binary trees
as a heuristic but an approximation guarantee can-
not be given any more. Under the widely-accepted
Unique Games Conjecture a constant-factor approxi-
mation does not even exist for general binary trees [2].
Moreover, the running time grows exponentially with
the height of the trees.

Still, there is room for improvements of running
time and solution quality for arbitrary tanglegrams.
The original algorithm always divides an instance into
an upper and a lower subinstance, that is, the two prob-
lems 〈S1, T1〉 and 〈S2, T2〉 in the example of Figure 2.
For unbalanced trees this may lead to an unnecessarily
high number of ignored crossings as Figure 3 shows. The
original algorithm aligns the leaves (nodes 7 and 8) at-
tached directly to the roots since this causes no current-
level crossings. All 14 crossings in Figure 3b are cross-
ings that the algorithm does not take into account.

A small modification of the algorithm weakens this
effect (and yields the optimum solution in the given
example). Instead of defining a subinstance by a pair of
horizontally aligned subtrees we match the four subtrees
of vS and vT such that the number of inter-tree edges
within each of the two subinstances is larger than the
number of edges between one subinstance and the other.
In this way less edges are disregarded in the course of
the algorithm. This not only improves the performance

but it also means that each subtree of S has a fixed
partner in T for all branches of the recursion. Hence we
can precompute in O(n2h) time all required current-
level crossings for constant-time lookup. The worst-
case instance for this recursive algorithm is a pair of
two caterpillar trees with linear height. In that case
the running time of the recursion follows the recurrence
T (n) ≤ 4T (n − 1) + O(n) which resolves to T (n) ∈
O(4n). Hence the worst-case running time for arbitrary
trees is O(4h + n2h). Note that for complete binary
trees the running time is still O(n3) as for the original
algorithm of Buchin et al. [2]; their analysis of the
approximation factor, however, does not carry over.

In order to speed up the algorithm in practice we
additionally make use of a branch-and-bound technique
in order to prune large parts of the search tree as early as
possible. For a subinstance 〈S, T 〉 with roots vS and vT

we first consider the arrangement of the subtrees of vS

and vT that yields the lowest number of accumulated
current-level crossings and recurse. Once the leaf level
is reached this gives us an initial upper bound on the
number of crossings. Now at each node of the search tree
we can immediately prune the subtrees corresponding to
arrangements of the current subinstance whose accumu-
lated current-level crossings exceed this upper bound.
The rest of the search tree is examined further, and
each time a better solution is found, the upper bound
is updated accordingly.

3.2 Hierarchy Sort The algorithm of Holten and
van Wijk [9] performs a number of collapse-and-expand
cycles on both trees of the binary tanglegram. During
each step of these cycles, the well-known barycentric
method of Sugiyama et al. [17] for 1SCM is used by
successively fixing one tree, optimizing the leaf order of
the other, and then changing the trees’ roles until no

L1 L2 L1L2

45

6

21

33

6

421

5

L1 L2 L1L2

45

6

21

33

6

421

5
L1 L2 L1L2

6

45

3

216

3

5

421

L1 L2 L1L2
45

6

21

33

6

421

5
L1 L1

456

21363

5421

L1 L2 L3 L4 L1L2L3
6

5

4

3

2

1
6

3

5

4

2

1
L1 L2 L3 L4 L1L2L3L4

6

5

4

3

2

16

3

5

2

1

4

L1 L2 L3 L4 L1L2L3L4 L1 L2 L3 L1L2L3

6

5

4

3

2

1
6

3

5

21

4

(f) collapse to L2 (6) (g) cross-reduce L2 (1) (j) expand to L2 (1) (k) cross-reduce L2 (1)(h) collapse to L1 (1) (i) cross-reduce L1 (1)

(c) cross-reduce L4 (12)(a) original trees (13) (e) cross-reduce L3 (9)(d) collapse to L3 (12)(b) equalize levels; max = L4 (13)

(l) expand to L3 (3) (m) cross-reduce L3 (2) (n) expand to L4 (2) (o) cross-reduce L4 (2) (p) remove dummy nodes (2)

L1 L2 L3 L4 L1L2L3L4

6

5

4

3

2

16

3

5

2

1

4

L1 L2 L3 L4 L1L2L3L4

6

5

4

3

2

16

3

5

2

1

4
4

L1 L2 L3 L4 L1L2L3

6

3

5

2

1

6

5

4

3

2

16

3

5

2

1

4

L1 L2 L3 L1L2L3

6

5

4

3

2

1
6

3

5

21

4

L1 L2 L3 L1L2L3L1 L2 L3 L1L2L3

6

4

5

3

2

1

21

5

4

6

3

L1 L1

456

21363

5421

6

5

4

3

2

1

21

5

4

6

3

6

5

4

3

2

1

Figure 4: Step-by-step crossing reduction using the hierarchy sorting algorithm. Nodes that are swapped during crossing
reduction are encircled. The numbers of inter-tree edge crossings after each step are given in parentheses.

further crossing reduction is possible.
In a first step, the two trees are augmented with

dummy nodes of degree 2 below the original leaves such
that both trees have the same height and all leaves
are on the lowest level. Starting at the lowest level,
the barycenter method is applied to both trees in turn
until the leaf order gets stable. Since the leaf order is
restricted by the tree topology we only need to consider
sibling nodes whose parent lies one level above. For
such pairs of nodes we compute the barycenter of their
neighbors in the other tree and swap them if the order
of the two barycenters is reversed. In the next step
we collapse the lowest level of both trees replacing each
inter-tree edge between two leaves by the corresponding
edge between their parents. Thus for higher levels
multiple inter-tree edges can be incident to a single
node. Barycentric crossing reduction and collapsing
are alternated until the root of both trees is reached.
Now the collapsing phase is replaced by an expansion
phase that adds the next level to both trees. The initial
leaf order of newly expanded subtrees remains as in

the corresponding previous collapsing phase and then
barycentric crossing reduction is performed on that level
before expanding the next level. Once the lowest level is
reached a collapse-and-expand cycle is completed. The
collapse-and-expand cycles are repeated until no further
improvement is made. Figure 4 illustrates the algorithm
step-by-step.

A simple variant of the above procedure is to intro-
duce integer weights on the edges during collapsing such
that the edge weight corresponds to the number of orig-
inal edges that are represented. A further obvious vari-
ant is to reduce crossings at each level based on which
configuration actually minimizes the resulting number
of crossings rather than using the barycenter method. It
turned out, however, that this variant performs worse
than the weighted and unweighted barycenter heuris-
tics.

The asymptotic running time of this algorithm de-
pends of course on the number N of collapse-and-
expand cycles and the maximum number N ′ of execu-
tions of the linear-time barycentric heuristic on each

level. In our experiments (see Section 4) it turned out
that in all instances we had N ≤ 2 and N ′ ≤ 4 for
the original heuristic. The weighted variant, on the
other hand, occasionally got caught in an infinite loop of
crossing reductions in one level of the algorithm, which
needed to be aborted. Under the condition that both
N and N ′ are constants, hierarchy sort runs in O(n ·H)
time, where H is the maximum height of the two trees.
In the case of complete trees H = log n, and the running
time is O(n log n).

3.3 Iterated One-Tree Crossing Minimization
One-tree crossing minimization (1TCM) is the one-sided
version of TL; one tree is fixed and the other is laid out
optimally. Fernau et al. [5] have shown how to solve this
problem in O(n log2 n) time for general binary trees.
We denote the tree to be optimized by T . The main
observation is that the crossing behavior of any two
inter-tree edges depends only on the swapping decision
taken at their lowest common ancestor node v in T .
Hence we can apply a divide-and-conquer strategy to
recursively determine the optimal layout of the two
subtrees of v and then arrange them at v such that
the number of crossings caused by v is minimum.
In our current implementation the divide-and-conquer
algorithm still has a running time of O(n3). Dwyer and
Schreiber [3] suggested to apply an algorithm for 1TCM
in turn to the two given trees until a local optimum for
TL is found.

3.4 Integer Linear Program We now give a simple
formulation of binary TL as an integer linear program
(ILP). Let S◦ and T ◦ denote the sets of inner nodes
of the given binary trees S and T , respectively. We
introduce a binary variable xu for each node u ∈ S◦∪T ◦.
If xu = 1, the two subtrees of u change their order with
respect to the input drawing, otherwise the order of the
input drawing is kept. Any assignment of these variables
corresponds to a tanglegram layout. Let ab and cd be
two inter-tree edges with a, c ∈ S and b, d ∈ T . Let
v ∈ S and w ∈ T be the lowest common ancestors of
the leaves a and c, and of b and d, respectively. We
distinguish two cases: If ab and cd cross in the input
layout, they cross in any layout that either swaps the
subtrees of both v and w or that does not swap either
of them. In other words, there is a crossing if and only
if xv = xw. Similarly, if ab and cd do not cross in the
input layout, they cross in any layout that swaps the
subtrees of exactly one of v or w, or, equivalently, ab
and cd cross if and only if xv 6= xw.

Now for a pair (v, w) ∈ S◦ × T ◦, let k×vw (k=
vw) be

the number of edge pairs that have v and w as their
lowest common ancestors and that (do not) cross in the

initial layout. Note that k×vw and k=
vw are constants

(from the ILP point of view). A table with their values
for any choice of (v, w) ∈ S◦ × T ◦ can be precomputed
in O(n2) time as follows. We initialize all values with 0
and preprocess the two trees S and T in linear time in
order to support constant-time lowest-common ancestor
queries [6]. Then we determine for each pair of inter-
tree edges their lowest common ancestors in S and T
and increment the corresponding table entry depending
on which two configurations yield the crossing. This
takes O(n2) total time for all edge pairs.

Finally, we would like to define a variable yvw for
each pair (v, w) ∈ S◦ × T ◦ that equals 1 if xv 6= xw

and 0 otherwise. This can be achieved with four linear
constraints and yields the following ILP formulation for
binary TL:

Minimize
∑

v∈S◦, w∈T◦

[yvw · k=
vw + (1− yvw) · k×vw]

subject to yvw ≤ 2− xv − xw

yvw ≤ xv + xw

yvw ≥ xv − xw

∀v ∈ S◦, w ∈ T ◦.

yvw ≥ xw − xv

3.5 Exact Branch-and-Bound Algorithm The
branch-and-bound idea used in the implementation of
the recursive splitting algorithm of Section 3.1 can also
be applied to compute optimal solutions. The main in-
gredients for speeding up the search are: (i) ordering the
nodes in the search tree according to the impact of the
swapping decisions to quickly find good solutions and
(ii) using lower bounds that are as tight as possible to
cut off large parts of the search tree as early as possible.

We preprocess the given binary TL instance 〈S, T 〉
by computing for any pair (v, w) ∈ S◦ × T ◦, the
numbers k×vw and k=

vw of edge crossings that are induced
by the swapping decisions at v and w. This takes
O(n2) time as described in the previous subsection. We
further store an interaction counter ic(v) for each node
v ∈ S◦∪T ◦ that contains the number of inner nodes w in
the opposite tree for which |k×vw − k=

vw| > 0 (otherwise
the swapping decisions for v and w are independent).
Then we construct and traverse the search tree starting
at the node whose interaction counter has the largest
value. At each subsequent step we consider the next
unvisited node v ∈ S◦∪T ◦ that has the largest difference
between the number of crossings induced by swapping
and by not swapping its subtrees given all the previous
decisions in the search tree. If ic(v) = 0, we simply
assign the better choice for v since no further decisions
depend on v. Otherwise we compute for both swap
options at v a lower bound on the number of crossings
arising from all subsequent nodes of S∪T . This is done

by summing up in linear time the respective minima of
the two possible crossing numbers at each node given the
decisions taken so far in the traversal of the search tree,
including v. If the sum of this lower bound on future
crossings and the number of current crossings is greater
or equal to the current best solution, we can safely cut
off the current branch of the search tree. Otherwise
we update the number of induced crossings for the
remaining nodes accordingly (using the precomputed
crossing numbers), decrease the interaction counters for
the remaining nodes that interact with v by one, and
go further down the search tree. Once all nodes of the
search tree have been visited or cut off, we return the
best solution found.

The running time of the algorithm is O(n2 +n ·22n)
in the worst case since we spend O(n) time per node
of the search tree. After the O(n2)-time preprocessing
phase, however, we reach the first leaf of the search
tree—and thus a valid tanglegram layout—as soon as
a first assignment of the layout of the O(n) inner nodes
of 〈S, T 〉 has been made. This takes only O(n2) time
in total. We include this greedily found first solution of
the branch-and-bound algorithm as an additional fast
heuristic in our evaluation.

4 Experimental Results

We have implemented all algorithms described in the
previous section in Java 1.6. We have executed them on
an AMD Opteron 2218 2.6 GHz system with 8 GB RAM
under SuSE Linux 10.3. For solving the ILP we used the
Java API of the commercial mathematical programming
software CPLEX 11.1. The primary goal of our study is
to evaluate which of the proposed algorithms best solves
binary TL for real-world instances. The most important
criterion is thus the performance ratio with respect to
the optimal solution in terms of the number of crossings.
A secondary goal is to identify algorithms that are
fast enough to be used interactively in a tanglegram
visualization tool. In the following we first introduce our
test data and then evaluate performance and running
times of the heuristics.

4.1 Data We generated four sets (A–D) of random
tanglegrams. Set A contains 100 pairs of complete
binary n-leaf trees with random leaf orders for each
n ∈ {16, 32, 64, 128, 256, 512}. In set B we simulate
tree mutations by starting with two identical complete
binary trees and then randomly swapping the positions
of up to 20% of the leaves of one tree. This is done
as follows: we first pick a leaf uniformly at random
and then iteratively climb up the tree with probability
0.75 in each step. From the node thus reached we
climb back down and choose its left or right child

with equal probability until we reach another leaf.
This leaf and the leaf picked in the beginning are
swapped. Thus the probability of two leaves being
swapped decreases with their distance in the tree. Set C
contains 100 pairs of general binary n-leaf trees for
each n ∈ {20, 30, . . . , 300}. The trees are constructed
from a set of nodes, initially containing the n leaves,
by iteratively joining two random nodes in a new
parent node that replaces its children in the set. This
process generates trees that resemble phylogenetic trees
or clustering dendrograms. It mimics the hierarchical
construction of these trees, which iteratively joins the
two closest clusters or set of species. Set D is similar
to set C but again in each tanglegram the second tree
is a mutation of the first tree, where up to 10% of the
leaves can swap positions as done in set B and up to
25% of the subtrees can reattach to another edge. The
edge for attaching the subtree is selected in a random
walk starting at the subtree’s old position. The walk
continues with probability 0.75 and picks the left or
right edge with equal probability. Trees in this set are
of interest since real-world tanglegrams often consist of
two related and rather similar trees.

Our real-world examples comprise three sets (E–
G) of 1303 pairs of phylogenetic trees of animal gene
families obtained from the TreeFam database1 [11, 12].
The trees in set E were generated from the multiple se-
quence alignments provided by TreeFam using the phy-
logenetic tree construction software treebest2 [11]. For
each database entry the first tree was built using the
maximum-likelihood algorithm PHYML [7] and the sec-
ond tree using the distance-based method neighbor join-
ing (nj) [16]. Both methods are widely used in bioinfor-
matics and have turned out to generate trees that are
closest to the manually curated trees in TreeFam [11].
Neighbor-joining depends on a distance measure that
reflects the probabilities of mutations at the positions
in the underlying DNA or protein sequences. Two com-
monly used distances are the synonymous distance (ds)
and the non-synonymous distance (dn). Distance dn
is more appropriate for modeling long-term evolution
while ds covers more recent mutation events better.
The nj-trees in set E are actually constructed by a tree-
merge algorithm described by Li [11] and implemented
in treebest that builds a consensus tree of the nj-trees
obtained from ds and dn. It is an obvious question
to compare the merged tree with its two source trees.
Therefore, sets F and G contain the tanglegrams con-
sisting of the merged nj-tree and its underlying ds- or
dn-tree, respectively. All three data sets E–G share the

1http://www.treefam.org
2http://treesoft.sourceforge.net

fact that about 75% of the trees have less than 50 leaves
and only 5% have more than 100 leaves.

The crossing numbers of our examples are depicted
in Figure 5. They vary strongly: as to be expected, mu-
tated trees (B and D) have far lower crossing numbers
than random pairs of trees (A and C). The TreeFam
tanglegrams in sets E and G are generally characterized
by low crossing numbers—at least for n < 200. Only
set F and the largest trees in set E have relatively high
crossing numbers ranging between those in sets C and D.

4.2 Performance In the following we denote the im-
proved recursive splitting algorithm (Section 3.1) by rec-
split++. The hierarchy sort algorithm (Section 3.2)
is abbreviated by hierarchy-sort and its variant us-
ing weighted edges by hierarchy-sort++. The iter-
ated 1TCM algorithm (Section 3.3) is denoted as 1tcm-
iterated and the heuristic that yields the first solution
obtained in the exact branch-and-bound method (Sec-
tion 3.5) is called bb-1st-sol. Let n be the size of an
instance, that is, the number of leaves per tree.

To each tanglegram we applied the five heuristics,
the ILP, and the exact branch-and-bound algorithm bb-
exact. We recorded the number ki of crossings in the
output, i being one of the heuristics in {rec-split++,
hierarchy-sort, hierarchy-sort++, 1tcm-iterated, bb-1st-
sol}. We only recorded results that were obtained
within at most one minute wall clock time. For each
tanglegram we computed the performance ratio (ki +
1)/(k + 1). The crossing number k was obtained from
one of the two exact algorithms. Note that we add one
to both numerator and denominator such that the ratio
is also defined for crossing-free instances.

We have also implemented the original recursive
splitting algorithm rec-split, but we chose not to include
it in our detailed evaluation for several reasons. First of
all, rec-split is designed only for complete binary trees
while rec-split++ is adapted to deal with unbalanced
trees as well. Hence rec-split performs badly on gen-
eral binary tanglegrams, the focus of our evaluation.
Moreover, for complete binary tanglegrams, both vari-
ants perform almost identically. Lastly, rec-split is far
slower than rec-split++: complete binary tanglegrams
with n ≥ 512 could not be solved within one minute wall
time by rec-split. For general binary trees, this timeout
was reached already for several instances with n ≈ 80.

In the subsequent discussion we refer to the per-
formance ratios shown in Figure 6. A first inspection
of the plots immediately reveals that there is a clear
method of choice for all our examples that not only out-
performs the other heuristics but even achieves average
performance ratios hardly deviating from the optimum:
bb-1st-sol. This comes as a surprise since bb-1st-sol is

merely a byproduct of our exact branch-and-bound al-
gorithm while the other heuristics were explicitly de-
signed to obtain good solutions efficiently.

Next, we examine the results for the different sets of
tanglegrams in more detail. We start with the complete
binary trees in sets A and B. Set A with random pairs
of trees shows that hierarchy-sort performs worst and
spreads over a relatively large range of values. On the
other hand the variant hierarchy-sort++ is among the
best heuristics apart from bb-1st-sol. For n ≥ 64 rec-
split++ and 1tcm-iterated catch up with bb-1st-sol and
hierarchy-sort++ and also achieve performance ratios
between 1 and 1.1.

For set B containing mutated trees that are more
similar to each other, the picture changes. Algorithms
bb-1st-sol and rec-split++ outclass the the other three
methods with average performance ratios below 1.01
and many optimal solutions while the other methods
range between 1.6 and 4. In terms of outliers rec-
split++ is slightly preferable to bb-1st-sol. Comparing
sets A and B it is noteworthy that rec-split++ and bb-
1st-sol perform equally well on random and mutated
trees, while the remaining methods are susceptible to
the similarity and consequently the crossing number of
the two trees, see Figure 5. Recall that rec-split++ is
based on the 2-approximation algorithm for complete
binary trees of Buchin et al. [2]. Although we have not
been able to prove rec-split++ to be a 2-approximation,
too, the performance ratio of rec-split++ in the experi-
ments is far better than 2 even in the worst cases.

For the general binary trees in sets C and D the
five heuristics have a similar ranking as for the sets A
and B. Algorithm bb-1st-sol remains the best method
with average performance ratios below 1.01 and is even
more clearly ahead of the remaining algorithms. For
random pairs of trees (set C) the three methods rec-
split++, hierarchy-sort++, and 1tcm-iterated show a
similar performance, which is on average below 1.1. The
worst performance is again obtained by hierarchy-sort.

For mutated trees (set D) bb-1st-sol is again almost
optimal but this time rec-split++ performs a lot bet-
ter than the remaining competitors, which is similar to
the situation for set B. While rec-split++ shows perfor-
mance ratios between 1 and 2 even for the third quartile,
hierarchy-sort++ and 1tcm-iterated lie on average be-
tween 2 and 4. The original method hierarchy-sort even
reaches average ratios close to 7. It should be noted
that outliers for all algorithms except bb-1st-sol reach
values between 10 and 100. Furthermore, for random
pairs of trees the completeness does not seem to affect
the quality of the solutions since the results for sets A
and C are very similar. For mutated trees in set D, rec-
split++ becomes inferior to bb-1st-sol unlike the results

 0

 20

 40

 60

 80

 100

 16 32 64 128 256 512
 0

 10000

 20000

 30000

 40000

 50000

 60000

pe
rc

en
ta

ge
 s

ol
ve

d

cr
os

si
ng

 n
um

be
r

number of leaves

A) random complete binary trees

 0

 20

 40

 60

 80

 100

 16 32 64 128 256 512
 0

 500

 1000

 1500

 2000

 2500

 3000

pe
rc

en
ta

ge
 s

ol
ve

d

cr
os

si
ng

 n
um

be
r

number of leaves

B) mutated complete binary trees

 0

 20

 40

 60

 80

 100

20-50
60-100

110-150

160-200

210-250

260-300

 0

 5000

 10000

 15000

 20000

pe
rc

en
ta

ge
 s

ol
ve

d

cr
os

si
ng

 n
um

be
r

number of leaves

C) random general binary trees

 0

 20

 40

 60

 80

 100

20-50
60-100

110-150

160-200

210-250

260-300

 0

 200

 400

 600

 800

 1000

pe
rc

en
ta

ge
 s

ol
ve

d

cr
os

si
ng

 n
um

be
r

number of leaves

D) mutated general binary trees

 0

 20

 40

 60

 80

 100

0-24
25-49

50-74
75-99

100-199

200-600

 0

 500

 1000

 1500

 2000

pe
rc

en
ta

ge
 s

ol
ve

d

cr
os

si
ng

 n
um

be
r

number of leaves

E) TreeFam nj-ml trees

 0

 20

 40

 60

 80

 100

0-24
25-49

50-74
75-99

100-199

200-600

 0
 2000
 4000
 6000
 8000
 10000
 12000
 14000

pe
rc

en
ta

ge
 s

ol
ve

d

cr
os

si
ng

 n
um

be
r

number of leaves

F) TreeFam nj-njds trees

 0

 20

 40

 60

 80

 100

0-24
25-49

50-74
75-99

100-199

200-600

 0

 20

 40

 60

 80

 100

pe
rc

en
ta

ge
 s

ol
ve

d

cr
os

si
ng

 n
um

be
r

number of leaves

G) TreeFam nj-njdn trees

ilp

bb-exact

crossing number

Figure 5: Percentage of solved instances for the exact algorithms ilp and bb-exact (left axes) and average crossing numbers
(right axes) of random (A–D) and real-world (E–G) binary tanglegrams. Note the different scales on the right axes.

 1
 1.1
 1.2
 1.3
 1.4
 1.5

 1.75

 2

 2.5

 16 32 64 128 256 512

pe
rf

or
m

an
ce

 r
at

io

number of leaves

A) random complete binary trees

 1

 2

 4

 8

 16

 16 32 64 128 256 512

pe
rf

or
m

an
ce

 r
at

io

number of leaves

B) mutated complete binary trees

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2
 2.4
 2.6

20-50 60-100 110-150 160-200 210-250 260-300

pe
rf

or
m

an
ce

 r
at

io

number of leaves

C) random general binary trees

 1

 10

 100

20-50 60-100 110-150 160-200 210-250 260-300

pe
rf

or
m

an
ce

 r
at

io

number of leaves

D) mutated general binary trees

 1

 10

 100

 1000

 10000

0-24 25-49 50-74 75-99 100-199 200-600

pe
rf

or
m

an
ce

 r
at

io

number of leaves

E) TreeFam nj-ml trees

 1

 10

 100

0-24 25-49 50-74 75-99 100-199 200-600

pe
rf

or
m

an
ce

 r
at

io

number of leaves

F) TreeFam nj-njds trees

optimum
rec-split++

hierarchy-sort
hierarchy-sort++

1tcm-iterated
bb-1st-sol

Figure 6: Performance ratios of the five algorithms rec-split++, hierarchy-sort, hierarchy-sort++, 1tcm-iterated, and
bb-1st-sol for random (A–D) and real-world (E–F) binary tanglegrams. The boxplots show median (−), arithmetic mean
(×), first and third quartile, minimum and maximum.

for set B. Also the performance ratios of the algorithms
on the whole (except bb-1st-sol) spread a lot more in
set D than in set B.

The relative performance of the heuristics on the
real-world data partially mirrors our observations from
sets C and D but also exhibits different effects. Note
that due to space constraints we omit the plot of the
performance ratios for set G. The results for set G are,
however, similar to those of set E since both these sets
contain rather similar trees. In analyzing the results
for sets E–G recall that about 95% of the trees have
n ≤ 100 leaves and that crossing numbers vary a lot,
see Figure 5. In the sets E and G, the crossing numbers
for n ≤ 100 are roughly the same, ranging between 0
and 35 on average. For trees of size n > 100, the
crossing numbers in set E increase drastically; those in
set G remain small. On the other hand, the crossing
numbers in set F are higher by a factor of at least 10 in
comparison to sets E and G.

The results for all three sets have in common that,
as before, bb-1st-sol attains by far the best performance
ratios and even finds optimal solutions for over 75% of
the instances. Moreover, the remaining heuristics have
severe problems with outliers that reach inacceptable
ratios between 100 and 1000, in some cases even worse.
Note, however, that the ratio (ki +1)/(k+1) equals (al-
most) the absolute number of crossings ki for instances
with k = 0. In set E the second best method is 1tcm-
iterated, followed by the two hierarchy-sort variants.
Interestingly, hierarchy-sort++ is no longer preferable
to hierarchy-sort. The algorithm rec-split++ performs
worst on set E. The order of the algorithms is thus quite
different from that on the random set D although size
and crossing number of the trees is similar.

Set F with less similar trees gives results that are
comparable to set C in terms of the relative order
of the algorithms. The hierarchy-sort++ heuristic is
worst, at least for n ≥ 25. For instances with n ≤
100, rec-split++ ranks second after bb-1st-sol. Finally,
hierarchy-sort++ performs better than 1tcm-iterated
for small instances, while 1tcm-iterated beats hierarchy-
sort++ on the large instances. In absolute numbers,
however, outliers in set F are a lot worse than in set C.

4.3 Running Time Although the number of cross-
ings is the main aspect for assessing the quality of TL
algorithms, their running time is also an important
criterion—especially if the layouts are to be produced
interactively. Figure 7 shows plots of the median run-
ning times of our five heuristics as well as of the in-
teger program ilp (Section 3.4) and the exact branch-
and-bound algorithm bb-exact (Section 3.5). In our ex-
periments there was a timeout after one minute wall

clock time for all algorithms. Note that the running
times summarize regularly terminated runs and those
aborted after one minute. Also note the different scales
on the x-axes. The main question is whether bb-1st-sol,
whose performance ratio is far better than the other
four heuristics and which even finds optimal solutions
in most of the cases, is fast enough to be used in prac-
tice. Moreover, it is of interest whether we can afford
to compute optimal solutions for typical input sizes.

Let’s first consider the running time of bb-1st-sol.
For small instances bb-1st-sol is among the fastest meth-
ods with running times between 0.001 and 0.01 sec-
onds. For larger instances the running times grow to
values between 0.1 and 0.25 seconds, placing bb-1st-sol
in the mid-range of the other heuristics. Nonetheless,
even the largest instances are solved in at most half
a second. Further note that bb-1st-sol has a worst-
case running time of O(n2) although bb-exact, from
which it is derived, has an exponential worst-case run-
ning time. From the remaining heuristics, 1tcm-iterated
is fastest for small instances, while rec-split++ and
the two hierarchy-sort variants are faster for larger
instances. Recall that our implementation of 1tcm-
iterated runs in O(n3) time while a faster O(n log2 n)-
time implementation is possible [5]. For complete binary
trees, rec-split++ is not only a 2-approximation but it
is also the fastest algorithm for n ≥ 128. An interesting
observation is that hierarchy-sort++ takes less time for
n = 512 than for n = 256 on sets A and B. Summariz-
ing the running times of the heuristics it turned out in
our experiments that all of them are fast enough to be
applied interactively in a tanglegram visualization tool.
In particular, this is the case for bb-1st-sol, the heuristic
with the best performance.

Considering the exact algorithms, note that ilp is
slower than the five heuristics by a factor between 10
and 100. Still, it is remarkable that it succeeds to find
optimal solutions in less than 10 seconds for mutated
random trees (sets B and D) and the TreeFam instances.
Only random pairs of trees (sets A and C) with many
crossings in the optimal solution are challenging and
running times reached the timeout with increasing fre-
quency as Figure 5 shows. The running times of bb-
exact behave oppositely. While bb-exact is as fast as
the heuristics for small values of n, its running time in-
creases quickly for trees that are relatively similar to
each other (sets B and D), where bb-exact gets slower
than ilp. Hence the upper bounds used to prune sub-
trees of the search tree in bb-exact seem most efficient
for instances of unrelated trees with large crossing num-
bers. For the largest of our instances bb-exact does no
longer find all optimal solutions within one minute, most
notably for sets B and D (see Figure 5).

 0.001

 0.01

 0.1

 1

 10

 100

 16 32 64 128 256 512

ru
nn

in
g

tim
e

[s
]

number of leaves

A) random complete binary trees

 0.001

 0.01

 0.1

 1

 10

 100

 16 32 64 128 256 512

ru
nn

in
g

tim
e

[s
]

number of leaves

B) mutated complete binary trees

 0.001

 0.01

 0.1

 1

 10

 100

20-50 60-100 110-150 160-200 210-250 260-300

ru
nn

in
g

tim
e

[s
]

number of leaves

C) random general binary trees

 0.001

 0.01

 0.1

 1

 10

 100

20-50 60-100 110-150 160-200 210-250 260-300

ru
nn

in
g

tim
e

[s
]

number of leaves

D) mutated general binary trees

 0.001

 0.01

 0.1

 1

 10

 100

0-24 25-49 50-74 75-99 100-199 200-600

ru
nn

in
g

tim
e

[s
]

number of leaves

E) TreeFam nj-ml trees

 0.001

 0.01

 0.1

 1

 10

 100

0-24 25-49 50-74 75-99 100-199 200-600

ru
nn

in
g

tim
e

[s
]

number of leaves

F) TreeFam nj-njds trees

timeout
rec-split++

hierarchy-sort
hierarchy-sort++

1tcm-iterated
bb-1st-sol

ilp
bb

Figure 7: Median running times of the algorithms rec-split++, hierarchy-sort, hierarchy-sort++, 1tcm-iterated, bb-1st-sol,
ilp, and bb-exact (in seconds) for random (A–D) and real-world (E–F) binary tanglegrams.

5 Conclusions

The experimental evaluation clearly indicates that bb-
1st-sol, the first solution obtained by our exact branch-
and-bound algorithm, is superior to all other heuristics
and thus the method of choice for arbitrary binary
tanglegrams. It found optimal solutions in more than
82% of our examples; the structural reason for this
astonishing behavior is an interesting question in its
own. The worst-case performance of bb-1st-sol observed
in the more than 10,000 examples was 2.24. With a
running time of O(n2) bb-1st-sol also turned out to
be fast enough even for the largest tanglegrams of size
up to 600 leaves, which took less than half a second
to compute. In practice it might be a good idea to
continue running bb-exact for a pre-specified time after
the first solution has been found in order to find an even
better (or the optimal) solution. The ILP is faster for
large instances than bb-exact (if crossing numbers are
not too high) and its running time is less susceptible
to outliers. Its disadvantage is, however, that our
implementation requires a license for a commercial ILP
solver. Note that real-world tanglegrams often have a
crossing-free layout. By construction, the underlying
algorithm bb-exact guarantees to find a crossing-free
layout as the first solution if it exists. Thus bb-1st-
sol is optimal in that case. For the special case of
complete binary trees, the 2-approximation algorithm
rec-split++ is faster than bb-1st-sol and achieves a
similar performance, which makes it a good alternative
for that case.

6 Open problems

At least two ways of generalizing binary TL are inter-
esting for applications. In software analysis, trees repre-
sent package-class-method hierarchies or the decompo-
sition of a project into layers, units, and modules. Such
trees are usually not binary. Since tanglegrams with a
small crossing number seem to occur often in practice,
it would be desirable to have an FPT algorithm for gen-
eral (non-binary) trees that is simpler and faster than
the algorithm of Fernau et al. [5].

A different way of generalizing TL is of interest
in our main application, in phylogenetic trees. There,
sometimes a leaf of one tree corresponds to two or
more leaves of the other tree. This can be formalized
by requiring that the leaf sets of the two trees induce
a collection of stars. The algorithms evaluated in
this paper all generalize to this setting with minor
adjustments. Would this still allow for constant-factor
approximations in the case of complete binary trees?

References

[1] P. Bertolazzi, G. Di Battista, C. Mannino, and
R. Tamassia. Optimal upward planarity testing of
single-source digraphs. SIAM J. Comput., 27(1):132–
169, 1998.

[2] K. Buchin, M. Buchin, J. Byrka, M. Nöllenburg,
Y. Okamoto, R. I. Silveira, and A. Wolff. Draw-
ing (complete) binary tanglegrams: Hardness, ap-
proximation, fixed-parameter tractability. In I. G.
Tollis and M. Patrignani, editors, Proc. 16th In-
ternat. Sympos. Graph Drawing (GD’08), volume
5417 of Lecture Notes Comput. Sci., pages 324–
335. Springer-Verlag, 2009. Full version available at
http://arxiv.org/abs/0806.0920.

[3] T. Dwyer and F. Schreiber. Optimal leaf ordering for
two and a half dimensional phylogenetic tree visualiza-
tion. In N. Churcher and C. Churcher, editors, Proc.
Australasian Sympos. Inform. Visual. (InVis.au’04),
volume 35 of CRPIT, pages 109–115. Australian Com-
puter Society, 2004.

[4] P. Eades and N. Wormald. Edge crossings in drawings
of bipartite graphs. Algorithmica, 10:379–403, 1994.

[5] H. Fernau, M. Kaufmann, and M. Poths. Comparing
trees via crossing minimization. In R. Ramanujam and
S. Sen, editors, Proc. 25th Intern. Conf. Found. Softw.
Techn. Theoret. Comput. Sci. (FSTTCS’05), volume
3821 of Lecture Notes Comput. Sci., pages 457–469,
2005.

[6] H. N. Gabow and R. E. Tarjan. A linear-time algo-
rithm for a special case of disjoint set union. In Proc.
15th Ann. ACM Symp. Theory Comput. (STOC’83),
pages 246–251, 1983.

[7] S. Guindon and O. Gascuel. A simple, fast, and
accurate algorithm to estimate large phylogenies by
maximum likelihood. Systematic Biology, 52(5):696–
704, 2003.

[8] M. S. Hafner, P. D. Sudman, F. X. Villablanca, T. A.
Spradling, J. W. Demastes, and S. A. Nadler. Dis-
parate rates of molecular evolution in cospeciating
hosts and parasites. Science, 265:1087–1090, 1994.

[9] D. Holten and J. J. van Wijk. Visual compar-
ison of hierarchically organized data. In Proc.
10th Eurographics/IEEE-VGTC Sympos. Visualization
(EuroVis’08), pages 759–766, 2008.

[10] M. Jünger and P. Mutzel. 2-layer straightline crossing
minimization: Performance of exact and heuristic al-
gorithms. J. Graph Algorithms Appl., 1(1):1–25, 1997.

[11] H. Li. Constructing the TreeFam Database. PhD
thesis, The Institute of Theoretical Physics, Chinese
Academy of Science, 2006.

[12] H. Li, A. Coghlan, J. Ruan, L. J. Coin, J.-K. Hériché,
L. Osmotherly, R. Li, T. Liu, Z. Zhang, L. Bolund,
G. K.-S. Wong, W. Zheng, P. Dehal, J. Wang, and
R. Durbin. TreeFam: a curated database of phylo-
genetic trees of animal gene families. Nucleic Acids
Research, 34:D572–D580, 2006.

[13] A. Lozano, R. Y. Pinter, O. Rokhlenko, G. Valiente,
and M. Ziv-Ukelson. Seeded tree alignment and pla-
nar tanglegram layout. In R. Giancarlo and S. Han-
nenhalli, editors, Proc. 7th Internat. Workshop Al-
gorithms Bioinformatics (WABI’07), volume 4645 of
Lecture Notes Comput. Sci., pages 98–110. Springer-
Verlag, 2007.

[14] X. Muñoz, W. Unger, and I. Vrt’o. One sided cross-
ing minimization is NP-hard for sparse graphs. In
P. Mutzel, M. Jünger, and S. Leipert, editors, Proc.
9th Internat. Sympos. Graph Drawing (GD’01), vol-
ume 2265 of Lecture Notes Comput. Sci., pages 115–
123. Springer-Verlag, 2002.

[15] R. D. M. Page, editor. Tangled Trees: Phylogeny,
Cospeciation, and Coevolution. University of Chicago
Press, 2002.

[16] N. Saitou and M. Nei. The neighbor-joining method:
a new method for reconstructing phylogenetic trees.
Molecular Biology and Evolution, 4:406–425, 1987.

[17] K. Sugiyama, S. Tagawa, and M. Toda. Methods for
visual understanding of hierarchical system structures.
IEEE Transactions on Systems, Man, and Cybernetics,
11(2):109–125, 1981.

[18] W. N. W. Zainon and P. Calder. Visualising phyloge-
netic trees. In W. Piekarski, editor, Proc. 7th Austa-
lasian User Interface Conf. (AUIC’06), volume 50
of CRPIT, pages 145–152. Australian Comput. Soc.,
2006.

