
BEYOND MAXIMUM INDEPENDENT SET: AN EXTENDED MODEL FOR
POINT-FEATURE LABEL PLACEMENT

Jan-Henrik Haunerta∗ Alexander Wolffb

a Geoinformatics Group, Institut für Informatik, Universität Osnabrück, Germany – janhhaunert@uni-osnabrueck.de
b Lehrstuhl für Informatik I, Universität Würzburg, Germany

Commission II, WG II/2

KEY WORDS: Map labeling, point-feature label placement, NP-hard, integer linear programming, cartographic requirements

ABSTRACT:

Map labeling is a classical problem of cartography that has frequently been approached by combinatorial optimization. Given a set of
features in the map and for each feature a set of label candidates, a common problem is to select an independent set of labels (that is, a
labeling without label–label overlaps) that contains as many labels as possible and at most one label for each feature. To obtain solutions
of high cartographic quality, the labels can be weighted and one can maximize the total weight (rather than the number) of the selected
labels. We argue, however, that when maximizing the weight of the labeling, interdependences between labels are insufficiently
addressed. Furthermore, in a maximum-weight labeling, the labels tend to be densely packed and thus the map background can be
occluded too much. We propose extensions of an existing model to overcome these limitations. Since even without our extensions the
problem is NP-hard, we cannot hope for an efficient exact algorithm for the problem. Therefore, we present a formalization of our
model as an integer linear program (ILP). This allows us to compute optimal solutions in reasonable time, which we demonstrate for
randomly generated instances.

1. INTRODUCTION

Maps and technical drawings are usually annotated with textual
or pictorial labels in order to help their users understand what
they see. A natural requirement to ensure readability is that labels
must not overlap. Especially in printed maps where extra infor-
mation cannot be added on demand, one usually wants to label
as many features (such as cities, rivers, or countries) as possible.
Let’s formalize this problem; the basic map-labeling problem.
Given a set of features and, for each feature, a set of label candi-
dates, each with a positive weight, select for each feature at most
one label from the set of candidates such that (i) no two selected
labels overlap and (ii) the sum of the weights of the selected la-
bels is maximized. If a labeling satisfies (i), it is an independent
set in the label–label conflict graph that contains a node for each
label and an edge for each pair of overlapping labels. For interac-
tive applications such as car navigation, this problem is of great
importance. For high-quality cartographic purposes, however, we
will argue that the above basic problem lacks expressiveness.

First attempts to formalize the rules that govern the labeling of
a map have been made in the early 1960s, by Imhof (1975) and
Alinhac (1962). First, cartographers (such as Yoeli 1972), but
later also computer scientists tried to automate the tedious pro-
cess of labeling maps using heuristics, rule-based or expert sys-
tems (Doerschler and Freeman 1989). Theoreticians focused on
apparently simple special cases such as the point-feature label
placement problem with four axis-aligned rectangular label can-
didates per point, the so-called four-position model. According to
this model, each label must be placed such that one of its four cor-
ners coincides with the point to be labeled. Formann and Wagner
(1991) showed that the problem is NP-hard and gave approxima-
tion algorithms, which guarantee that a solution “weighs” at least
a certain fraction of an (unknown) optimum solution. Around
the same time, researchers such as Zoraster (1986, 1990) started
using integer linear programming for map labeling. Many com-
∗Corresponding author

binatorial optimization problems can be expressed as integer lin-
ear programs (ILPs). Some of these problems are NP-hard, and
hence, so is general integer linear programming. Still, highly op-
timized solvers for ILPs are available, and allow the user to solve
small- and medium-size instances of many problems quite fast.

Zoraster’s early ILP formulations were later refined by Verweij
and Aardal (1999). In order to speed up the computation of
optimal or near-optimal solutions, they suggested to employ so-
called cutting plane techniques. Ribeiro and Lorena (2008) pre-
sented two ILP formulations and reported that, for instances of
1000 points, “no optimal solution was found in several hours un-
til CPLEX [7.5] reached an out-of-memory state”. Therefore,
they suggested to use a so-called Lagrangian relaxation based on
a clustering of the label–label conflict graph. Combining this La-
grangian clustering with the better of their two ILP formulations
helped them compute, within about one hour, solutions that were
no more than 1.3 % from optimal.

Rylov and Reimer (2014) formulate the basic map labeling prob-
lem as an ILP. Additionally, they express the cartographic quality
of a labeling and adjust the label weights accordingly. They solve
real-world instances using three different general-purpose opti-
mization heuristics; namely greedy, gradient descent, and simu-
lated annealing. The latter is the slowest method but yields also
the best results in terms of quality.

Our contribution. We extend the ILP of Rylov and Reimer
(2014) in order to take into account new cartographic aspects of
a labeling such as the inter-label distance or the density of a la-
beling. Our model allows all criteria of the model of Rylov and
Reimer (2014) to be expressed, yet in our experiments we used a
simpler weight function in which the weight of a label depends
only on the corresponding feature and not on the position of the
label. We also do not rule out labels that intersect coast lines
or other significant features of the map background; such label
candidates can easily be detected in a pre-processing step. Com-
mercial solvers (such as CPLEX or Gurobi) can solve instances

1

of our extended ILP of more than 1000 labels to optimality, even
if the label–label conflict graph is very dense.

2. METHODOLOGY

We start by recalling (see Sect. 2.1) and discussing (see Sect. 2.2)
the ILP of Rylov and Reimer (2014), which is the basis of our
extensions (see Sects. 2.3–2.5. We discuss how to set up and
solve our ILP (see Sect. 2.6).

2.1 A Basic Integer Linear Program

In the basic map-labeling problem, we are given a set F of fea-
tures and, for each feature f ∈ F , a set L(f) of label candidates.
The set of all label candidates is L =

⋃
f∈F L(f). Rylov and

Reimer (2014) introduce a 0–1 variable for each label candidate:

x` ∈ {0, 1} for each ` ∈ L . (1)

Since we will later add another group of variables, we refer to
the above variables as x-variables. Generally, if a variable x`
is set to 1, the label candidate ` is selected; it becomes a label.
(For simplicity, in the sequel, by “labels” we will also mean label
candidates.) Using these variables, Rylov and Reimer define the
following objective function, which aims at selecting a subset of
the label candidates of maximum total weight.

Maximize
∑
`∈L

w(`) · x` (2)

They forbid that two overlapping labels are selected by requiring

xa + xb ≤ 1 for each a, b ∈ L with a 6= b and a overlaps b.
(3)

If the given labeling instance is such that any two label candidates
of the same feature overlap, then Constraint (3) automatically en-
sures that any feature receives at most one label. If, however, a
feature has label candidates that do not overlap each other, the
following constraint needs to be added:∑

`∈L(f)

x` ≤ 1 for each f ∈ F (4)

Rylov and Reimer term their ILP formulation a “comprehensive
multi-criteria model”. Indeed, the model is quite general since
many criteria of cartographic quality can be modeled by specify-
ing the weight functionw. We argue, however, that not all criteria
of cartographic quality can be expressed with this. Nevertheless,
the ILP presented in this section forms the basis for our extended
model, which is why we term it the basic ILP. It has O(|L|) in-
teger variables and O(|L|2) constraints since we may need to in-
stantiate Constraint (3) for each pair of label candidates.

2.2 Disadvantages and advantages of the basic ILP

A shortcoming of the basic ILP is that the weight of a label needs
to be defined before solving the ILP and, thus, has to be set with-
out knowing which of the other labels are placed. Therefore, the
possibility of expressing interdependences between labels is very
limited. For example, to judge whether the association between
a point label ` and its corresponding point p is clear, it is im-
portant to know which other points are labeled. This particularly
holds if the rule is to display only those points that receive a la-
bel: With that rule, only if a point p′ is labeled, a label ` can be
misinterpreted as the label for p′. We could rule out ambiguous
label–point associations by setting up hard constraints similar to
Constraint (3), for example, to express that a label ` must never
be placed together with a label for p′. We argue, however, that

such a constraint would be too strict and that the clarity of asso-
ciations should rather be modeled in the objective function. This
is not possible with a weighted sum of the x-variables.

A second problem with the basic ILP is that, among two feasible
solutions S1 ⊆ L and S2 ⊆ L with S1 (S2, the solution S2

containing more labels is always preferred. In other words, if
a label can be added to a solution, then this solution cannot be
optimal. Consequently, an optimal labeling tends to be densely
packed with labels and may occlude the map background almost
completely. In fact, in the optimization community, map labeling
is referred to as a packing problem (Formann and Wagner 1991).
It is clearly not the objective of map labeling, however, to occlude
the map background as much as possible. Therefore, the existing
models need to be reconsidered.

Before we turn to an extension of the model, we need to admit
that the basic ILP is not as bad as it may seem.

First of all, every subset of an optimal solution to the basic ILP is
a feasible solution. Therefore, it can be reasonable to first com-
pute an optimal (or a close-to-optimal) solution S ⊆ L to the
basic ILP, to store this solution, and, at any time, to display only
a selection S′ of rectangles from S, such that the map background
is not occluded too much. This two-step approach of first com-
puting a densely packed solution S without label–label overlaps
and then filtering S to obtain the actual labeling S′ is particularly
useful for real-time cartography. In this application, labelings
need to be computed on the fly and thus the supposedly difficult
part of the labeling problem – avoiding label–label overlaps with-
out loosing too much information – arguably should be solved in
a pre-processing step (Been et al. 2006).

A second argument for the basic ILP is that the occlusion of the
map background can be controlled by defining the labels larger
than necessary. For example, the label holding a certain text can
be defined by buffering the text’s bounding box with a certain
distance ε ∈ R>0. This in essence means that between any two
displayed texts a minimum distance of 2ε is ensured. We argue
that strictly requiring a minimum distance between two texts is
important to ensure the legibility of each label. To avoid that
large parts of the map are covered with labels, however, a more
global constraint is needed.

2.3 Penalizing ambiguous label–feature associations

In this section we present an extension of the basic ILP to reduce
the risk that a user interprets a label of some feature f as the label
of a different feature f ′. We first discuss this in a general context
and then exemplify it for point-feature label placement.

Our model is based on a graph G = (L,E) that contains a node
for each label in L. The set E contains an edge between two
labels a, b if placing both a and b is possible yet undesirable. To
express how undesirable it is to place both a and b, we define a
cost function c : E → R>0. If for an edge e = {a, b} ∈ E both
labels a, b are selected at the same time, we charge the cost c(e),
meaning that the objective value is reduced by c(e). For ease of
notation, we write c(a, b) for c(e) with e = {a, b}. To formalize
the idea in linear terms, we introduce continuous variables

ye ∈ [0, 1] for each e ∈ E , (5)

which we term y-variables. These are linked with the x-variables
such that ye = 1 if both xa = 1 and xb = 1 for e = {a, b}:

ye ≥ xa + xb − 1 for each e = {a, b} ∈ E . (6)

2

If at least one of the two labels a, b is not selected, however, Con-
straint (6) does not have any influence on the variable ye.

The extended model has the following objective function:

Maximize
∑
`∈L

w(`) · x` −
∑
e∈E

c(e) · ye (7)

Since xa = 1 and xb = 1 entails ye = 1 for e = {a, b}, the
cost c(e) is correctly charged if a and b are selected. Else, if
xa = 0 or xb = 0, ye is free within the interval [0, 1]; since ye
appears with a negative coefficient in an objective function that
we maximize, it will receive the smallest possible value, which is
0, and the cost c(e) for e will not be charged. This means that,
even though we defined ye as a continuous variable, it will always
receive the value 0 or 1 in an optimal solution. We conclude that
our extended model does not need additional integer variables,
which has computational advantages. Since our model has both
integer variables and continuous variables it is in fact a mixed
integer linear program (MILP).

Finally, we suggest a cost function c when labeling points in the
four-position model. In this case, we would like to prevent situ-
ations such as the one displayed in Fig. 1. In this example, the
rectangular label ` corresponds to the point p, yet a user may
think that ` is the label for q, since q is within a specified distance
ρ ∈ R>0 from `. Therefore, ` should not be displayed together
with q. Assuming that q is displayed if and only if it receives a
label, we can equally well say that ` should not be displayed to-
gether with one of the labels for q. Since the upper-right label for
q is not possible in conjunction with `, we add three edges to the
graph G, namely {`, r}, {`, s}, and {`, t}.

For edges {`, r} and {`, s}, we define the costs c(`, r) = c(`, s) =
α ·w(`), where α ∈ [0, 1) is a user-selectable parameter. For ex-
ample, α = 0.4 means that selecting ` with r or s is 40% less
profitable than selecting ` without r or s. For edge {`, t}, we
define the cost c(`, t) = α · w(`) + α · w(t) since not only q is
within distance ρ from ` but also p is within distance ρ from t.

2.4 Controlling occlusion of the map background

In Sect. 2.2 we argued that the occlusion of the map background
could be controlled by defining the labels larger than necessary,
for example, by buffering the bounding boxes for the texts that are
to be displayed. Because of Constraint (3), this in essence means
that any two labels have to be separated with a certain amount of
empty space between them. While Constraint (3) acts locally, we
may also require that, overall, at most a certain numberKglobal ∈
Z>0 of labels can be placed. This can be modeled as follows.∑

`∈L

x` ≤ Kglobal (8)

Constraint (8) acts on the entire map and thus on a global level. To
control the occlusion of the map background in an adequate way,
we introduce a constraint whose region of influence can be ad-
justed, such that this more general constraint subsumes both Con-
straint (3) and Constraint (8), but also constraints acting somehow
between the local and the global level. More precisely, our model
relies on the definition of a region Γ ⊆ R2. Our idea is to require
that every translate γ of Γ overlaps at most a certain number KΓ

of labels. For example, when defining Γ as a disk of constant ra-
dius δ, our requirement means the following: In the output map,
every disk of radius δ overlaps at most KΓ labels. By restricting
Γ = {(0, 0)} to the origin and setting KΓ = 1, we can avoid
overlaps between any two labels and thus achieve the same effect
as with Constraint (3). On the other hand, by setting Γ = R2 and

ρ

`
p

q

r

s t

Figure 1: A point p with a label `, which can be misinterpreted as
the label for q, since q is within distance ρ from `. When labeling
p with `, the label for q can be r, s, or t.

Γ

`M(`)

~v

γ(~v) x

y

Figure 2: A label `, a region Γ, and the Minkowski difference
M(`) = ` 	 Γ. Translating Γ with a vector ~v ∈ M(`) yields a
region γ(~v) overlapping `.

KΓ = Kglobal, we allow at most Kglobal labels to be placed in
total, which is the same as Constraint (8).

To formalize our requirement in linear terms, a first idea is to
define a constraint similar to Constraint (8) for each region γ that
can be obtained by translating Γ. In other words, we would need
one constraint for each possible translation vector ~v ∈ R2. Let
γ(~v) = Γ + ~v ⊆ R2 be the region obtained by translating Γ
with ~v, and let L(γ) ⊆ L be the set of labels in L overlapping a
region γ ⊆ R2. Then, we can express our requirement as follows.∑

`∈L(γ(~v))

x` ≤ KΓ for each ~v ∈ R2 (9)

The problem with this definition is that there are infinitely many
vectors in R2, thus it seems that we need an infinite number
of instantiations of Constraint (9). This is not the case, how-
ever, since for two distinct vectors ~v1, ~v2 ∈ R2 it can hold that
L(γ(~v1)) = L(γ(~v2)). In this case, Constraint (9) would clearly
be the same for both ~v = ~v1 and ~v = ~v2, thus we need not instan-
tiate it twice. Generally, there can only be 2|L| distinct instantia-
tions of Constraint (9), which is a finite (though large) number.

In the following, we assume that the labels as well as the region
Γ ⊆ R2 have constant complexity, for example, they are axis-
aligned rectangles (each described with four parameters) or disks
(each described with three parameters). We will see that, under
these assumptions, the extended model with our general require-
ment has the same asymptotic number of constraints as the basic
ILP. In the examples that we present in this section, we will use
an irregular triangle for Γ to show that Γ is not required to be
symmetric. Constant complexity of shapes is required, however,
to ensure that our ILP has a manageable size.

To formalize our requirement, we consider the labels and Γ as
sets of position vectors. We denote the Minkowski difference
(de Berg et al. 2008) of a label ` and Γ as M(`), that is,

M(`) = `	 Γ = {~a−~b | ~a ∈ `,~b ∈ Γ} . (10)

Just as ` and Γ, M(`) is a set of vectors that can be interpreted
as a region; see Fig. 2. Moreover, M(`) is the set of all vectors
such that translating Γ with a vector ~v ∈ M(`) yields a region
γ(~v) overlapping `. Let us now consider two labels `1, `2 and the
Minkowski differences M(`1) = `1 	 Γ and M(`2) = `2 	 Γ.

3

`1

`2

`3

F1

F2

F3 F5

F4
F6

F7

Γ x

y

x

y

Figure 3: Three labels `1, `2, and `3 with their Minkowski dif-
ferences M(`1), M(`2), and M(`3) (top) as well as the facets
of the arrangement resulting from the overlay of M(`1), M(`2),
and M(`3) (bottom).

F1
F3

F5

F4
F6F7

F2

Figure 4: The seven facets of the arrangement formed by the three
labels `1, `2, `3 in Fig. 3.

The set M(`1) ∩M(`2) contains every vector ~v such that γ(~v)
overlaps both `1 and `2. We can easily generalize this idea to any
set L′ ⊆ L of labels: Each region γ(~v) with ~v ∈

⋂
`∈L′ M(`)

overlaps all labels in L′.

To find each relevant subset L′ ⊆ L, that is, each set of labels
for which we need to set up a constraint similar to Constraint (9),
we consider the arrangement A formed by the boundaries of the
region M(`) for each label ` ∈ L; see Fig. 3. More formally, we
considerA as a set of facets. For a facet F ∈ A and any two vec-
tors ~v1, ~v2 ∈ F , it holds that the regions γ(~v1) and γ(~v2) overlap
the same labels, that is, L(γ(~v1)) = L(γ(~v2)). Therefore, we
need only one constraint for each facet of A:∑

`∈L(γ(~v))

x` ≤ KΓ for each facet F ∈ A , (11)

where ~v is an arbitrary vector in F .

Constraint (11) has the same “meaning” as Constraint (9), yet
it is defined on the discrete set A of facets rather than on the
continuous set R2 of all possible translations of Γ. The number of
facets ofA equals the number of instantiations of Constraint (11).
Recall that by our assumption each label ` ∈ L and the region
Γ have constant complexity. Then the same holds for M(`) =
` 	 Γ, which yields that the total number of vertices and line
segments ofA isO(|L|2). SinceA is planar, the number of facets
is linear in the number of vertices, thus A has O(|L|2) facets.

We conclude that Constraint (11) requiresO(|L|2) instantiations –
one for each facet of A – and thus (asymptotically) the extended

model does not require more constraints than the basic ILP. Fur-
thermore, our model requires the same |L| integer variables (x`
for each ` ∈ L) as the basic ILP. On the other hand, we need
O(|L|2) additional continuous variables (ye for each e ∈ E),
since we may need to charge a cost for each pair of labels. In
practice, however, it is reasonable to assume that the graph G
is sparse, since only a few labels (probably constant number of
labels) will interfere with a label. Therefore, it is reasonable to
assume that the number of edges of G is in O(|L|) and thus our
ILP has the same size as the basic ILP.

2.5 Computational advantages of the extended model

Most ILP solvers rely on a strategy termed branch and bound.
Such solvers usually start solving a model by solving the model’s
LP relaxation. This generally means that the integer variables of
the model are allowed to receive fractional values – in our exam-
ple, x` ∈ {0, 1} is relaxed to x` ∈ [0, 1] for each ` ∈ L. In terms
of the objective function, an optimal solution to the ILP can not
be better than an optimal solution to the corresponding LP relax-
ation. Therefore, if the aim is to maximize the objective function,
the LP relaxation offers an upper bound for the objective function
of the ILP. The success of the existing solvers usually depends on
how tight this upper bound is, that is, on how close it is to the
objective value of an optimal integer solution. The tighter the
upper bound is, the more likely it is that the solver can prune
branches of the search tree (the so-called branch-and-bound tree)
that is explored to find an optimal integer solution. Computing
bounds by solving the model’s LP relaxation is reasonable since
LPs (other than ILPs) can be solved efficiently both in theory (for
example, with interior point methods) and in practice (usually
with the simplex algorithm).

A problem with the basic ILP is that its LP relaxation does not
offer a good upper bound. Suppose, for example, that we need to
solve the instance in Fig. 3 with the three rectangular labels `1, `2,
and `3, each of which belongs to a different feature. To rule out
overlaps between the labels, we need to instantiate Constraint (3)
three times: x`1 + x`2 ≤ 1, x`1 + x`3 ≤ 1, and x`2 + x`3 ≤ 1.
Assuming unit weights (that is, w(`) = 1 for any ` ∈ L), an opti-
mal integer solution S? is obtained by setting an arbitrary variable
to 1. Such a solution has objective value 1. In the LP relaxation,
however, we can satisfy Constraint (3) by setting each of the three
variables to 0.5. This solution S′ has objective value 1.5, which
is a rather poor estimate for the objective value of S?.

As mentioned in Sect. 2.4, we can alternatively avoid overlapping
labels by setting up Constraint (11) with a particular choice of Γ
and KΓ. More precisely, we restrict Γ = {(0, 0)} to the origin
of the coordinate system. This yields M(`) = ` for every label
` ∈ L and the arrangement A simply results from an overlay of
all labels. By setting KΓ = 1, we achieve that every facet of A
is covered by at most one label. Hence, no two labels overlap.
Using the same example as before, we obtain an arrangement
of |A| = 7 facets (not counting the unbounded exterior face);
see Fig. 4. This results in the following seven instantiations of
Constraint (11): F1 : x`1 ≤ 1; F2 : x`2 ≤ 1; F3 : x`3 ≤
1; F4 : x`1 + x`2 ≤ 1; F5 : x`1 + x`3 ≤ 1; F6 : x`2 +
x`3 ≤ 1; F7 : x`1 + x`2 + x`3 ≤ 1. Note that the inequality
for F7 implies all other inequalities, thus we can avoid overlaps
between labels with a single constraint. In the LP relaxation, this
constraint clearly forbids setting all variables to 0.5. It turns out
that, in this example, an optimal solution of the LP relaxation
(for example, the solution x`1 = x`2 = x`3 = 1/3) has the same
value (that is, 1) as an optimal solution of the ILP.

Generally, the LP relaxation of the extended model yields an up-
per bound that is at least as tight as the upper bound yielded by

4

the LP relaxation of the basic ILP. Therefore, when ruling out
overlaps between labels with Constraint (11), we can expect bet-
ter running times than with Constraint (3).

2.6 Solving the ILPs

Exact algorithms for solving ILPs such as branch and bound and
an extension termed branch and cut are readily applicable with
commercial ILP solvers, for example, CPLEX or Gurobi. As all
exact algorithms for NP-hard problems, those algorithms have an
exponential worst-case running time. Nevertheless, we choose
this approach, not least to generate benchmark solutions for the
evaluation of faster heuristics, which we plan to develop with fu-
ture research. Though using such solvers is relatively straight
forward, some algorithmic engineering is necessary to set up the
constraints. In particular, for Constraint (11), we need to compute
the arrangement A, which can be done efficiently with a plane-
sweep algorithm (de Berg et al. 2008).

3. EXPERIMENTAL RESULTS

We implemented our algorithms in Java and tested them with
respect to their running times in practice. We used the solver
Gurobi, version 6.0, to solve our ILPs. To compute the arrange-
ment A for Constraint (11) and to find overlapping labels, we
used the programming library JTS Topology Suite. All tests were
performed on a Windows PC with an Intel Core i5-3570 CPU and
8 GB of RAM.

We constructed the instances for our tests based on point sets of
different sizes, which we generated randomly. For each point, we
generated four rectangular labels, which we placed according to
the four position model. We gradually increased the number |L|
of labels without changing their spatial density, which means that
we increased the available area linearly with |L|.

More precisely, we tested our exact method for randomly gener-
ated instances with |L| = 400, 800, . . . , 2400 rectangular labels.
For each instance, we sampled |L|/4 points uniformly at random
in the square [0,

√
|L|/4] × [0,

√
|L|/4], which implies on av-

erage one point per unit area, and we generated four rectangular
labels of width 1 and height 0.5 for each point, using the four
position model. Afterwards, we slightly enlarged the rectangles,
by offsetting their sides 0.01 units outwards. Due to this enlarge-
ment, any two labels for the same point overlap. As a conse-
quence, Constraint (4) is automatically satisfied in every solution
without overlapping labels. Therefore, we did not instantiate that
constraint in our tests. Figure 5 shows three instances that we
generated this way.

To define the quality of a solution, we sampled the weight w(`)
for each label ` ∈ L uniformly at random from the interval [0, 1].
Furthermore, we defined ρ = 0.02 and α = 0.5. (Recall that we
charge a cost of α · w(`) for any labeled point that is within dis-
tance ρ from a label of a different point.) Finally, to test the effect
of Constraint (11), we defined that every axis-aligned square of
size 5 × 5 must not overlap more than KΓ = 10 selected labels.
Table 1 summarizes the results of our methods.

The first method, which we term ILP1, is based on an ILP using

• Constraint (3) to avoid overlapping labels,
• Constraint (6) to link the x-variables with the y-variables,
• Constraint (11) to ensure that every axis-aligned square of

size 5× 5 overlaps at most KΓ = 10 labels, and
• Objective (7), which considers both weights of labels and

costs for ambiguous label–point associations.

Table 1: Experimental results for instances with different num-
bers but constant spatial density of rectangles: Number |L| of
rectangles; average running times in seconds (for setting up and
solving the ILP, and in total) with different ILP formulations. For
each row, ten instances were tested.

ILP1 ILP2
|L| set up solution total set up solution total

400 1.3 0.7 2.0 1.4 0.4 1.7
800 4.6 6.9 11.5 5.1 4.5 9.6
1200 10.7 15.2 25.9 11.7 11.8 23.5
1600 24.9 115.3 140.3 26.3 98.4 124.7
2000 32.2 290.4 322.7 36.3 314.9 351.3
2400 61.1 3158.3 3219.5 67.0 2801.5 2868.5

For setting up ILP1 we need to find overlapping labels for Con-
straint (3) and to compute the arrangement for Constraint (11).
This requires a considerable amount of time, which is shown in
the second column of Table 1. For larger instances, however, the
time for the set up of the ILP is clearly dominated by the time
for the solution of the ILP, which is shown in the third column
of Table 1. Solving an instance with 2400 labels requires almost
one hour, which is certainly unacceptable in practice.

The second method, which we term ILP2, is very similar to ILP1.
The only difference is that ILP2 does not use Constraint (6) to
avoid overlapping labels. Instead, it uses Constraint (11) with
Γ = {(0, 0)} and KΓ = 1. Recall that this means that ev-
ery point in the plane is contained in at most one selected label,
which is the same as forbidding label–label overlaps. As ILP1,
ILP2 also uses Constraint (11) to avoid more than 10 labels in
any square of size 5× 5, thus ILP2 uses Constraint (11) with two
different settings for Γ and KΓ, and it requires two arrangements
to be computed. Therefore, the set-up time for ILP2 is generally
higher than for ILP1. On the other hand, the solution time for
ILP2 is usually lower, which can be explained with the fact that
its LP relaxation yields a tighter upper bound for the objective
value of an optimal ILP solution; see Sect. 2.5. Considering the
total running times with ILP1 and ILP2, our experiments do not
allow for a clear conclusion in favor of one or the other method.
ILP2 seems to offer a small advantage, though.

4. CONCLUSION

We conclude that with our extended model we can effectively
control the density of the labels in the output map and thus avoid
situations in which the background map is occluded too much.
Furthermore, our model improves the clarity of label–point as-
sociations. If the input point set is not too dense, our ILP-based
approach yields optimal solutions in reasonable time. With re-
spect to cartographic quality, it would be interesting to see how
our model extension performs with a more sophisticated weight
function such as (Rylov and Reimer 2014).

To process large instances fast, we consider it promising to ap-
ply an LP-based rounding heuristic. Such a heuristic relies on a
strong LP-relaxation, which the ILP formulation with constraints
for pairs of conflicting labels (i.e., ILP1) does not offer. Our
arrangement-based ILP formulation (i.e., ILP2) has this favor-
able property, however, and it does not require substantially more
constraints. More consideration on this aspect will we given in
a journal article, which we plan to publish in the near future.
First results that we obtained with ILP2 and an LP-based heuristic
rounding are promising.

5

(a) 100 points in a square of size 10 × 10 with
|L| = 400 labels

(b) 200 points in a square of size 14.1 × 14.1
with |L| = 800 labels

(c) 300 points in a square of size 17.3 × 17.3
with |L| = 1200 labels

Figure 5: Three instances with on average one point per unit area. Labels selected in an optimal solution are filled gray. Every
axis-aligned square of size 5× 5 overlaps at most KΓ = 10 selected labels.

References

1 Alinhac, G., 1962. Cartographie Théorique et Technique. Institut
Géographique National, Paris, chapter IV.

2 Been, K., Daiches, E. and Yap, C., 2006. Dynamic map labeling.
IEEE Trans. Visual. Comput. Graphics 12(5), pp. 773–780.

3 de Berg, M., Cheong, O., van Kreveld, M. and Overmars, M.,
2008. Computational Geometry: Algorithms and Applica-
tions. 3rd edn, Springer TELOS, Santa Clara, CA, USA.

4 Doerschler, J. S. and Freeman, H., 1989. An expert system for
dense-map name placement. In: Proc. Auto-Carto 9, pp. 215–
224.

5 Formann, M. and Wagner, F., 1991. A packing problem with
applications to lettering of maps. In: Proc. 7th Annu. ACM
Symp. Comput. Geom. (SoCG’91), pp. 281–288.

6 Imhof, E., 1975. Positioning names on maps. The American
Cartographer 2(2), pp. 128–144.

7 Ribeiro, G. M. and Lorena, L. A. N., 2008. Lagrangean relax-
ation with clusters for point-feature cartographic label place-
ment problems. Comput. Oper. Res. 35(7), pp. 2129–2140.

8 Rylov, M. A. and Reimer, A. W., 2014. A comprehensive multi-
criteria model for high cartographic quality point-feature label
placement. Cartographica 49(1), pp. 52–68.

9 Verweij, B. and Aardal, K., 1999. An optimisation algorithm for
maximum independent set with applications in map labelling.
In: Proc. 7th Annu. European Symp. Algorithms (ESA’99),
LNCS, Vol. 1643, Springer-Verlag, pp. 426–437.

10 Yoeli, P., 1972. The logic of automated map lettering. The Car-
tographic Journal 9, pp. 99–108.

11 Zoraster, S., 1986. Integer programming applied to the map label
placement problem. Cartographica 23(3), pp. 16–27.

12 Zoraster, S., 1990. The solution of large 0-1 integer programming
problems encountered in automated cartography. Operations
Research 38(5), pp. 752–759.

6

	INTRODUCTION
	METHODOLOGY
	A Basic Integer Linear Program
	Disadvantages and advantages of the basic ILP
	Penalizing ambiguous label–feature associations
	Controlling occlusion of the map background
	Computational advantages of the extended model
	Solving the ILPs

	Experimental Results
	CONCLUSION

